Poglavlje 2

Wittgensteinova logicka slika svijeta

2.1 Semanticka logicka posljedica kroz prizmu Tractatusa

U ovom poglavlju istrazujemo koncept semanticke logicke posljedice kroz prakti¢nu
Python implementaciju, inspirirani Wittgensteinovim pristupom logici i ontologiji iz Tractatus
Logico-Philosophicus.

"Svijet je sve Sto je slucaj" (Die Welt ist alles, was der Fall ist) - Tractatus, 1

Ova slavna prva recenica Tractatusa postavlja temelje za razumijevanje odnosa izmedu jezika,
logike i stvarnosti.

Za Wittgensteina, svijet se sastoji od ¢injenica (Tatsachen), ne stvari:
"Svijet je totalitet Cinjenica, ne stvari' - Tractatus, 1.1

Atomarne ¢injenice (Sachverhalte) su najjednostavnije ¢injenice koje mogu postojati ili ne
postojati. U logici ih predstavljamo elementarnim sudovima.

1 class ElementarniSud:

2 """Predstavlja atomarnu cinjenicu u Wittgensteinovom smislu."""
3

4 def __init__(self, simbol, opis=""):

5 self.simbol = simbol

6 self.opis = opis

7 self.vrijednost = None

10

11

12

13

14

15

16

17

18

19

20

21

22

23

10
11

12

10 POGLAVLJE 2. WITTGENSTEINOVA LOGICKA SLIKA SVIJETA

def __repr__(self):
return f"{self.simbol}: {self.opis}"

def __bool__(self):

return bool(self.vrijednost)

Stvorimo elementarne sudove kojt odgovaraju atomarnim Cinjentcama

ElementarniSud("p", "Pada kisa")

ElementarniSud("q", "Ulice su mokre")

R Q T #
[

ElementarniSud("r", "Nosim kiSobran")

print ("Elementarni sudovi (atomarne &injenice):")
print(f" {p}")
print(£" {q}")
print(f" {r}")

Elementarni sudovi (atomarne ¢injenice):
p: Pada kisa
q: Ulice su mokre
r: Nosim kiSobran

2.1.2 Logicki prostor i mogudi svjetovi

Wittgenstein uvodi pojam logickog prostora kao totaliteta svih moguéih konfiguracija
atomarnih ¢injenica:

"Cinjenice u logickom prostoru jesu svijet" - Tractatus, 1.13

Svaki mogudi svijet je jedna odredena kombinacija postojanja i nepostojanja atomarnih
¢injenica.

import itertools

def generiraj_moguce_svjetove(elementarni_sudovi):
"""Generira sve mogucCe svjetove kao kombinacije istinitosnih vrijednosti."""
svjetovi = []

n = len(elementarni_sudovi)

for vrijednosti in itertools.product([False, True], repeat=n):
svijet = {3
for sud, vrijednost in zip(elementarni_sudovi, vrijednosti):
svijet[sud.simbol] = vrijednost

svjetovi.append(svijet)

13

14

15

16

17

18

19

20

21

22

23

24

25

[

10

11

12

13

2.1. SEMANTICKA LOGICKA POSLJEDICA KROZ PRIZMU TRACTATUSA

11

return svjetovi

Generiraj logicki prostor
sudovi = [p, q, r]

svi_svjetovi = generiraj_moguce_svjetove(sudovi)

print (f"Logicki prostor sadrzi {len(svi_svjetovi)} mogucih svjetova:\n")
for i, svijet in enumerate(svi_svjetovil[:4], 1): # PrikazZi prve 4
Koristi simbole T 4 L wumjesto True/False
svijet_prikaz = {k: 'T' if v else 'l' for k, v in svijet.items()}
print(f"Svijet {i}: {svijet_prikazl}")
print("...")

Output

Logicki prostor sadrZzi 8 mogucih svjetova:

Svijet 1: {'p': 'L', 'q': 'L"', 'r': '1'}
Svijet 2: {'p': 'Ll', 'q': 'Ll', 'r': 'T'}
Svijet 3: {'p': 'L', 'q': 'T", 'r': '1'}
Svijet 4: {'p': 'L', 'q': 'T', 'r': 'T'}

2.1.3 Logicki veznici i slozeni sudovi

Wittgenstein pokazuje kako se slozeni sudovi grade iz elementarnih pomoc¢u istinosno-

funkcionalnih veznika:

"Sud je istinosna funkcija elementarnih sudova" - Tractatus, 5

Implementirajmo osnovne logicke veznike koriste¢i Python operatore:

class Sud:

"""Predstavlja sud kojt moZe biti elementaran ili sloZen."""

def __init__(self, formula, opis=""):
self.formula = formula
self.opis = opis

self.evaluacija = None

def evaluiraj(self, svijet):
"""Eyaluira sud u danom mogucem svijetu."""
Ovdje bt trebala biti logika evaluacije
Za sada vracamo jednostavnu vrijednost

return self.evaluacija if self.evaluacija is not None else False

14

15

16

17

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

41

42

43

44

45

46

47

12 POGLAVLJE 2. WITTGENSTEINOVA LOGICKA SLIKA SVIJETA
def __repr__(self):
return self.formula

Definiraj funkcije za logicke veznike

def

def

def

def

negacija(sud) :
””"Neg(lcija.’ “p mmn

return Sud(f"—{sud.formulal}", f"nije slucaj da {sud.opis}")

konjunkcija(sudl, sud2):

"""Konjunkcija: p A q"""

return Sud(f"({sudil.formula} A {sud2.formula})",
f"{sudl.opis} i {sud2.opis}")

disjunkcija(sudl, sud2):

"""Disjunkcija: p V q"""

return Sud(f"({sudl.formula} V {sud2.formula})",
f"{sudl.opis} ili {sud2.opis}")

implikacija(sudl, sud2):

"""Materijalna implikacija: p — q"""

return Sud(f"({sudil.formula} — {sud2.formulal})",
f"ako {sudl.opis}, onda {sud2.opisl}")

Primjeri sloZenih sudova

p_sud = Sud("p", "pada kisa")
q_sud = Sud("q", "ulice su mokre")
slozenil = implikacija(p_sud, g_sud)

slozeni2 = konjunkcija(p_sud, negacija(qg_sud))

print("SloZeni sudovi:")

print(f" {slozenil}: {sloZenil.opisl}")

print(f" {slozeni2}: {sloZeni2.opis}")

Slozeni sudovi:
(p — q): ako pada kiSa, onda ulice su mokre
(p A 7q): pada kiSa i nije sluéaj da ulice su mokre

2.1.4 Semanticka logicka posljedica

Kljuéni koncept u logici je logicka posljedica (semanticka implikacija). Kazemo da je sud ¢
logicka posljedica skupa sudova I', §to zapisujemo:

'y

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

38

39

40

41

42

2.1. SEMANTICKA LOGICKA POSLJEDICA KROZ PRIZMU TRACTATUSA 13

ako i samo ako u svakom moguéem svijetu gdje su svi sudovi iz I istiniti, ¢ je takoder
istinit.

Za Wittgensteina, logicka posljedica pokazuje strukturalni odnos izmedu sudova:

"Kada istinitost jednog suda slijedi iz istinitosti drugih, to vidimo iz strukture
samih sudova" - Tractatus, 5.13

def je_logicka_posljedica(premisa, zakljucak, elementarni):

mwin

Provjerava je li zakljucak logicka posljedica premise.

Args:
premisa: funkctija koja evaluira premisu
zakljucak: funkcija koja evaluira zakljucak

elementarnt: lista elementarnih sudova

Returns:
(bool, protuprimjer ili Nome)

for vrijednosti in itertools.product([False, True], repeat=len(elementarni)):
Postavi vrtijednostt elementarnih sudova

svijet = dict(zip(elementarni, vrijednosti))

Evaluiraj premisu 7 zakljulak
p_istina = premisa(svijet)

z_istina = zakljucak(svijet)

Ako premisa tstinita a zakljucak laZan - nije logicka posljedica
if p_istina and not z_istina:

return False, svijet

return True, None

Definiraj jednostavne evaluacijske funkcije
def p_eval(svijet):

return svijet.get('p', False)

def p_imp_q(svijet):
p = svijet.get('p', False)
q = svijet.get('q', False)
return not por q #p — g < —p V g

def q_eval(svijet):

return svijet.get('q', False)

Test: Je li q logicka posljedica od (p — gq) A p? (Modus Ponens)
def modus_ponens_premisa(svijet):

return p_imp_q(svijet) and p_eval(svijet)

43

44

45

46

47

48

49

50

1

2

3

4

10

11

12

13

14

15

14 POGLAVLJE 2. WITTGENSTEINOVA LOGICKA SLIKA SVIJETA

rezultat, protuprimjer = je_logicka_posljedica(
modus_ponens_premisa,

q_eval,

[|p|’ Iql]

print("Test Modus Ponens: ((p — q) A p) E q")
if rezultat:

print(" v JEST logicka posljedica")
else:

print(f" X NIJE logicka posljedica. Protuprimjer: {protuprimjer}")

Test Modus Ponens: ((p — @) A p) E q
v/ JEST logicka posljedica

2.1.5 Tautologije i kontradikcije

Wittgenstein istice poseban status tautologija i kontradikcija:

"Tautologija i kontradikcija nisu slike stvarnosti. One ne predstavljaju nikakvu
mogucu situaciju" - Tractatus, 4.462

o Tautologija: istinita u svim moguéim svjetovima (npr. p V —p)

o Kontradikcija: lazna u svim moguéim svjetovima (npr. p A —p)

One pokazuju granice logickog prostora:

def provjeri_status(formula_eval, elementarni):
"""Provyjerava je lt formula tautologtija, kontradikcija ili kontingentna."""
istiniti = 0

ukupno = 0

for vrijednosti in itertools.product([False, True], repeat=len(elementarni)):
svijet = dict(zip(elementarni, vrijednosti))
if formula_eval(svijet):
istiniti += 1

ukupno += 1

if istiniti == ukupno:
return "TAUTOLOGIJA"
elif istiniti ==
return "KONTRADIKCIJA"

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

[

10

11

12

13

14

15

2.1. SEMANTICKA LOGICKA POSLJEDICA KROZ PRIZMU TRACTATUSA

15

else:
return f"KONTINGENTNA ({istiniti}/{ukupno} svjetova)"

Testiraj razlicite formule
def tautologija(svijet):
p = svijet.get('p', False)
return p or not p # p V —p

def kontradikcija(svijet):
p = svijet.get('p', False)
return p and not p # p A —p

def kontingentna(svijet):

return svijet.get('p', False) # samo p

print("Status formula u logickom prostoru:\n")

print(f"p V —p: {provjeri_status(tautologija, ['p'1)}")
print(f"p A —p: {provjeri_status(kontradikcija, ['p'1)}")
print(f"p: {provjeri_status(kontingentna, ['p'])}")

Output

Status formula u logickom prostoru:

p V —p: TAUTOLOGIJA
p A —p: KONTRADIKCIJA
p: KONTINGENTNA (1/2 svjetova)

2.1.6 Tabli¢ni prikaz logickih posljedica

Vizualizirajmo logicke posljedice pomoc¢u tablica istinitosti, Sto odgovara Wittgensteinovoj

metodi iz Tractatusa:

def tablica_istinitosti(premise, zakljucak, varijable):
"""Generira tablicu istinitosti za provjeru logiclke posljedice.""""
print ("\nTablica istinitosti:")
print("=" * 60)

Zaglavlje

header = " | ".join(varijable) + " | Premisa | Zakljucak | Status"
print (header)
print("-" * len(header))

je_posljedica = True

for vrijednosti in itertools.product([" L ", " T "], repeat=len(varijable)):

svijet = {var: (val.strip() == "T") for var, val in zip(varijable, vrijednosti)}

16 POGLAVLJE 2. WITTGENSTEINOVA LOGICKA SLIKA SVIJETA

16 p_val = premise(svijet)

17 z_val = zakljucak(svijet)

18

19 # Provjert je lt maruSena logicCka posljedica

20 status = ""

21 if p_val and not z_val:

22 status = "<-- PROTUPRIMJER"

23 je_posljedica = False

24

25 # Ispis reda

26 row = " | ".join(vrijednosti)

27 row += f" | {'T" if p_val else 'l'} {'T" if z_val else 'l'}
— {status}"

28 print (row)

29

30 print("=" * 60)

31 if je_posljedica:

32 print ("\nv' Zakljucak JEST logicka posljedica premise")

33 else:

34 print ("\nx Zakljuéak NIJE logicka posljedica premise")

35

36 return je_posljedica

37

38 # Test klasiénih logilkih zakona

39 print("\nMODUS PONENS: ((p — @) A p) = q")

40 tablica_istinitosti(modus_ponens_premisa, q_eval, ['p', 'q'l)
41

42 # Test disjunktivnog silogizma

43 def disj_silogizam_premisa(svijet):

44 p = svijet.get('p', False)
45 q = svijet.get('q', False)
46 return (p or q) and not p
47

48 print ("\nDISJUNKTIVNI SILOGIZAM: ((p V @) A —p) = q")

49 tablica_istinitosti(disj_silogizam_premisa, q_eval, ['p', 'q'])

Output

MODUS PONENS: ((p — @) A p) FE q

Tablica istinitosti:

o)

Q
o
H
0]
8
-
n
[\
N
)
=3
'_l

.
e
X
o
=3
n
ct
o
ot
e
n

v/ Zakljuak JEST logicka posljedica premise

2.1. SEMANTICKA LOGICKA POSLJEDICA KROZ PRIZMU TRACTATUSA 17

DISJUNKTIVNI SILOGIZAM: ((p V @) A —p) E g

Tablica istinitosti:

p | g9 | Premisa | Zakljugak | Status

v/ Zakljuak JEST logicCka posljedica premise
True

Granice jezika i logike

Wittgenstein pokazuje da logika ima svoje granice:

"Logika ispunjava svijet; granice svijeta su takoder njezine granice" - Tractatus,
5.61

Nasa implementacija demonstrira ove granice:

« Tautologije ne govore nista o svijetu (istinite su uvijek)
o Kontradikcije opisuju nemoguénosti

e Samo kontingentne formule zapravo opisuju mogucéa stanja svijeta

Slikovna teorija znacenja

Prema Wittgensteinu, sudovi su slike moguéih stanja stvari:

"Logicka slika ¢injenica jest misao" - Tractatus, 3

Nas kod modelira ovu ideju:

e Elementarni sudovi = atomarne ¢injenice
e Slozeni sudovi = kombinacije atomarnih ¢injenica

e Moguci svjetovi = sve moguce konfiguracije

18 POGLAVLJE 2. WITTGENSTEINOVA LOGICKA SLIKA SVIJETA

Implementirajmo jednostavan sustav za automatsko logicko zakljucivanje:

1 class LogickiSustav:

2 """ Jednostavan sustav za logicko zakljucivanje."""

3

4 def __init__(self):

5 self.baza_znanja = []

6 self.elementarni = set()

7

8 def dodaj_premisu(self, formula, varijable):

9 """Dodaje premisu u bazu znanja."""

10 self.baza_znanja.append(formula)

11 self.elementarni.update(varijable)

12

13 def moze_zakljuciti(self, zakljucak):

14 """Provjerava slijedi li zakljucak <z baze znanja."""
15

16 def premise_eval(svijet):

17 # Sve premise moraju biti istinite

18 for premisa in self.baza_znanja:

19 if not premisa(svijet):

20 return False

21 return True

22

23 # Provjeri sve mogule svjetove

24 for vrijednosti in itertools.product([False, True],
25 repeat=len(self.elementarni)):
26 svijet = dict(zip(list(self.elementarni), vrijednosti))
27

28 if premise_eval(svijet) and not zakljucak(svijet):
29 return False, svijet # NaSli protuprimjer

30

31 return True, None

32

33 # Primjer koriStenja

34 sustav = LogickiSustav()

35

36 # Dodaj premise

37 def ako_kisa_mokro(svijet):

38 return not svijet.get('kiSa', False) or svijet.get('mokro', False)
39

40 def kisa_pada(svijet):

41 return svijet.get('kisa', False)
42
43 sustav.dodaj_premisu(ako_kisa_mokro, ['kiSa', 'mokro'])

44 sustav.dodaj_premisu(kisa_pada, ['kiSa'])
45
46 # Testiraj zakljucke

47 def ulice_mokre(svijet):

48

49

51

52

53

54

56

2.1. SEMANTICKA LOGICKA POSLJEDICA KROZ PRIZMU TRACTATUSA 19

return svijet.get('mokro', False)

rezultat, protuprimjer = sustav.moze_zakljuciti(ulice_mokre)

print("Baza znanja:")

print(" 1. Ako pada kiSa, ulice su mokre")

print(" 2. Pada kiZa")

print("\nZakljulak: Ulice su mokre")

print (f"\nRezultat: {'v’ Logicki slijedi' if rezultat else 'X Ne slijedi'l}")

Za produbljivanje razumijevanja semanticke logicke posljedice i Wittgensteinove filozofije,
predlazemo sljedece istrazivacke teme prikladne za dodiplomske studente:

Za produbljivanje razumijevanja semanticke logicke posljedice kroz prakticne Python zadatke,
predlazemo sljedece vjezbe prikladne za studente koji uce osnove logike sudova:

Prosirenje skupa logickih veznika

Implementirajte funkcije za dodatne logicke veznike: ekskluzivnu disjunkciju (XOR), Shefferovu
crticu (NAND) i Pierceovu strelicu (NOR). Pokazite da su NAND i NOR funkcionalno potpuni
- da pomocu njih mozete izraziti sve ostale veznike.

Automatska generacija tablica istinitosti

Napisite funkciju koja prima proizvoljan logicki izraz kao string (npr. "(p — q) A (q —
r)") i automatski generira njegovu tablicu istinitosti. Koristite Python eval() funkciju uz
sigurnosne provjere.

Prepoznavanje tautologija

Stvorite funkciju koja provjerava je li dana formula tautologija bez generiranja cijele tablice
istinitosti - zaustavite se ¢im nadete protuprimjer. Testirajte na klasi¢nim zakonima: De
Morganovim zakonima, zakonu distribucije, zakonu kontrapozicije.

20 POGLAVLJE 2. WITTGENSTEINOVA LOGICKA SLIKA SVIJETA

Normalne forme

Implementirajte pretvorbu formula u konjunktivnhu (KNF) i disjunktivhu (DNF') normalnu
formu. Za danu tablicu istinitosti generirajte minimalnu formulu koja je opisuje.

Provjera ekvivalencije

Napisite funkciju koja provjerava jesu li dvije formule logicki ekvivalentne. Testirajte s
primjerima poput: je li (p — ¢q) ekvivalentno s (-pV ¢)? Jeli (p — (¢ — r)) ekvivalentno s
(pAg) —r)?

Broj moguéih formula

Za n propozicijskih varijabli, koliko razli¢itih (neekvivalentnih) formula mozete stvoriti?
Napisite program koji generira sve moguce tablice istinitosti za 2 i 3 varijable i broji koliko ih
je jedinstvenih.

Vizualizacija logickih odnosa

Koriste¢i matplotlib, nacrtajte graf gdje ¢vorovi predstavljaju moguée svjetove, a bridovi
povezuju svjetove koji se razlikuju u to¢no jednoj atomarnoj ¢injenici. Obojite svjetove gdje
je vasa formula istinita.

Minimalni skup premisa

Za dani zakljucak i skup premisa, pronadite minimalni podskup premisa iz kojeg zakljucak jos
uvijek slijedi. Na primjer, ako imate premise p,p — ¢q,q — r,p — r, koji je minimalni skup za
zakljucak r?

Interaktivni dokazivad

Stvorite jednostavnu interaktivnu aplikaciju gdje korisnik moze graditi dokaz korak po korak
koristeéi osnovna pravila (modus ponens, modus tollens, disjunktivni silogizam). Program
provjerava valjanost svakog koraka.

Analiza sloZenosti formula

Napisite funkcije koje mjere "slozenost" formule: broj veznika, dubinu ugnijezdenja, broj
razlic¢itih varijabli. Istrazite odnos izmedu slozenosti formule i broja redaka u njenoj minimalnoj
DNF reprezentaciji.

2.1. SEMANTICKA LOGICKA POSLJEDICA KROZ PRIZMU TRACTATUSA 21

Svaki zadatak postupno gradi razumijevanje kljuénih koncepata semanticke logicke posljedice
kroz prakticno programiranje, omogucé¢avajuéi studentima da eksperimentiraju s logickim
strukturama i razviju intuiciju za formalno zakljucivanje.

Kroz ovu implementaciju istrazili smo temeljne koncepte semanticke logicke posljedice inspiri-
rani Wittgensteinovom filozofijom:

1. Atomarne cinjenice kao gradevni blokovi stvarnosti

[\

. Logicki prostor kao totalitet moguéih svjetova
3. Logicka posljedica kao odnos koji vrijedi u svim mogué¢im svjetovima

4. Granice logike pokazane kroz tautologije i kontradikcije

Wittgensteinov zakljucak Tractatusa podsjeta nas:

"O ¢emu se ne moze govoriti, o tome se mora Sutjeti' - Tractatus, 7

Logika moze opisati strukturu moguéih svjetova, ali sama ta sposobnost pociva na meta-
logickim osnovama koje se ne mogu izraziti unutar sustava. Nas Python kod demonstrira
ovu granicu - mozemo implementirati logiku, ali pitanje zasto logika funkcionira ostaje izvan
dosega same logike.

Kroz prakti¢no programiranje otkrivamo da je razumijevanje logicke posljedice klju¢no ne
samo za filozofiju jezika i logike, ve¢ i za moderna podrucja poput verifikacije softvera, umjetne
inteligencije i automatskog zakljucivanja.

	I SVJETOVI DEDUKTIVNE LOGIKE
	Wittgensteinova logička slika svijeta
	Semantička logička posljedica kroz prizmu Tractatusa
	Atomarne činjenice i elementarni sudovi
	Logički prostor i mogući svjetovi
	Logički veznici i složeni sudovi
	Semantička logička posljedica
	Tautologije i kontradikcije
	Tablični prikaz logičkih posljedica
	Filozofske implikacije
	Praktična primjena: Logičko zaključivanje
	Zadaci i prijedlozi za daljnje istraživanje
	Prijedlozi za daljnje istraživanje
	Zaključak

