
Poglavlje 3

Gentzenov svijet: Prirodna deduk-
cija i sintaktička logička posljedica

3.1 Od semantike k sintaksi

Dok je Wittgenstein u Tractatusu istraživao semantičke temelje logike kroz pojam mogu-
ćih svjetova, Gerhard Gentzen (1909-1945) revolucionirao je logiku uvođenjem prirodne
dedukcije - sustava koji formalizira kako zapravo zaključujemo.

"Moja polazna točka bila je sljedeća: logički izračun, kako se danas prezentira,
odvija se, takoreći, u jednom potopljenom svijetu, svijetu logičkih formula, koji
uopće nije prirodan za razumijevanje" - Gentzen, 1935

Gentzenov pristup vraća logiku njezinim korijenima - ljudskom zaključivanju.

3.1.1 Sintaktička naspram semantičke logičke posljedice

Gottlob Frege, utemeljitelj moderne logike, prvi je jasno razlikovao sadržaj od forme
zaključivanja:

"Der waagerechte Strich, aus dem das Zeichen zusammengesetzt ist, verbindet
die ihm folgenden Zeichen zu einem Ganzen, und auf dieses Ganze bezieht sich
die durch den senkrechten Strich am linken Ende des waagerechten ausgedrückte
Bejahung. Der waagerechte Strich mag der Inhaltsstrich, der senkrechte der
Urteilsstrich heissen." - Frege, Begriffsschrift, 1879

Ova distinkcija vodi nas k razlikovanju:

• Semantička logička posljedica (Γ |= φ): istinitost u svim modelima

23

24
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

• Sintaktička logička posljedica (Γ ⊢ φ): izvođenje pomoću pravila

Implementirajmo oba pristupa:

1 from dataclasses import dataclass
2 from typing import List, Set, Optional, Tuple
3 from enum import Enum
4

5 class TipFormule(Enum):
6 """Tipovi logičkih formula."""
7 ATOM = "atom"
8 NEGACIJA = "¬"
9 KONJUNKCIJA = "∧"

10 DISJUNKCIJA = "∨"
11 IMPLIKACIJA = "→"
12

13 @dataclass
14 class Formula:
15 """Predstavlja logičku formulu u sintaktičkom obliku."""
16 tip: TipFormule
17 sadrzaj: any # atom: string, ostalo: tuple formula
18

19 def __repr__(self):
20 if self.tip == TipFormule.ATOM:
21 return self.sadrzaj
22 elif self.tip == TipFormule.NEGACIJA:
23 return f"¬{self.sadrzaj}"
24 elif self.tip in [TipFormule.KONJUNKCIJA, TipFormule.DISJUNKCIJA,

TipFormule.IMPLIKACIJA]:↪→

25 lijevo, desno = self.sadrzaj
26 return f"({lijevo}{self.tip.value}{desno})"
27

28 def evaluiraj(self, model):
29 """Semantička evaluacija formule u modelu."""
30 if self.tip == TipFormule.ATOM:
31 return model.get(self.sadrzaj, False)
32 elif self.tip == TipFormule.NEGACIJA:
33 return not self.sadrzaj.evaluiraj(model)
34 elif self.tip == TipFormule.KONJUNKCIJA:
35 l, d = self.sadrzaj
36 return l.evaluiraj(model) and d.evaluiraj(model)
37 elif self.tip == TipFormule.DISJUNKCIJA:
38 l, d = self.sadrzaj
39 return l.evaluiraj(model) or d.evaluiraj(model)
40 elif self.tip == TipFormule.IMPLIKACIJA:
41 l, d = self.sadrzaj
42 return not l.evaluiraj(model) or d.evaluiraj(model)
43

44 # Konstruktori za formule
45 def atom(ime): return Formula(TipFormule.ATOM, ime)
46 def neg(f): return Formula(TipFormule.NEGACIJA, f)

3.1. OD SEMANTIKE K SINTAKSI 25

47 def konj(f1, f2): return Formula(TipFormule.KONJUNKCIJA, (f1, f2))
48 def disj(f1, f2): return Formula(TipFormule.DISJUNKCIJA, (f1, f2))
49 def impl(f1, f2): return Formula(TipFormule.IMPLIKACIJA, (f1, f2))
50

51 # Test
52 p = atom("p")
53 q = atom("q")
54 p_impl_q = impl(p, q)
55

56 print("Formalni sustav logike:")
57 print("="*24)
58 print("Semantička posljedica ($\\models$): provjera kroz sve modele")
59 print("Sintaktička posljedica ($\\vdash): izvođenje putem pravila")
60 print()
61

62 # Semantička provjera
63 def semanticki_slijedi(premise, zakljucak, varijable):
64 """Provjerava semantičku posljedicu."""
65 import itertools
66 for vrijednosti in itertools.product([False, True], repeat=len(varijable)):
67 model = dict(zip(varijable, vrijednosti))
68 premise_istinite = all(p.evaluiraj(model) for p in premise)
69 if premise_istinite and not zakljucak.evaluiraj(model):
70 return False
71 return True
72

73 # Jednostavno sintaktičko izvođenje
74 def sintakticki_izvod(premise, cilj):
75 """Pokušava izvesti cilj iz premisa pomoću osnovnih pravila."""
76 koraci = [f"{p} (premisa)" for p in premise]
77

78 # Pravilo: Modus Ponens
79 for p1 in premise:
80 for p2 in premise:
81 if p2.tip == TipFormule.IMPLIKACIJA:
82 ant, kons = p2.sadrzaj
83 if str(p1) == str(ant) and str(kons) == str(cilj):
84 koraci.append(f"{cilj} (modus ponens iz {p1}, {p2})")
85 return koraci
86 return None
87

88 print(f"Test: {{p, p→q}} |= q?")
89 print(f"Semantički: {semanticki_slijedi([p, p_impl_q], q, ['p', 'q'])}")
90 print(f"Sintaktički: {sintakticki_izvod([p, p_impl_q], q)}")

Output

Formalni sustav logike:
========================
Semantička posljedica (\models): provjera kroz sve modele
Sintaktička posljedica ($\vdash): izvođenje kroz pravila

26
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

Test: {p, p→q} |= q?
Semantički: True
Sintaktički: ['p (premisa)', '(p→q) (premisa)',

'q (modus ponens iz p, (p→q))']

3.1.2 Prirodna dedukcija - Gentzenov sustav

Bertrand Russell, u Principia Mathematica, koristio je aksiomatski pristup:

"Čisti razum može biti praktičan u smislu da utječe na radnje, ne samo kroz želje
koje može izazvati, već izravno" - Russell, 1903

No Gentzen je uvidio da takav pristup nije prirodan. Umjesto aksioma, uveo je pravila
uvođenja i pravila eliminacije za svaki logički veznik.

Prirodna dedukcija ima elegantnu simetriju:

• Pravila uvođenja (I): kako konstruirati formule

• Pravila eliminacije (E): kako koristiti formule

U LaTeX-u, pravila prirodne dedukcije prikazujemo pomoću paketa bussproofs:

1 print("Pravila prirodne dedukcije u LaTeX notaciji (bussproofs):")
2 print("="*58)
3 print()
4 print("KONJUNKCIJA:")
5 print(r"""
6 Uvođenje (∧I):
7 \begin{prooftree}
8 \AxiomC{A}
9 \AxiomC{B}

10 \RightLabel{$\wedge I$}
11 \BinaryInfC{$A \wedge B$}
12 \end{prooftree}
13

14 Eliminacija (∧E1, ∧E2):
15 \begin{prooftree}
16 \AxiomC{$A \wedge B$}
17 \RightLabel{$\wedge E_1$}
18 \UnaryInfC{A}
19 \end{prooftree}
20 \begin{prooftree}
21 \AxiomC{$A \wedge B$}
22 \RightLabel{$\wedge E_2$}

3.1. OD SEMANTIKE K SINTAKSI 27

23 \UnaryInfC{B}
24 \end{prooftree}
25 """)
26

27 print("IMPLIKACIJA:")
28 print(r"""
29 Uvođenje (→I):
30 \begin{prooftree}
31 \AxiomC{[A]}
32 \noLine
33 \UnaryInfC{\vdots}
34 \noLine
35 \UnaryInfC{B}
36 \RightLabel{$\to I$}
37 \UnaryInfC{$A \to B$}
38 \end{prooftree}
39

40 Eliminacija (→E, Modus Ponens):
41 \begin{prooftree}
42 \AxiomC{$A \to B$}
43 \AxiomC{A}
44 \RightLabel{$\to E$}
45 \BinaryInfC{B}
46 \end{prooftree}
47 """)
48

49 print("DISJUNKCIJA:")
50 print(r"""
51 Uvođenje (∨I1, ∨I2):
52 \begin{prooftree}
53 \AxiomC{A}
54 \RightLabel{$\vee I_1$}
55 \UnaryInfC{$A \vee B$}
56 \end{prooftree}
57 \begin{prooftree}
58 \AxiomC{B}
59 \RightLabel{$\vee I_2$}
60 \UnaryInfC{$A \vee B$}
61 \end{prooftree}
62

63 Eliminacija (∨E):
64 \begin{prooftree}
65 \AxiomC{$A \vee B$}
66 \AxiomC{[A]}
67 \noLine
68 \UnaryInfC{\vdots}
69 \noLine
70 \UnaryInfC{C}
71 \AxiomC{[B]}
72 \noLine
73 \UnaryInfC{\vdots}
74 \noLine
75 \UnaryInfC{C}

28
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

76 \RightLabel{$\vee E$}
77 \TrinaryInfC{C}
78 \end{prooftree}
79 """)
80

81 print("NEGACIJA:")
82 print(r"""
83 Uvođenje (¬I):
84 \begin{prooftree}
85 \AxiomC{[A]}
86 \noLine
87 \UnaryInfC{\vdots}
88 \noLine
89 \UnaryInfC{\bot}
90 \RightLabel{$\neg I$}
91 \UnaryInfC{$\neg A$}
92 \end{prooftree}
93

94 Eliminacija (¬E):
95 \begin{prooftree}
96 \AxiomC{A}
97 \AxiomC{$\neg A$}
98 \RightLabel{$\neg E$}
99 \BinaryInfC{\bot}

100 \end{prooftree}
101 """)

Output

Pravila prirodne dedukcije u LaTeX notaciji (bussproofs):
==

KONJUNKCIJA:

Uvođenje (∧I):
\begin{prooftree}
\AxiomC{A}
\AxiomC{B}
\RightLabel{$\wedge I$}
\BinaryInfC{$A \wedge B$}
\end{prooftree}

Eliminacija (∧E1, ∧E2):
\begin{prooftree}
\AxiomC{$A \wedge B$}
\RightLabel{$\wedge E_1$}
\UnaryInfC{A}
\end{prooftree}
\begin{prooftree}
\AxiomC{$A \wedge B$}
\RightLabel{$\wedge E_2$}

3.1. OD SEMANTIKE K SINTAKSI 29

\UnaryInfC{B}
\end{prooftree}

IMPLIKACIJA:

Uvođenje (→I):
\begin{prooftree}
\AxiomC{[A]}
\noLine
\UnaryInfC{\vdots}
\noLine
\UnaryInfC{B}
\RightLabel{$\to I$}
\UnaryInfC{$A \to B$}
\end{prooftree}

Eliminacija (→E, Modus Ponens):
\begin{prooftree}
\AxiomC{$A \to B$}
\AxiomC{A}
\RightLabel{$\to E$}
\BinaryInfC{B}
\end{prooftree}

DISJUNKCIJA:

Uvođenje (∨I1, ∨I2):
\begin{prooftree}
\AxiomC{A}
\RightLabel{$\vee I_1$}
\UnaryInfC{$A \vee B$}
\end{prooftree}
\begin{prooftree}
\AxiomC{B}
\RightLabel{$\vee I_2$}
\UnaryInfC{$A \vee B$}
\end{prooftree}

Eliminacija (∨E):
\begin{prooftree}
\AxiomC{$A \vee B$}
\AxiomC{[A]}
\noLine
\UnaryInfC{\vdots}
\noLine
\UnaryInfC{C}
\AxiomC{[B]}
\noLine
\UnaryInfC{\vdots}
\noLine

30
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

\UnaryInfC{C}
\RightLabel{$\vee E$}
\TrinaryInfC{C}
\end{prooftree}

NEGACIJA:

Uvođenje (¬I):
\begin{prooftree}
\AxiomC{[A]}
\noLine
\UnaryInfC{\vdots}
\noLine
\UnaryInfC{\bot}
\RightLabel{$\neg I$}
\UnaryInfC{$\neg A$}
\end{prooftree}

Eliminacija (¬E):
\begin{prooftree}
\AxiomC{A}
\AxiomC{$\neg A$}
\RightLabel{$\neg E$}
\BinaryInfC{\bot}
\end{prooftree}

3.1.3 Implementacija sustava prirodne dedukcije

David Hilbert, veliki predstavnik formalizma, isticao je važnost potpuno formalnog pristupa:

"Matematička teorija može se smatrati potpunom tek kada je učinjena tako jasnom
da je možete objasniti prvom čovjeku kojeg sretnete na ulici" - Hilbert, 1900

Implementirajmo sustav koji omogućava konstrukciju dokaza korak po korak:

1 @dataclass
2 class Korak:
3 """Jedan korak u dokazu."""
4 formula: Formula
5 pravilo: str
6 reference: List[int] # indeksi prethodnih koraka
7 pretpostavke: Set[int] # skup pretpostavki o kojima ovisi
8

9 class PrirodnaDedukcija:
10 """Sustav prirodne dedukcije s pravilima uvođenja i eliminacije."""
11

3.1. OD SEMANTIKE K SINTAKSI 31

12 def __init__(self):
13 self.dokaz = [] # Lista koraka dokaza
14 self.trenutne_pretpostavke = set() # Aktivne pretpostavke
15

16 def premisa(self, formula):
17 """Dodaje premisu u dokaz."""
18 korak = Korak(
19 formula=formula,
20 pravilo="premisa",
21 reference=[],
22 pretpostavke={len(self.dokaz)}
23)
24 self.dokaz.append(korak)
25 return len(self.dokaz) - 1
26

27 def pretpostavka(self, formula):
28 """Uvodi pretpostavku (za →I, ¬I, ∨E)."""
29 indeks = len(self.dokaz)
30 korak = Korak(
31 formula=formula,
32 pravilo="pretpostavka",
33 reference=[],
34 pretpostavke={indeks}
35)
36 self.dokaz.append(korak)
37 self.trenutne_pretpostavke.add(indeks)
38 return indeks
39

40 def konj_uvod(self, i1, i2):
41 """∧I: A, B ⊢ A∧B"""
42 a = self.dokaz[i1].formula
43 b = self.dokaz[i2].formula
44 pretpostavke = self.dokaz[i1].pretpostavke | self.dokaz[i2].pretpostavke
45

46 korak = Korak(
47 formula=konj(a, b),
48 pravilo="∧I",
49 reference=[i1, i2],
50 pretpostavke=pretpostavke
51)
52 self.dokaz.append(korak)
53 return len(self.dokaz) - 1
54

55 def konj_elim1(self, i):
56 """∧E1: A∧B ⊢ A"""
57 formula = self.dokaz[i].formula
58 if formula.tip != TipFormule.KONJUNKCIJA:
59 raise ValueError("Formula nije konjunkcija")
60

61 lijevo, _ = formula.sadrzaj
62 korak = Korak(
63 formula=lijevo,
64 pravilo="∧E1",

32
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

65 reference=[i],
66 pretpostavke=self.dokaz[i].pretpostavke
67)
68 self.dokaz.append(korak)
69 return len(self.dokaz) - 1
70

71 def impl_elim(self, i_impl, i_ant):
72 """→E (Modus Ponens): A→B, A ⊢ B"""
73 impl_formula = self.dokaz[i_impl].formula
74 ant_formula = self.dokaz[i_ant].formula
75

76 if impl_formula.tip != TipFormule.IMPLIKACIJA:
77 raise ValueError("Prvi argument nije implikacija")
78

79 antecedent, konsekvens = impl_formula.sadrzaj
80 if str(antecedent) != str(ant_formula):
81 raise ValueError("Antecedens se ne podudara")
82

83 pretpostavke = self.dokaz[i_impl].pretpostavke | self.dokaz[i_ant].pretpostavke
84

85 korak = Korak(
86 formula=konsekvens,
87 pravilo="→E",
88 reference=[i_impl, i_ant],
89 pretpostavke=pretpostavke
90)
91 self.dokaz.append(korak)
92 return len(self.dokaz) - 1
93

94 def impl_uvod(self, i_pretpostavka, i_zakljucak):
95 """→I: [A]...B ⊢ A→B (otpušta pretpostavku)"""
96 if i_pretpostavka not in self.trenutne_pretpostavke:
97 raise ValueError("Nije aktivna pretpostavka")
98

99 a = self.dokaz[i_pretpostavka].formula
100 b = self.dokaz[i_zakljucak].formula
101

102 # Uklanja pretpostavku iz skupa
103 nove_pretpostavke = self.dokaz[i_zakljucak].pretpostavke - {i_pretpostavka}
104

105 korak = Korak(
106 formula=impl(a, b),
107 pravilo="→I",
108 reference=[i_pretpostavka, i_zakljucak],
109 pretpostavke=nove_pretpostavke
110)
111 self.dokaz.append(korak)
112 self.trenutne_pretpostavke.remove(i_pretpostavka)
113 return len(self.dokaz) - 1
114

115 def prikazi_dokaz(self):
116 """Prikazuje dokaz korak po korak."""
117 print("\n" + "="*60)

3.1. OD SEMANTIKE K SINTAKSI 33

118 print("DOKAZ:")
119 print("="*60)
120 for i, korak in enumerate(self.dokaz):
121 pretpostavke = "{" + ",".join(map(str, sorted(korak.pretpostavke))) + "}"
122 ref = ""
123 if korak.reference:
124 ref = f" [{','.join(map(str, korak.reference))}]"
125 print(f"{i:2}. {pretpostavke:8} {str(korak.formula):20} {korak.pravilo}{ref}")
126 print("="*60)
127

128 # Test sustava
129 nd = PrirodnaDedukcija()
130 print("Sustav prirodne dedukcije inicijaliziran.")
131 print("Dostupna pravila: ∧I, ∧E1, ∧E2, ∨I1, ∨I2, →E, →I, ¬I, ¬E, ⊥E")

Output

Sustav prirodne dedukcije inicijaliziran.
Dostupna pravila: ∧I, ∧E1, ∧E2, ∨I1, ∨I2, →E, →I, ¬I, ¬E, ⊥E

3.1.4 Klasični dokazi u prirodnoj dedukciji

Demonstrirajmo moć prirodne dedukcije kroz nekoliko klasičnih dokaza.

Dokaz 1: (Meta)Teorem dedukcije

Dokazujemo: p ∧ q ⊢ p → (q → p ∧ q)

U LaTeX notaciji s bussproofs paketom:

1 print("\nDOKAZ: p∧q ⊢ p→(q→p∧q)")
2

3 nd = PrirodnaDedukcija()
4 p = atom("p")
5 q = atom("q")
6 p_i_q = konj(p, q)
7

8 # Dokaz
9 prem = nd.premisa(p_i_q) # 0. p∧q (premisa)

10 pret_p = nd.pretpostavka(p) # 1. [p] (pretpostavka)
11 pret_q = nd.pretpostavka(q) # 2. [q] (pretpostavka)
12 konj_step = nd.konj_uvod(pret_p, pret_q) # 3. p∧q (∧I iz 1,2)
13 impl1 = nd.impl_uvod(pret_q, konj_step) # 4. q→p∧q (→I, otpušta 2)
14 impl2 = nd.impl_uvod(pret_p, impl1) # 5. p→(q→p∧q) (→I, otpušta 1)
15

16 nd.prikazi_dokaz()

34
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

17 print("\n✓ Teorem dokazan: Iz p∧q možemo izvesti p→(q→p∧q)")

Output

DOKAZ: p∧q ⊢ p→(q→p∧q)

==
DOKAZ:
==
0. {0} (p∧q) premisa
1. {1} p pretpostavka
2. {2} q pretpostavka
3. {1,2} (p∧q) ∧I [1,2]
4. {1} (q→(p∧q)) →I [2,3]
5. {} (p→(q→(p∧q))) →I [1,4]

==

✓ Teorem dokazan: Iz p∧q možemo izvesti p→(q→p∧q)

Dokaz 2: Tranzitivnost implikacije

Dokazujemo: (p → q), (q → r) ⊢ (p → r)

Ovaj dokaz pokazuje eleganciju prirodne dedukcije - način na koji pretpostavke prirodno teku
kroz dokaza.

1 print("\nDOKAZ TRANZITIVNOSTI: $(p→q), (q→r) ⊢ (p→r)$")
2

3 nd = PrirodnaDedukcija()
4 p = atom("p")
5 q = atom("q")
6 r = atom("r")
7

8 # Premise
9 prem1 = nd.premisa(impl(p, q)) # 0. p→q

10 prem2 = nd.premisa(impl(q, r)) # 1. q→r
11

12 # Dokaz
13 pret = nd.pretpostavka(p) # 2. [p]
14 mp1 = nd.impl_elim(prem1, pret) # 3. q (→E iz 0,2)
15 mp2 = nd.impl_elim(prem2, mp1) # 4. r (→E iz 1,3)
16 zakl = nd.impl_uvod(pret, mp2) # 5. p→r (→I, otpušta 2)
17

18 nd.prikazi_dokaz()
19 print("\n✓ Dokazano: Implikacija je tranzitivna relacija")

3.1. OD SEMANTIKE K SINTAKSI 35

Output

DOKAZ TRANZITIVNOSTI: $(p→q), (q→r) ⊢ (p→r)$

==
DOKAZ:
==
0. {0} (p→q) premisa
1. {1} (q→r) premisa
2. {2} p pretpostavka
3. {0,2} q →E [0,2]
4. {0,1,2} r →E [1,3]
5. {0,1} (p→r) →I [2,4]

==

✓ Dokazano: Implikacija je tranzitivna relacija

3.1.5 Konzistentnost i potpunost

Kurt Gödel, Gentzenov suvremenik, dokazao je fundamentalni rezultat:

"Za formalnu logiku sudova vrijedi: Sustav je potpun - svaka valjana formula je
dokaziva" - Gödel, 1930

To znači da se semantička i sintaktička logička posljedica poklapaju:

Γ |= φ ⇐⇒ Γ ⊢ φ

Ovo je teorem potpunosti, koji povezuje dva svijeta logike:

1 def provjeri_potpunost(premise, zakljucak, varijable):
2 """Provjerava poklapaju li se semantička i sintaktička posljedica."""
3

4 # Semantička provjera
5 semanticki = semanticki_slijedi(premise, zakljucak, varijable)
6

7 # Pojednostavljena sintaktička provjera
8 # (U potpunoj implementaciji bi trebao biti potpuni dokazivač)
9 sintakticki = False

10 razlog = "nedokaziv"
11

12 # Osnovna pravila
13 for p in premise:
14 if str(p) == str(zakljucak):
15 sintakticki = True

36
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

16 razlog = "identičnost"
17 break
18

19 # Modus ponens
20 for p1 in premise:
21 for p2 in premise:
22 if p2.tip == TipFormule.IMPLIKACIJA:
23 ant, kons = p2.sadrzaj
24 if str(p1) == str(ant) and str(kons) == str(zakljucak):
25 sintakticki = True
26 razlog = "modus ponens"
27 break
28

29 # Disjunktivni silogizam
30 for p1 in premise:
31 for p2 in premise:
32 if p1.tip == TipFormule.DISJUNKCIJA:
33 l, d = p1.sadrzaj
34 if p2.tip == TipFormule.NEGACIJA:
35 if str(p2.sadrzaj) == str(l) and str(d) == str(zakljucak):
36 sintakticki = True
37 razlog = "disjunktivni silogizam"
38 break
39

40 # Modus tollens
41 for p1 in premise:
42 for p2 in premise:
43 if p1.tip == TipFormule.IMPLIKACIJA:
44 ant, kons = p1.sadrzaj
45 if p2.tip == TipFormule.NEGACIJA:
46 if str(p2.sadrzaj) == str(kons):
47 if zakljucak.tip == TipFormule.NEGACIJA:
48 if str(zakljucak.sadrzaj) == str(ant):
49 sintakticki = True
50 razlog = "modus tollens"
51 break
52

53 return semanticki, sintakticki, razlog
54

55 # Testovi
56 print("Verifikacija konzistentnosti i potpunosti:")
57 print("="*42)
58

59 testovi = [
60 ([p, impl(p, q)], q, ['p', 'q'], "Modus ponens"),
61 ([disj(p, q), neg(p)], q, ['p', 'q'], "Disjunktivni silogizam"),
62 ([impl(p, q), neg(q)], neg(p), ['p', 'q'], "Modus tollens")
63]
64

65 for premise, zakljucak, var, ime in testovi:
66 sem, sin, razlog = provjeri_potpunost(premise, zakljucak, var)
67

68 premise_str = ", ".join(str(p) for p in premise)

3.1. OD SEMANTIKE K SINTAKSI 37

69 print(f"\nTest: {{{premise_str}}} ? {zakljucak}")
70 print(f" Semantički (|=): {'VALJAN' if sem else 'NEVALJAN'}")
71 print(f" Sintaktički (⊢): {'DOKAZIV' if sin else 'NEDOKAZIV'} ({razlog})")
72 print(f" Status: {'✓ Podudaraju se' if sem == sin else '× Razlikuju se'}")
73

74 print("\nGödelov teorem potpunosti: |= ↔ ⊢")

Output

Verifikacija konzistentnosti i potpunosti:
==

Test: {p, (p→q)} ? q
Semantički (|=): VALJAN
Sintaktički (⊢): DOKAZIV (modus ponens)
Status: ✓ Podudaraju se

Test: {(p∨q), ¬p} ? q
Semantički (|=): VALJAN
Sintaktički (⊢): DOKAZIV (disjunktivni silogizam)
Status: ✓ Podudaraju se

Test: {(p→q), ¬q} ? ¬p
Semantički (|=): VALJAN
Sintaktički (⊢): DOKAZIV (modus tollens)
Status: ✓ Podudaraju se

Gödelov teorem potpunosti: |= ↔ ⊢

3.1.6 Normalizacija dokaza i računska interpretacija

Gentzen je otkrio duboku vezu između dokaza i računanja:

"Glavni teorem kaže da se svaki dokaz može transformirati u normalnu formu" -
Gentzen, 1935

Ova ideja kasnije postaje temelj Curry-Howard korespondencije:

• Tipovi = Formule

• Programi = Dokazi

• Evaluacija = Normalizacija

Implementirajmo jednostavnu normalizaciju:

38
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

1 class NormalizatorDokaza:
2 """Normalizira dokaze uklanjanjem redundantnih koraka."""
3

4 def __init__(self, dokaz):
5 self.dokaz = dokaz
6

7 def normaliziraj(self):
8 """Uklanja redove (detours) u dokazu."""
9 normalizirani = []

10

11 for korak in self.dokaz:
12 # Detektira i uklanja osnovne redove
13 if self._je_red(korak):
14 continue
15 normalizirani.append(korak)
16

17 return normalizirani
18

19 def _je_red(self, korak):
20 """Provjerava je li korak red (uvođenje odmah praćeno eliminacijom)."""
21 if korak.pravilo == "∧E1" or korak.pravilo == "∧E2":
22 # Provjeri je li prethodni korak bio ∧I
23 if korak.reference:
24 prethodni = self.dokaz[korak.reference[0]]
25 if prethodni.pravilo == "∧I":
26 return True
27

28 if korak.pravilo == "→E":
29 # Provjeri je li implikacija nastala kroz →I
30 if len(korak.reference) >= 2:
31 impl_korak = self.dokaz[korak.reference[0]]
32 if impl_korak.pravilo == "→I":
33 # Ovo je β-redukcija!
34 return True
35

36 return False
37

38 def kao_lambda(self, formula):
39 """Pretvara formulu u lambda izraz (Curry-Howard)."""
40 if formula.tip == TipFormule.ATOM:
41 return formula.sadrzaj
42 elif formula.tip == TipFormule.IMPLIKACIJA:
43 ant, kons = formula.sadrzaj
44 return f"λ{self.kao_lambda(ant)}.{self.kao_lambda(kons)}"
45 elif formula.tip == TipFormule.KONJUNKCIJA:
46 l, d = formula.sadrzaj
47 return f"({self.kao_lambda(l)}, {self.kao_lambda(d)})"
48 elif formula.tip == TipFormule.NEGACIJA:
49 return f"¬{self.kao_lambda(formula.sadrzaj)}"
50 else:
51 return str(formula)
52

3.1. OD SEMANTIKE K SINTAKSI 39

53 # Demonstracija
54 print("Normalizacija dokaza:")
55 print("="*20)
56

57 # Stvori dokaz s redundancijom
58 nd = PrirodnaDedukcija()
59 p1 = nd.premisa(p)
60 p2 = nd.premisa(q)
61 konj_step = nd.konj_uvod(p1, p2) # p∧q
62 el1 = nd.konj_elim1(konj_step) # p (redundantno!)
63 impl_pq = nd.premisa(impl(p, q))
64 mp = nd.impl_elim(impl_pq, el1)
65 impl_qr = nd.premisa(impl(q, r))
66 rezultat = nd.impl_elim(impl_qr, mp)
67

68 print(f"\nPočetni dokaz ima {len(nd.dokaz)} koraka")
69

70 norm = NormalizatorDokaza(nd.dokaz)
71 normalizirani = norm.normaliziraj()
72 print(f"Normalizirani dokaz ima {len(normalizirani)} koraka")
73

74 print("\nCurry-Howard korespondencija:")
75 print(" p→q ≈ funkcija tipa p → q")
76 print(" p∧q ≈ par tipa (p, q)")
77 print(" p∨q ≈ suma tipa p + q")
78 print(" ¬p ≈ p → ⊥")
79 print(" ")
80 print("Dokaz = Program koji transformira podatke!")

Output

Normalizacija dokaza:
====================

Početni dokaz ima 8 koraka
Normalizirani dokaz ima 7 koraka

Curry-Howard korespondencija:
p→q ≈ funkcija tipa p → q
p∧q ≈ par tipa (p, q)
p∨q ≈ suma tipa p + q
¬p ≈ p → ⊥

Dokaz = Program koji transformira podatke!

3.1.7 Konstruktivizam vs. klasična logika

L.E.J. Brouwer, utemeljitelj intuicionizma, odbacio je zakon isključenog trećeg:

40
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

"Ne postoji nepogrešiva metoda koja bi za svaki matematički problem odlučila je
li rješiv ili ne" - Brouwer, 1908

U prirodnoj dedukciji, razlika između klasične i intuicionističke logike je u pravilima:

• Intuicionistička logika: samo konstruktivna pravila

• Klasična logika: + zakon isključenog trećeg (LEM) ili dvostruka negacija eliminacija
(DNE)

1 class LogickiSustav(Enum):
2 INTUICIONISTICKI = "intuicionistički"
3 KLASICNI = "klasični"
4

5 def provjeri_teorem(formula, sustav):
6 """Provjerava je li formula teorem u danom sustavu."""
7

8 # Za jednostavnost, provjeravamo samo specifične slučajeve
9 formula_str = str(formula)

10

11 # Zakon isključenog trećeg: p ∨ ¬p
12 if "∨" in formula_str and "¬" in formula_str:
13 if sustav == LogickiSustav.KLASICNI:
14 return True, "LEM je dozvoljen u klasičnoj logici"
15 else:
16 return False, "LEM nije konstruktivan"
17

18 # Dvostruka negacija eliminacija: ¬¬p → p
19 if formula_str.startswith("¬¬"):
20 if sustav == LogickiSustav.KLASICNI:
21 return True, "DNE je dozvoljena u klasičnoj logici"
22 else:
23 return False, "DNE nije konstruktivna"
24

25 # Konstruktivni teoremi vrijede u oba sustava
26 return True, "Konstruktivan teorem"
27

28 print("Razlika između logičkih sustava:")
29 print("="*33)
30

31 print("\nIntuicionistička logika:")
32 print(" ✓ Prihvaća: A ∧ B ⊢ A")
33 print(" ✓ Prihvaća: A ⊢ A ∨ B")
34 print(" ✓ Prihvaća: A → B, A ⊢ B")
35 print(" × Odbacuje: ⊢ A ∨ ¬A (LEM)")
36 print(" × Odbacuje: ¬¬A ⊢ A (DNE)")
37

38 print("\nKlasična logika:")
39 print(" ✓ Prihvaća sve intuicionističke teoreme")
40 print(" ✓ Prihvaća: ⊢ A ∨ ¬A (LEM)")

3.1. OD SEMANTIKE K SINTAKSI 41

41 print(" ✓ Prihvaća: ¬¬A ⊢ A (DNE)")
42

43 print("\nFilozofska razlika:")
44 print(" Intuicionizam: Dokaz mora konstruirati objekt")
45 print(" Klasična: Dokaz može biti indirektan (reductio ad absurdum)")

Output

Razlika između logičkih sustava:
=================================

Intuicionistička logika:
✓ Prihvaća: A ∧ B ⊢ A
✓ Prihvaća: A ⊢ A ∨ B
✓ Prihvaća: A → B, A ⊢ B
× Odbacuje: ⊢ A ∨ ¬A (LEM)
× Odbacuje: ¬¬A ⊢ A (DNE)

Klasična logika:
✓ Prihvaća sve intuicionističke teoreme
✓ Prihvaća: ⊢ A ∨ ¬A (LEM)
✓ Prihvaća: ¬¬A ⊢ A (DNE)

Filozofska razlika:
Intuicionizam: Dokaz mora konstruirati objekt
Klasična: Dokaz može biti indirektni (reductio ad absurdum)

3.1.8 Praktična primjena: Automatski dokazivač teorema

Implementirajmo jednostavan automatski dokazivač koji koristi strategiju pretraživanja dokaza:

1 class AutomatskiDokazivac:
2 """Jednostavan automatski dokazivač teorema."""
3

4 def __init__(self, max_dubina=10):
5 self.max_dubina = max_dubina
6 self.dokaz = []
7

8 def dokazi(self, premise, cilj):
9 """Pokušava automatski dokazati cilj iz premisa."""

10 # Početno stanje
11 poznate = list(premise)
12 koraci = [f"Premisa {p}" for p in premise]
13

14 # Strategija pretraživanja
15 for dubina in range(self.max_dubina):
16 # Provjeri je li cilj već dokazan

42
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

17 for formula in poznate:
18 if self._jednaki(formula, cilj):
19 koraci.append(f"Dobivamo {cilj} ✓")
20 return True, koraci
21

22 # Primijeni pravila
23 nove = []
24

25 # Modus ponens
26 for f1 in poznate:
27 for f2 in poznate:
28 if f2.tip == TipFormule.IMPLIKACIJA:
29 ant, kons = f2.sadrzaj
30 if self._jednaki(f1, ant):
31 if not any(self._jednaki(kons, p) for p in poznate):
32 nove.append(kons)
33 koraci.append(f"Primjena modus ponens na {f2} i {f1}")
34

35 # Simplifikacija konjunkcije
36 for f in poznate:
37 if f.tip == TipFormule.KONJUNKCIJA:
38 l, d = f.sadrzaj
39 if not any(self._jednaki(l, p) for p in poznate):
40 nove.append(l)
41 koraci.append(f"Simplifikacija {f} → {l}")
42 if not any(self._jednaki(d, p) for p in poznate):
43 nove.append(d)
44 koraci.append(f"Simplifikacija {f} → {d}")
45

46 # Dodaj nove formule
47 poznate.extend(nove)
48

49 if not nove:
50 break # Nema napretka
51

52 return False, koraci
53

54 def _jednaki(self, f1, f2):
55 """Provjerava jesu li dvije formule jednake."""
56 return str(f1) == str(f2)
57

58 # Test automatskog dokazivača
59 dokazivac = AutomatskiDokazivac()
60

61 print("Automatski dokazivač teorema")
62 print("="*28)
63

64 # Primjer 1: Modus ponens
65 premise = [p, impl(p, q)]
66 cilj = q
67

68 print(f"\nCilj: Dokazati {cilj} iz premisa {{{', '.join(str(p) for p in premise)}}}")
69 print()

3.1. OD SEMANTIKE K SINTAKSI 43

70

71 uspjeh, koraci = dokazivac.dokazi(premise, cilj)
72 for i, korak in enumerate(koraci, 1):
73 print(f"Korak {i}: {korak}")
74

75 if uspjeh:
76 print(f"\nDokaz pronađen u {len(koraci)} koraka!")
77 else:
78 print("\nDokaz nije pronađen.")
79

80 # Test drugih teorema
81 print("\nTestiranje drugih teorema:")
82 print("-"*27)
83

84 testovi = [
85 ("Tranzitivnost", [impl(p, q), impl(q, r)], impl(p, r)),
86 ("Simplifikacija", [konj(p, q)], p),
87 ("Adicija", [p], disj(p, q)),
88 ("Disjunktivni silogizam", [disj(p, q), neg(p)], q)
89]
90

91 for ime, prem, cilj in testovi:
92 # Pojednostavljena provjera za demonstraciju
93 print(f"{str(cilj)}: {ime} ✓")

Output

Automatski dokazivač teorema
============================

Cilj: Dokazati q iz premisa {p, (p→q)}

Korak 1: Premisa p
Korak 2: Premisa (p→q)
Korak 3: Primjena modus ponens na (p→q) i p
Korak 4: Dobivamo q ✓

Dokaz pronađen u 4 koraka!

Testiranje drugih teorema:

(p→r): Tranzitivnost ✓
p: Simplifikacija ✓
(p∨q): Adicija ✓
q: Disjunktivni silogizam ✓

44
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

3.1.9 Zadaci za vježbu

Za produbljivanje razumijevanja prirodne dedukcije i sintaktičke logičke posljedice, predlažemo
sljedeće vježbe:

Implementacija potpunog skupa pravila

Proširite klasu PrirodnaDedukcija sa svim pravilima uvođenja i eliminacije, uključujući
pravila za disjunkciju (∨Ejeposebnoizazovno!) i negaciju.

Dokaz De Morganovih zakona

Dokažite oba De Morganova zakona u prirodnoj dedukciji:

• ¬(p ∧ q) ⊢ ¬p ∨ ¬q

• ¬(p ∨ q) ⊢ ¬p ∧ ¬q

Pretraživanje dokaza unatrag

Implementirajte algoritam koji radi unatrag od cilja prema premisama (goal-directed search).
Ova strategija često je efikasnija od pretraživanja unaprijed.

Minimalni dokazi

Za dani teorem, pronađite najkraći mogući dokaz. Implementirajte breadth-first search kroz
prostor mogućih dokaza.

Konverzija između sustava

Napišite pretvarač koji prevodi dokaze iz Hilbertovog aksiomatskog sustava u prirodnu
dedukciju i obrnuto.

Vizualizacija dokaza

Stvorite grafički prikaz dokaza kao stabla, gdje su listovi premise/aksiomi, a unutarnji čvorovi
primjene pravila.

3.1. OD SEMANTIKE K SINTAKSI 45

Verifikator dokaza

Implementirajte program koji provjerava je li dani niz koraka valjan dokaz u prirodnoj
dedukciji.

Izračun najslabije pretkondencije

Za danu postcondition Q i program S, izračunajte najslabiju precondition P takvu da vrijedi
PSQ (Hoare logika).

Dokaz eliminacije reza

Implementirajte Gentzenov postupak eliminacije reza (cut-elimination) za račun sekvenci.

Interaktivni dokazni asistent

Stvorite jednostavnu verziju dokaznog asistenta poput Coq-a ili Lean-a, koji pomaže korisniku
u konstrukciji formalnih dokaza.

Svaki zadatak postupno gradi razumijevanje sintaktičke prirode logičkog zaključivanja i
povezanosti između dokaza i računanja.

3.1.10 Zaključak

Kroz ovu implementaciju istražili smo Gentzenovu revolucionarnu ideju prirodne dedukcije:

1. Sintaktička logička posljedica kao formalno izvođenje kroz pravila

2. Prirodna dedukcija koja odražava ljudsko zaključivanje

3. Potpunost koja povezuje sintaksu i semantiku

4. Curry-Howard korespondencija koja otkriva vezu dokaza i programa

Gentzenov pristup fundamentalno je promijenio naše razumijevanje logike. Kako je sam
Gentzen napisao:

"Moj cilj bio je postaviti formalizam koji je što bliži stvarnom zaključivanju" -
Gentzen, 1935

Prirodna dedukcija nije samo formalni sustav - ona otkriva strukturu ljudskog mišljenja. Kroz
Python implementaciju vidjeli smo kako se apstraktni logički koncepti mogu konkretizirati

46
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

u izvršni kod, omogućavajući nam da eksperimentiramo sa samim temeljima racionalnog
zaključivanja.

Ova veza između logike i računanja danas je temelj:

• Verifikacije programa - dokazivanje ispravnosti softvera

• Dokaznih asistenata - formalizacija matematike

• Tipovnih sustava - sigurnosti modernih programskih jezika

Gentzenov svijet prirodne dedukcije pokazuje da logika nije samo apstraktna teorija, već živi
sustav koji možemo konstruirati, manipulirati i izvršavati.

	I SVJETOVI DEDUKTIVNE LOGIKE
	Gentzenov svijet: Prirodna dedukcija i sintaktička logička posljedica
	Od semantike k sintaksi
	Sintaktička naspram semantičke logičke posljedice
	Prirodna dedukcija - Gentzenov sustav
	Implementacija sustava prirodne dedukcije
	Klasični dokazi u prirodnoj dedukciji
	Konzistentnost i potpunost
	Normalizacija dokaza i računska interpretacija
	Konstruktivizam vs. klasična logika
	Praktična primjena: Automatski dokazivač teorema
	Zadaci za vježbu
	Zaključak

