Poglavlje 3

Gentzenov svijet: Prirodna deduk-
cija 1 sintakticka logicka posljedica

3.1 0Od semantike k sintaksi

Dok je Wittgenstein u Tractatusu istrazivao semanticke temelje logike kroz pojam mogu-
¢ih svjetova, Gerhard Gentzen (1909-1945) revolucionirao je logiku uvodenjem prirodne
dedukcije - sustava koji formalizira kako zapravo zakljucujemo.

"Moja polazna tocka bila je sljedeéa: logicki izracun, kako se danas prezentira,
odvija se, takoreéi, u jednom potopljenom svijetu, svijetu logickih formula, koji
uopce nije prirodan za razumijevanje" - Gentzen, 1935

Gentzenov pristup vrada logiku njezinim korijenima - ljudskom zakljuc¢ivanju.

Gottlob Frege, utemeljitelj moderne logike, prvi je jasno razlikovao sadrzaj od forme
zakljucivanja:

"Der waagerechte Strich, aus dem das Zeichen zusammengesetzt ist, verbindet
die ihm folgenden Zeichen zu einem Ganzen, und auf dieses Ganze bezieht sich
die durch den senkrechten Strich am linken Ende des waagerechten ausgedriickte
Bejahung. Der waagerechte Strich mag der Inhaltsstrich, der senkrechte der
Urteilsstrich heissen." - Frege, Begriffsschrift, 1879

Ova distinkcija vodi nas k razlikovanju:

» Semanticka logicka posljedica (I' = ¢): istinitost u svim modelima

23

POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTICKA
24 LOGICKA POSLJEDICA

o Sintakticka logic¢ka posljedica (I' F ¢): izvodenje pomoc¢u pravila

Implementirajmo oba pristupa:

1 from dataclasses import dataclass
2 from typing import List, Set, Optional, Tuple

3 from enum import Enum

5 class TipFormule(Enum) :

6 """Tipovt logickih formula."""
7 ATOM = "atom"

8 NEGACIJA = "

9 KONJUNKCIJA = "A"

10 DISJUNKCIJA = "V"

11 IMPLIKACIJA = "—"

12
13 @dataclass

14 class Formula:

15 """Predstavlja logicku formulu u sintaktilkom obliku."""

16 tip: TipFormule

17 sadrzaj: any # atom: string, ostalo: tuple formula

18

19 def __repr__(self):

20 if self.tip == TipFormule.ATOM:

21 return self.sadrzaj

22 elif self.tip == TipFormule.NEGACIJA:

23 return f"—{self.sadrzaj}"

24 elif self.tip in [TipFormule.KONJUNKCIJA, TipFormule.DISJUNKCIJA,
— TipFormule.IMPLIKACIJA]:

25 lijevo, desno = self.sadrzaj

26 return f"({lijevo}{self.tip.value}{desno})"

27

28 def evaluiraj(self, model):

29 """Semanticka evaluacija formule u modelu."""

30 if self.tip == TipFormule.ATOM:

31 return model.get(self.sadrzaj, False)

32 elif self.tip == TipFormule.NEGACIJA:

33 return not self.sadrzaj.evaluiraj(model)

34 elif self.tip == TipFormule.KONJUNKCIJA:

35 1, d = self.sadrzaj

36 return 1.evaluiraj(model) and d.evaluiraj(model)

37 elif self.tip == TipFormule.DISJUNKCIJA:

38 1, d = self.sadrzaj

39 return 1l.evaluiraj(model) or d.evaluiraj(model)

40 elif self.tip == TipFormule.IMPLIKACIJA:

41 1, d = self.sadrzaj

42 return not 1l.evaluiraj(model) or d.evaluiraj(model)

43

44 # Konmstruktort za formule
45 def atom(ime): return Formula(TipFormule.ATOM, ime)
46 def neg(f): return Formula(TipFormule.NEGACIJA, f)

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

90

3.1. OD SEMANTIKE K SINTAKSI 25

def konj(f1l, f2): return Formula(TipFormule.KONJUNKCIJA, (f1, £2))
def disj(f1, £2): return Formula(TipFormule.DISJUNKCIJA, (f1, £2))
def impl(f1l, £f2): return Formula(TipFormule.IMPLIKACIJA, (f1, £2))

Test
P = atom("p")
q = atom("q")

p_impl_q = impl(p, q)

print ("Formalni sustav logike:")

print ("="*24)

print ("Semantiéka posljedica ($\\models$): provjera kroz sve modele")
print("Sintakticka posljedica ($\\vdash): izvodenje putem pravila")
print ()

Semanticka provjera
def semanticki_slijedi(premise, zakljucak, varijable):
"""Provjerava semanticku posljedicu."""
import itertools
for vrijednosti in itertools.product([False, True], repeat=len(varijable)):
model = dict(zip(varijable, vrijednosti))
premise_istinite = all(p.evaluiraj(model) for p in premise)
if premise_istinite and not zakljucak.evaluiraj(model):
return False

return True

Jednostavno sintaktilko izvodenje
def sintakticki_izvod(premise, cilj):
"""PokuSava izvesti cilj tz premisa pomoéu osnovnih pravila."""

koraci = [f"{p} (premisa)" for p in premise]

Pravilo: Modus Ponens
for pl in premise:
for p2 in premise:
if p2.tip == TipFormule.IMPLIKACIJA:
ant, kons = p2.sadrzaj
if str(pl) == str(ant) and str(kons) == str(cilj):
koraci.append(f"{cilj} (modus ponens iz {pl}, {p2}H)")
return koraci

return None

print(f"Test: {{p, p—q}} E q?")
print (f"Semanticki: {semanticki_slijedi([p, p_impl_ql, q, ['p', '9'1D}")
print (f"Sintakticki: {sintakticki_izvod([p, p_impl_ql, q)}")

Formalni sustav logike:

Semanticka posljedica (\models): provjera kroz sve modele
Sintakticka posljedica ($\vdash): izvodenje kroz pravila

10

11

12

13

14

15

16

17

18

19

20

21

22

POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTICKA
26 LOGICKA POSLJEDICA

Test: {p, p—q} = q7

Semanticki: True

Sintakticki: ['p (premisa)', '(p—q) (premisa)',
'q (modus ponens iz p, (p—q))']

Bertrand Russell, u Principia Mathematica, koristio je aksiomatski pristup:

"Cisti razum moze biti praktican u smislu da utjece na radnje, ne samo kroz zelje
koje moze izazvati, ve izravno" - Russell, 1903

No Gentzen je uvidio da takav pristup nije prirodan. Umjesto aksioma, uveo je pravila
uvodenja i pravila eliminacije za svaki logicki veznik.

Prirodna dedukcija ima elegantnu simetriju:

« Pravila uvodenja (I): kako konstruirati formule

o Pravila eliminacije (E): kako koristiti formule

U LaTeX-u, pravila prirodne dedukcije prikazujemo pomocu paketa bussproofs:

print("Pravila prirodne dedukcije u LaTeX notaciji (bussproofs):")
print ("="x58)

print)

print ("KONJUNKCIJA:")
print ("""

Uvodenje (AI):
\begin{prooftree}
\AxiomC{A}

\AxiomC{B}
\RightLabel{$\wedge I$}
\BinaryInfC{$A \wedge B$}
\end{prooftree}

Eliminacija (AE;, AE2):
\begin{prooftree}
\AxiomC{$A \wedge B$}
\RightLabel{$\wedge E_1$}
\UnaryInfC{A}
\end{prooftree}
\begin{prooftree}
\AxiomC{$A \wedge B$}
\RightLabel{$\wedge E_2$}

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

3.1. OD SEMANTIKE K SINTAKSI

27

\UnaryInfC{B}
\end{prooftree}
nn ||)

print ("IMPLIKACIJA:")
print (z"""

Uvodenje (—I):
\begin{prooftree}
\AxiomC{[A]}
\noLine
\UnaryInfC{\vdots}
\noLine
\UnaryInfC{B}
\RightLabel{$\to I$}
\UnaryInfC{$A \to B$}
\end{prooftree}

Eliminacija (—E, Modus Ponens):
\begin{prooftree}

\AxiomC{$A \to B$}

\AxiomC{A}

\RightLabel{$\to E$}
\BinaryInfC{B}
\end{prooftree}

L)

print ("DISJUNKCIJA:")
print ("""

Uvodenje (VIi, VI2):
\begin{prooftree}
\AxiomC{A}
\RightLabel{$\vee I_1$2}
\UnaryInfC{$A \vee B$}
\end{prooftree}
\begin{prooftree}
\AxiomC{B}
\RightLabel{$\vee I_2$2}
\UnaryInfC{$A \vee B$}
\end{prooftree}

Eliminacija (VE):
\begin{prooftree}
\AxiomC{$A \vee B$}
\AxiomC{[A]}
\noLine
\UnaryInfC{\vdots}
\noLine
\UnaryInfC{C}
\AxiomC{[B]}
\noLine
\UnaryInfC{\vdots}
\noLine
\UnaryInfC{C}

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTICKA

28

LOGICKA POSLJEDICA

\RightLabel{$\vee E$}
\TrinaryInfC{C}
\end{prooftree}

nn n)

print ("NEGACIJA:")
print (z"""

Uvodenje (—I):
\begin{prooftree}
\AxiomC{[A]}
\noLine
\UnaryInfC{\vdots}
\noLine
\UnaryInfC{\bot}
\RightLabel{$\neg I$}
\UnaryInfC{$\neg A$}
\end{prooftree}

Eliminacija (—E):
\begin{prooftree}
\AxiomC{A}
\AxiomC{$\neg A$}
\RightLabel{$\neg E$}
\BinaryInfC{\bot}
\end{prooftree}

R

Output

Pravila prirodne dedukcije u LaTeX notaciji (bussproofs):

KONJUNKCIJA:

Uvodenje (AI):
\begin{prooftree}
\AxiomC{AS}

\AxiomC{B}
\RightLabel{$\wedge I$}
\BinaryInfC{$A \wedge B$}
\end{prooftree}

Eliminacija (AE;, AEg):
\begin{prooftree}
\AxiomC{$A \wedge B$}
\RightLabel{$\wedge E_1$}
\UnaryInfC{A}
\end{prooftree}
\begin{prooftree}
\AxiomC{$A \wedge B$}
\RightLabel{$\wedge E_28}

3.1. OD SEMANTIKE K SINTAKSI

29

\UnaryInfC{B}
\end{prooftree}

IMPLIKACIJA:

Uvodenje (—1I):
\begin{prooftree}
\AxiomC{[A]2}
\noLine
\UnaryInfC{\vdots}
\noLine
\UnaryInfC{B}
\RightLabel{$\to I$}
\UnaryInfC{$A \to B$}
\end{prooftree}

Eliminacija (—E, Modus Ponens):
\begin{prooftree}

\AxiomC{$A \to B$}

\AxiomC{A}

\RightLabel{$\to E$}
\BinaryInfC{B}
\end{prooftree}

DISJUNKCIJA:

Uvodenje (VI;, VIg):
\begin{prooftree}
\AxiomC{AS}
\RightLabel{$\vee I_13$}
\UnaryInfC{$A \vee B$}
\end{prooftree}
\begin{prooftree}
\AxiomC{B}
\RightLabel{$\vee I_28%}
\UnaryInfC{$A \vee B$}
\end{prooftree}

Eliminacija (VE):
\begin{prooftree}
\AxiomC{$A \vee B$}
\AxiomC{[A]}
\noLine
\UnaryInfC{\vdots}
\noLine
\UnaryInfC{C}
\AxiomC{[B]}
\noLine
\UnaryInfC{\vdots>}
\noLine

9

10

11

30

POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTICKA

LOGICKA POSLJEDICA

\UnaryInfC{C}
\RightLabel{$\vee E$}
\TrinaryInfC{C}
\end{prooftree}

NEGACIJA:

Uvodenje (—I):
\begin{prooftree}
\AxiomC{ [A]}
\noLine
\UnaryInfC{\vdots}
\noLine
\UnaryInfC{\bot>}
\RightLabel{$\neg I$}
\UnaryInfC{$\neg A$}
\end{prooftree}

Eliminacija (—E):
\begin{prooftree}
\AxiomC{A}
\AxiomC{$\neg A$}
\RightLabel{$\neg E$}
\BinaryInfC{\bot}
\end{prooftree}

David Hilbert, veliki predstavnik formalizma, isticao je vaznost potpuno formalnog pristupa:

"Matematicka teorija moze se smatrati potpunom tek kada je ucinjena tako jasnom
da je mozete objasniti prvom c¢ovjeku kojeg sretnete na ulici" - Hilbert, 1900

Implementirajmo sustav koji omogucéava konstrukciju dokaza korak po korak:

@dataclass

class Korak:

"t Jjedan korak w dokazu."""

formula: Formula

pravilo: str

reference: List[int] # indekst prethodnih koraka

pretpostavke: Set[int] # skup pretpostavki o kojima ovisi

class PrirodnaDedukcija:

"""Sustav prirodne dedukcije s pravilima uvodenja i eliminacije.”"""

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

3.1.

OD SEMANTIKE K SINTAKSI

31

def

def

def

def

def

__init__(self):
self.dokaz = [] # Lista koraka dokaza
self.trenutne_pretpostavke = set() # Aktivne pretpostavke

premisa(self, formula):

"""Dodaje premisu u dokaz."""

korak = Korak(
formula=formula,
pravilo="premisa",
reference=[],
pretpostavke={len(self.dokaz)}

)

self.dokaz.append (korak)

return len(self.dokaz) - 1

pretpostavka(self, formula):

"""Uyodi pretpostavku (za —I, —I, VE)."""

indeks = len(self.dokaz)

korak = Korak(
formula=formula,
pravilo="pretpostavka",
reference=[],
pretpostavke={indeks}

)

self .dokaz.append (korak)

self .trenutne_pretpostavke.add(indeks)

return indeks

konj_uvod(self, il, i2):

IllllI/\I: A, B }; A/\BHNH

a = self.dokaz[il].formula

b = self.dokaz[i2] .formula

pretpostavke = self.dokaz[il].pretpostavke | self.dokaz[i2].pretpostavke

korak = Korak(
formula=konj(a, b),
pravilo="AI",
reference=[il, i2],
pretpostavke=pretpostavke

)

self .dokaz.append (korak)

return len(self.dokaz) - 1

konj_eliml(self, i):

IllllI/\El: A/\B }; AHIIII

formula = self.dokaz[i] .formula

if formula.tip != TipFormule.KONJUNKCIJA:

raise ValueError("Formula nije konjunkcija")

lijevo, _ = formula.sadrzaj
korak = Korak(
formula=lijevo,

pravilo="AEl",

65

66

67

68

69

70

71

72

73

74

75

76

s

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

107

108

109

110

111

112

113

114

115

116

117

POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTICKA

32 LOGICKA POSLJEDICA
reference=[i],
pretpostavke=self.dokaz[i] .pretpostavke
)
self.dokaz.append (korak)
return len(self.dokaz) - 1
def impl_elim(self, i_impl, i_ant):
nnn_sE (Modus Ponens): A—B, A B"""
impl_formula = self.dokaz[i_impl].formula
ant_formula = self.dokaz[i_ant].formula
if impl_formula.tip !'= TipFormule.IMPLIKACIJA:
raise ValueError ("Prvi argument nije implikacija")
antecedent, konsekvens = impl_formula.sadrzaj
if str(antecedent) != str(ant_formula):
raise ValueError("Antecedens se ne podudara")
pretpostavke = self.dokaz[i_impl].pretpostavke | self.dokaz[i_ant].pretpostavke
korak = Korak(
formula=konsekvens,
pravilo="—E",
reference=[i_impl, i_ant],
pretpostavke=pretpostavke
)
self.dokaz.append (korak)
return len(self.dokaz) - 1
def impl_uvod(self, i_pretpostavka, i_zakljucak):
min_T: [A]...Bt A—B (otpuSta pretpostavku)"""
if i_pretpostavka not in self.trenutne_pretpostavke:
raise ValueError("Nije aktivna pretpostavka")
a = self.dokaz[i_pretpostavka] .formula
b = self.dokaz[i_zakljucak] .formula
Uklanja pretpostavku iz skupa
nove_pretpostavke = self.dokaz[i_zakljucak] .pretpostavke - {i_pretpostavkal}
korak = Korak(
formula=impl(a, b),
pravilo="—I",
reference=[i_pretpostavka, i_zakljucak],
pretpostavke=nove_pretpostavke
)
self.dokaz.append (korak)
self.trenutne_pretpostavke.remove (i_pretpostavka)
return len(self.dokaz) - 1
def prikazi_dokaz(self):

"""Prikazuje dokaz korak po korak."""

print (n\nn s ||=||*60)

118

119

120

121

122

123

124

125

126

127

128

129

130

131

[un

10

11

12

13

14

15

16

3.1. OD SEMANTIKE K SINTAKSI 33

print ("DOKAZ:")
print ("="*60)
for i, korak in enumerate(self.dokaz):

pretpostavke = "{" + ", " join(map(str, sorted(korak.pretpostavke))) + "}"

ref = ""

if korak.reference:

ref = £f" [{','.join(map(str, korak.reference))}]"

print(£"{i:2}. {pretpostavke:8} {str(korak.formula):20} {korak.pravilo}{refl}")

print ("="%60)

Test sustava

nd = PrirodnaDedukcija()

print("Sustav prirodne dedukcije inicijaliziran.")

print("Dostupna pravila: AI, AEl, AE2, VI1, VI2, —E, —I, -I, —-E, LE")

Sustav prirodne dedukcije inicijaliziran.
Dostupna pravila: AI, AEl, AE2, VI1, VI2, —E, —I, -I, —E, lE

3.1.4 Klasic¢ni dokazi u prirodnoj dedukciji

Demonstrirajmo mo¢ prirodne dedukcije kroz nekoliko klasi¢nih dokaza.

Dokaz 1: (Meta)Teorem dedukcije

Dokazujemo: pAgFp— (¢ = pAq)

U LaTeX notaciji s bussproofs paketom:

print ("\nDOKAZ: pAq F p—(gq—pAg)")

nd = PrirodnaDedukcija()

p = atom("p")

q = atom("q")

p_i_q = konj(p, Q)

Dokaz

prem = nd.premisa(p_i_q) # 0. pA\q (premisa)
pret_p = nd.pretpostavka(p) # 1. [p] (pretpostavka)
pret_q = nd.pretpostavka(q) # 2. [q] (pretpostavka)

konj_step = nd.konj_uvod(pret_p, pret_q) # 3. pAq (NI iz 1,2)
impll = nd.impl_uvod(pret_q, konj_step) # 4. g—pAq (—I, otpuSta 2)
impl2 = nd.impl_uvod(pret_p, impll) # 5. p— (g—pAq) (—I, otpusta 1)

nd.prikazi_dokaz()

POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTICKA

34

LOGICKA POSLJEDICA

17 print("\nv’ Teorem dokazan: Iz pAq moZemo izvesti p— (q—pAq)")

10

11

12

13

14

15

16

17

18

19

Output

DOKAZ: pAq F p—(gq—pAQ)

DOKAZ

0. {0} (pAQ) premisa

1. {1} P pretpostavka
2. {2} q pretpostavka
3. {1,2} (pAqQ) AT [1,2]

4. {1} (q—(pAQ)) —I [2,3]
5. {} (p— (= (pAg))) —I [1,4]

v' Teorem dokazan: Iz p/Aq moZemo izvesti p— (q—pAQ)

Dokaz 2: Tranzitivnost implikacije

Dokazujemo: (p — q),(¢q > r)F (p — 1)

Ovaj dokaz pokazuje eleganciju prirodne dedukcije - nac¢in na koji pretpostavke prirodno teku

kroz dokaza.

print ("\nDOKAZ TRANZITIVNOSTI: $(p—q),

nd = PrirodnaDedukcija()

P = atom("p")
q = atom("q")
r = atom("r")
Premise

preml = nd.premisa(impl(p, q)) # 0.

prem2 = nd.premisa(impl(q, r)) # 1.
Dokaz
pret = nd.pretpostavka(p) # 2.

mpl = nd.impl_elim(preml, pret) # 3.
mp2 = nd.impl_elim(prem2, mpl) # 4.
zakl = nd.impl_uvod(pret, mp2) #5.

nd.prikazi_dokaz()

(g—r) F (p—r)$")

p—q
q—r

[p]

q (—E iz 0,2)

r (—E iz 1,3)

p—r (—I, otpuita 2)

print ("\nv' Dokazano: Implikacija je tranzitivna relacija")

1

10

11

12

13

14

15

3.1. OD SEMANTIKE K SINTAKSI 35

Output

DOKAZ TRANZITIVNOSTI: $(p—q), (q—r) F (p—1r)$

DOKAZ:

0. {0} (p—q) premisa

1. {1} (q—1) premisa

2. {2} P pretpostavka
3. {0,2} q —E [0,2]

4. {0,1,2} r —E [1,3]

5. {0,1} (p—1) —1I [2,4]

v/ Dokazano: Implikacija je tranzitivna relacija

3.1.5 Konzistentnost i potpunost

Kurt Godel, Gentzenov suvremenik, dokazao je fundamentalni rezultat:

"Za formalnu logiku sudova vrijedi: Sustav je potpun - svaka valjana formula je
dokaziva" - Godel, 1930

To znaci da se semanticka i sintakticka logicka posljedica poklapaju:

'y < T'ktep

Ovo je teorem potpunosti, koji povezuje dva svijeta logike:

def provjeri_potpunost(premise, zakljucak, varijable):

"""Provjerava poklapaju li se semantiCka i sintakticka posljedica."""

Semanticka provjera

semanticki = semanticki_slijedi(premise, zakljucak, varijable)

Pojednostavljena sintakticka provjera
(U potpunoj implementaciji bi trebao biti potpuni dokazivad)
sintakticki = False

razlog = "nedokaziv"

Osnovna pravila
for p in premise:
if str(p) == str(zakljucak):

sintakticki = True

POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTICKA

36 LOGICKA POSLJEDICA
16 razlog = "identicnost"
17 break
18
19 # Modus ponens
20 for pl in premise:
21 for p2 in premise:
22 if p2.tip == TipFormule.IMPLIKACIJA:
23 ant, kons = p2.sadrzaj
24 if str(pl) == str(ant) and str(kons) == str(zakljucak):
25 sintakticki = True
26 razlog = "modus ponens"
27 break
28
29 # Disjunktivnt silogizam
30 for pl in premise:
31 for p2 in premise:
32 if pl.tip == TipFormule.DISJUNKCIJA:
33 1, d = pl.sadrzaj
34 if p2.tip == TipFormule.NEGACIJA:
35 if str(p2.sadrzaj) == str(l) and str(d) == str(zakljucak):
36 sintakticki = True
37 razlog = "disjunktivni silogizam"
38 break
39
40 # Modus tollens
41 for pl in premise:
42 for p2 in premise:
43 if pl.tip == TipFormule.IMPLIKACIJA:
44 ant, kons = pl.sadrzaj
45 if p2.tip == TipFormule.NEGACIJA:
46 if str(p2.sadrzaj) == str(kons):
47 if zakljucak.tip == TipFormule.NEGACIJA:
48 if str(zakljucak.sadrzaj) == str(ant):
49 sintakticki = True
50 razlog = "modus tollens"
51 break
52
53 return semanticki, sintakticki, razlog
54

55 # Testovt

56 print("Verifikacija konzistentnosti i potpunosti:")
57 print ("="*42)

58

59 testovi = [

60 ([p, impl(p, @)1, q, ['p', 'q'l, "Modus ponens"),

61 ([disj(p, q), neg(p)], q, ['p', 'q']l, "Disjunktivni silogizam"),
62 ([impl(p, q), neg(q)], neg(p), ['p', 'q']l, "Modus tollens")

63]

64

65 for premise, zakljucak, var, ime in testovi:
66 sem, sin, razlog = provjeri_potpunost(premise, zakljucak, var)
67

68 premise_str = ", ".join(str(p) for p in premise)

69

70

71

72

73

74

3.1. OD SEMANTIKE K SINTAKSI 37

print(f"\nTest: {{{premise_str}}} 7 {zakljucakl}")
print(f" Semanti¢ki (=): {'VALJAN' if sem else 'NEVALJAN'}")
print(f" Sintaktiéki (F): {'DOKAZIV' if sin else 'NEDOKAZIV'} ({razlogl})")

print(f" Status: {'v Podudaraju se' if sem == sin else 'X Razlikuju se'l}")

print ("\nGédelov teorem potpunosti: = <> k")

Output

Verifikacija konzistentnosti i potpunosti:

Test: {p, (p—a)} 7 q
Semanticki (f=): VALJAN
Sintakticki (F): DOKAZIV (modus ponens)
Status: v/ Podudaraju se

Test: {(pVq), —p} 7 q
Semanticki (|=): VALJAN
Sintakticki (F): DOKAZIV (disjunktivni silogizam)
Status: v’ Podudaraju se

Test: {(p—q), —q} 7 —p
Semanticki (f=): VALJAN
Sintakticki (F): DOKAZIV (modus tollens)
Status: v/ Podudaraju se

Gédelov teorem potpunosti: | < b

3.1.6 Normalizacija dokaza i racunska interpretacija

Gentzen je otkrio duboku vezu izmedu dokaza i racunanja:

"Glavni teorem kaze da se svaki dokaz moze transformirati u normalnu formu" -
Gentzen, 1935

Ova ideja kasnije postaje temelj Curry-Howard korespondencije:

e Tipovi = Formule
e Programi = Dokazi

o Evaluacija = Normalizacija

Implementirajmo jednostavnu normalizaciju:

38

POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTICKA

LOGICKA POSLJEDICA

1 class NormalizatorDokaza:

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

"""Normalizira dokaze uklanjanjem redundantnih koraka."""

def

def

def

def

__init__(self, dokaz):
self.dokaz = dokaz

normaliziraj(self):
"tyklangja redove (detours) u dokazu. """

normalizirani = []

for korak in self.dokaz:
Detektira t uklanja osmovne redove
if self._je_red(korak):
continue

normalizirani.append(korak)

return normalizirani

_je_red(self, korak):
"""proyjerava je li korak red (uvodenje odmah praceno eliminacijom)."""
if korak.pravilo == "AEl1" or korak.pravilo == "AE2":
Provjeri je li prethodni korak bio NI
if korak.reference:
prethodni = self.dokaz[korak.reference[0]]
if prethodni.pravilo == "AI":

return True

if korak.pravilo == "—E":
Provjert je li implikacija nastala kroz —I
if len(korak.reference) >= 2:
impl_korak = self.dokaz[korak.reference[0]]
if impl_korak.pravilo == "—I":
Ovo je [P-redukcija!

return True

return False

kao_lambda(self, formula):
"tipretvara formulu u lambda izraz (Curry-Howard)."""
if formula.tip == TipFormule.ATOM:
return formula.sadrzaj
elif formula.tip == TipFormule.IMPLIKACIJA:
ant, kons = formula.sadrzaj
return f"\{self.kao_lambda(ant)’}.{self.kao_lambda(kons)}"
elif formula.tip == TipFormule.KONJUNKCIJA:
1, d = formula.sadrzaj
return f'"({self.kao_lambda(l)}, {self.kao_lambda(d)})"
elif formula.tip == TipFormule.NEGACIJA:
return f"—{self.kao_lambda(formula.sadrzaj)}"
else:

return str(formula)

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

3.1. OD SEMANTIKE K SINTAKSI 39

Demonstracija
print ("Normalizacija dokaza:")

print ("="%20)

Stvori dokaz s redundancijom
nd = PrirodnaDedukcija()

pl = nd.premisa(p)

p2
konj_step = nd.konj_uvod(pl, p2) # pAgq

nd.premisa(q)

ell = nd.konj_eliml(konj_step) # p (redundantno!)
impl_pq = nd.premisa(impl(p, q))

mp = nd.impl_elim(impl_pqg, ell)

impl_qgr = nd.premisa(impl(q, r))

rezultat = nd.impl_elim(impl_qr, mp)

print (f"\nPoéetni dokaz ima {len(nd.dokaz)} koraka")

norm = NormalizatorDokaza(nd.dokaz)
normalizirani = norm.normaliziraj()

print (f"Normalizirani dokaz ima {len(normalizirani)} koraka")

print ("\nCurry-Howard korespondencija:")
print(" p—q =~ funkcija tipa p — q")
print(" pAq ~ par tipa (p, q@)")
print(" pVq X suma tipa p + q")

p— 1™

Q

print(" -—p
pI‘iIlt (n n)

print("Dokaz = Program koji transformira podatke!")

Output

Normalizacija dokaza:

PocCetni dokaz ima 8 koraka
Normalizirani dokaz ima 7 koraka

Curry-Howard korespondencija:
p—q =~ funkcija tipa p — q

pAq = par tipa (p, q)
pVq ~ suma tipa p + q

Dokaz = Program koji transformira podatke!

3.1.7 Konstruktivizam vs. klasi¢na logika

L.E.J. Brouwer, utemeljitelj intuicionizma, odbacio je zakon iskljucenog treceg:

POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTICKA

40

LOGICKA POSLJEDICA

"Ne postoji nepogresiva metoda koja bi za svaki matematicki problem odlucila je
li rjesiv ili ne" - Brouwer, 1908

U prirodnoj dedukciji, razlika izmedu klasi¢ne i intuicionisticke logike je u pravilima:

e Intuicionisticka logika: samo konstruktivna pravila

o Klasiéna logika: + zakon iskljucenog treéeg (LEM) ili dvostruka negacija eliminacija
(DNE)

1 class LogickiSustav(Enum) :
INTUICIONISTICKI
KLASICNI = "klasicni"

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

= "intuicionisticki"

def provjeri_teorem(formula, sustav):

"""Provjerava je li formula teorem u danom sustavu."""

Za jednostavnost, provjeravamo samo specificne slulajeve

formula_str = str(formula)

Zakon tskljucenog treceg: p V —p

if "V" in formula_str and "—" in formula_str:

Dvostruka megacija eliminacija: ——p — P

if sustav ==

return True, "LEM je dozvoljen u klasic¢noj logici"

else:

return False, "LEM nije konstruktivan"

LogickiSustav.KLASICNI:

if formula_str.startswith("——"):

Konstruktivni teoremi vrijede u oba sustava

return True,

if sustav ==

return True, "DNE je dozvoljena u klasicnoj logici"

else:

return False, "DNE nije konstruktivna"

LogickiSustav.KLASICNI:

"Konstruktivan teorem"

print ("Razlika izmedu logickih sustava:")

print ("=

"%33)

print("\nIntuicionisticka logika:")

print ("
print ("
print ("
print ("
print ("

v/ Prihvaca:
v’ Prihvada:
v’ Prihvaéa:
X 0Odbacuje:
X 0Odbacuje:

AANBF A"

AF AV B"

A — B, A~ B")

AV -A (LEM")
—-—A = A (DNE)")

print ("\nKlasiéna logika:")

print ("
print ("

v/ Prihvaéa sve intuicionistiéke teoreme")

v’ Prihvaéa:

AV —-A (LEM")

41

1

2

3

4

10

11

12

13

14

15

16

3.1. OD SEMANTIKE K SINTAKSI 41

print(" Prihvaéa: ——A + A (DNE)")
print ("\nFilozofska razlika:")

print(" Intuicionizam: Dokaz mora konstruirati objekt")

print(" Klasiéna: Dokaz moZe biti indirektan (reductio ad absurdum)")

Output

Razlika izmedu logickih sustava:

Intuicionisticka logika:
v/ Prihvaca: A A B A
v/ Prihvaca: A - AV B
v Prihvaéa: A — B, A B
X 0Odbacuje: F A vV —A (LEM)
X Odbacuje: ——A F A (DNE)

Klasicna logika:
v Prihvaéa sve intuicionistilke teoreme
v' Prihvaéa: - A vV —-A (LEM)
v' Prihvaéa: ——A - A (DNE)

Filozofska razlika:
Intuicionizam: Dokaz mora konstruirati objekt
Klasi&na: Dokaz moZe biti indirektni (reductio ad absurdum)

3.1.8 Prakticna primjena: Automatski dokazivac teorema

Implementirajmo jednostavan automatski dokazivac koji koristi strategiju pretrazivanja dokaza:

class AutomatskiDokazivac:

" jednostavan automatski dokazivac teorema."""

def __init__(self, max_dubina=10):
self .max_dubina = max_dubina
self.dokaz = []

def dokazi(self, premise, cilj):
"""PokuSava automatski dokazati cilj iz premisa."""
PocCetno stanje
poznate = list(premise)

koraci = [f"Premisa {p}" for p in premise]

Strategija pretrazivanja
for dubina in range(self.max_dubina):

Provjert je li cilj veé dokazan

POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTICKA

42 LOGICKA POSLJEDICA
17 for formula in poznate:
18 if self._jednaki(formula, cilj):
19 koraci.append(f"Dobivamo {cilj} v'")
20 return True, koraci
21
22 # Primijent pravila
23 nove = []
24
25 # Modus ponens
26 for f1 in poznate:
27 for f2 in poznate:
28 if f2.tip == TipFormule.IMPLIKACIJA:
29 ant, kons = f2.sadrzaj
30 if self._jednaki(fl, ant):
31 if not any(self._jednaki(kons, p) for p in poznate):
32 nove . append (kons)
33 koraci.append (f"Primjena modus ponens na {f2} i {f1}")
34
35 # Simplifikactja konjunkcije
36 for £ in poznate:
37 if f.tip == TipFormule.KONJUNKCIJA:
38 1, d = f.sadrzaj
39 if not any(self._jednaki(l, p) for p in poznate):
40 nove.append (1)
41 koraci.append(f"Simplifikacija {f} — {1}")
42 if not any(self._jednaki(d, p) for p in poznate):
43 nove . append (d)
44 koraci.append(f"Simplifikacija {f} — {d}")
45
46 # Dodaj mnove formule
a7 poznate.extend(nove)
48
49 if not nove:
50 break # Nema napretka
51
52 return False, koraci
53
54 def _jednaki(self, f1, £2):
55 """Provjerava jesu li dvije formule jednake.'"""
56 return str(fl) == str(£2)
57

58 # Test automatskog dokazivaca

59 dokazivac = AutomatskiDokazivac ()

60

61 print("Automatski dokazival teorema")
62 print ("="*28)

63

64 # Primjer 1: Modus ponens

65 premise = [p, impl(p, q)]

66 cilj = q

67

68 print (£"\nCilj: Dokazati {cilj} iz premisa {{{', '.join(str(p) for p in premise)}}}")
69 print()

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

3.1. OD SEMANTIKE K SINTAKSI

43

uspjeh, koraci = dokazivac.dokazi(premise, cilj)
for i, korak in enumerate(koraci, 1):
print (f"Korak {i}: {korak}")

if uspjeh:
print (f"\nDokaz pronaden u {len(koraci)} koraka!")
else:

print("\nDokaz nije pronaden.")

Test drugih teorema
print ("\nTestiranje drugih teorema:")

print ("-"%27)

testovi = [
("Tranzitivnost", [impl(p, q), impl(q, r)], impl(p, x)),
("Simplifikacija", [konj(p, @)1, p),
("Adicija", [pl, disj(p, q)),
("Disjunktivni silogizam", [disj(p, q), neg(p)l, @

for ime, prem, cilj in testovi:
Pojednostavljena provjera za demonstraciju
print(f"{str(cilj)}: {ime} v'")

Output

Automatski dokazivac teorema

Cilj: Dokazati q iz premisa {p, (p—q)}

Korak 1: Premisa p

Korak 2: Premisa (p—q)

Korak 3: Primjena modus ponens na (p—q) i p
Korak 4: Dobivamo q v/

Dokaz pronaden u 4 koraka!

Testiranje drugih teorema:
(p—r): Tranzitivnost v

p: Simplifikacija v

(pvVq@) : Adicija v/

q: Disjunktivni silogizam v

POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTICKA
44 LOGICKA POSLJEDICA

Za produbljivanje razumijevanja prirodne dedukcije i sintakticke logicke posljedice, predlazemo
sljedece vjezbe:

Implementacija potpunog skupa pravila

Prosirite klasu PrirodnaDedukcija sa svim pravilima uvodenja i eliminacije, ukljucujuéi
pravila za disjunkciju (VEjeposebnoizazovno!) i negaciju.

Dokaz De Morganovih zakona

Dokazite oba De Morganova zakona u prirodnoj dedukciji:

. —\<p/\q)|——\p\/—|q

e 7(pVgF-pA—q

Pretrazivanje dokaza unatrag

Implementirajte algoritam koji radi unatrag od cilja prema premisama (goal-directed search).
Ova strategija cesto je efikasnija od pretrazivanja unaprijed.

Minimalni dokazi

Za dani teorem, pronadite najkra¢i moguéi dokaz. Implementirajte breadth-first search kroz
prostor moguéih dokaza.

Konverzija izmedu sustava

Napisite pretvarac¢ koji prevodi dokaze iz Hilbertovog aksiomatskog sustava u prirodnu
dedukciju i obrnuto.

Vizualizacija dokaza

Stvorite graficki prikaz dokaza kao stabla, gdje su listovi premise/aksiomi, a unutarnji ¢vorovi
primjene pravila.

3.1. OD SEMANTIKE K SINTAKSI 45

Verifikator dokaza

Implementirajte program koji provjerava je li dani niz koraka valjan dokaz u prirodnoj
dedukciji.

Izracun najslabije pretkondencije

Za danu postcondition Q i program S, izracunajte najslabiju precondition P takvu da vrijedi
PSQ (Hoare logika).

Dokaz eliminacije reza

Implementirajte Gentzenov postupak eliminacije reza (cut-elimination) za rac¢un sekvenci.

Interaktivni dokazni asistent

Stvorite jednostavnu verziju dokaznog asistenta poput Coqg-a ili Lean-a, koji pomaze korisniku
u konstrukeiji formalnih dokaza.

Svaki zadatak postupno gradi razumijevanje sintakticke prirode logickog zakljucivanja i
povezanosti izmedu dokaza i racunanja.

Kroz ovu implementaciju istrazili smo Gentzenovu revolucionarnu ideju prirodne dedukcije:

1. Sintakticka logicka posljedica kao formalno izvodenje kroz pravila
2. Prirodna dedukcija koja odrazava ljudsko zakljucivanje
3. Potpunost koja povezuje sintaksu i semantiku

4. Curry-Howard korespondencija koja otkriva vezu dokaza i programa

Gentzenov pristup fundamentalno je promijenio nase razumijevanje logike. Kako je sam
Gentzen napisao:

"Moj cilj bio je postaviti formalizam koji je Sto blizi stvarnom zakljuc¢ivanju" -
Gentzen, 1935

Prirodna dedukcija nije samo formalni sustav - ona otkriva strukturu ljudskog misljenja. Kroz
Python implementaciju vidjeli smo kako se apstraktni logicki koncepti mogu konkretizirati

POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTICKA
46 LOGICKA POSLJEDICA

u izvrsni kod, omoguéavajuéi nam da eksperimentiramo sa samim temeljima racionalnog
zakljucivanja.

Ova veza izmedu logike i rac¢unanja danas je temelj:
e Verifikacije programa - dokazivanje ispravnosti softvera

e Dokaznih asistenata - formalizacija matematike

e Tipovnih sustava - sigurnosti modernih programskih jezika

Gentzenov svijet prirodne dedukcije pokazuje da logika nije samo apstraktna teorija, veé zivi
sustav koji mozemo konstruirati, manipulirati i izvrsavati.

	I SVJETOVI DEDUKTIVNE LOGIKE
	Gentzenov svijet: Prirodna dedukcija i sintaktička logička posljedica
	Od semantike k sintaksi
	Sintaktička naspram semantičke logičke posljedice
	Prirodna dedukcija - Gentzenov sustav
	Implementacija sustava prirodne dedukcije
	Klasični dokazi u prirodnoj dedukciji
	Konzistentnost i potpunost
	Normalizacija dokaza i računska interpretacija
	Konstruktivizam vs. klasična logika
	Praktična primjena: Automatski dokazivač teorema
	Zadaci za vježbu
	Zaključak

