Poglavlje 4

Tarskijev svijet: Semantika logike
predikata prvog reda

4.1 Od sudova k predikatima

Dok su Wittgenstein i Gentzen istrazivali logiku sudova, Alfred Tarski (1901-1983) revoluci-
onirao je nase razumijevanje logike predikata kroz svoju semanticku teoriju istine.

"Semanticki pojam istine i temelji semantike" (The Semantic Conception of Truth
and the Foundations of Semantics) - Tarski, 1944

Tarskijev pristup omogucéava precizno definiranje Sto znaci da je formula istinita u modelu,
¢ime se premoséuje jaz izmedu formalnog jezika i stvarnosti koju opisuje.

Logika sudova ne moze adekvatno izraziti jednostavne zakljucke poput:

e Svi ljudi su smrtni
e Sokrat je ¢ovjek

e Dakle, Sokrat je smrtan

Aristotel je ovaj oblik zakljuCivanja nazvao silogizmom, ali tek je Frege formalizirao logiku
predikata koja moze izraziti:

"Funkcija ¢iji je argument nedefiniran izraz postaje sud kada joj damo odredeni
argument" - Frege, Begriffsschrift, 1879
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REDA

Implementirajmo osnovne strukture logike predikata:

from dataclasses import dataclass

from typing import List, Dict, Set, Union, Optional, Any

from enum import Enum

class TipTerm(Enum) :

"""Tipovt termova u logict predikata."""
KONSTANTA = "konstanta"

VARIJABLA = "varijabla"

FUNKCIJA = "funkcija"

@dataclass

class Term:

"""Predstavlja term u logict predikata.”"""

tip: TipTerm

simbol: str

argumenti: Optional[List['Term']] = None

def

def

__repr__(self):

if self.tip == TipTerm.FUNKCIJA and self.argumenti:
args = ", ".join(str(a) for a in self.argumenti)
return f"{self.simboll}({args})"

return self.simbol

slobodne_varijable(self):
"""Yraéa skup slobodnih wvarijabli u termu.”"""
if self.tip == TipTerm.VARIJABLA:

return {self.simbol}

elif self.tip == TipTerm.FUNKCIJA and self.argumenti:

rezultat = set()

for arg in self.argumenti:
rezultat.update(arg.slobodne_varijable())

return rezultat

return set()

class TipFormula(Enum) :

"""Tipovt formula u logict predikata."""
PREDIKAT = "predikat"

JEDNAKOST = "="

NEGACIJA = "—"

KONJUNKCIJA = "A"

DISJUNKCIJA = "V"
IMPLIKACIJA = "—"
UNIVERZALNI = "V"

EGZISTENCIJALNI = "dJ"

@dataclass

class Formula:

"""Predstavlja formulu logike predikata.

wmn

tip: TipFormula
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4.1. OD SUDOVA K PREDIKATIMA 49

sadrzaj: Any

def __repr__(self):
if self.tip == TipFormula.PREDIKAT:
simbol, termovi = self.sadrzaj
if termovi:
args = ", ".join(str(t) for t in termovi)
return f"{simbol}({argsl})"
return simbol
elif self.tip == TipFormula.JEDNAKOST:
tl, t2 = self.sadrzaj
return f"{t1} = {t2}"
elif self.tip == TipFormula.NEGACIJA:
return f"—{self.sadrzaj}"
elif self.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
< TipFormula.IMPLIKACIJA]:
f1, £2 = self.sadrzaj
return £"({f1} {self.tip.value} {£f2})"
elif self.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
var, formula = self.sadrzaj
return f'"{self.tip.value}{var} {formula}"

return str(self.sadrzaj)

# Konstruktor: za lakSe kreiranje termova 7 formula

def konst(ime): return Term(TipTerm.KONSTANTA, ime)

def var(ime): return Term(TipTerm.VARIJABLA, ime)

def funk(ime, *args): return Term(TipTerm.FUNKCIJA, ime, list(args))

def pred(ime, *termovi): return Formula(TipFormula.PREDIKAT, (ime, list(termovi)))
def jednako(tl, t2): return Formula(TipFormula.JEDNAKOST, (t1, t2))

def neg(f): return Formula(TipFormula.NEGACIJA, f)

def konj(f1l, £2): return Formula(TipFormula.KONJUNKCIJA, (f1, £2))

def disj(f1l, £2): return Formula(TipFormula.DISJUNKCIJA, (f1, £2))

def impl(f1l, £2): return Formula(TipFormula.IMPLIKACIJA, (f1, £2))

def svaki(var, f): return Formula(TipFormula.UNIVERZALNI, (var, f))

def postoji(var, f): return Formula(TipFormula.EGZISTENCIJALNI, (var, f))

# Primjert

print ("Strukture logike predikata:")

print (" ")

print ("\nTermovi:")

print(£f" konstante: {konst('sokrat')}, {konst('atena')}, {konst('5')}")

print(f" varijable: {var('x')}, {var('y')}, {var('z')}")

print(f" funkcije: {funk('otac', konst('sokrat'))}, {funk('plus', konst('2'), konst('3'))}")

print ("\nAtomarne formule:")

print(£f" {pred('Covjek', konst('sokrat'))} - 'Sokrat je Covjek'")
print(f" {pred('Voli', var('x'), var('y'))} - 'x voli y'")
print(f" {jednako(var('x'), var('y'))} - 'x je jednak y'")

print("\nKvantificirane formule:")

print(£" {svaki('x', pred('Smrtan', var('x')))} - 'Svi su smrtni'")
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print(f" {postoji('x', pred('Mudrac', var('x')))} - 'Postoji mudrac'")

Output

Strukture logike predikata:

Termovi:
konstante: sokrat, atena, 5
varijable: x, y, z
funkcije: otac(sokrat), plus(2, 3)

Atomarne formule:
Covjek(sokrat) - 'Sokrat je Covjek'
Voli(x, y) - 'x voli y'
X =y - 'x je jednak y'

Kvantificirane formule:
Vx Smrtan(x) - 'Svi su smrtni'
Jx Mudrac(x) - 'Postoji mudrac'

Tarski je formulirao svoju ¢uvenu T-konvenciju koja definira uvjete adekvatnosti za definiciju

istine:

"’Snijeg je bijel’ je istinito ako i samo ako je snijeg bijel" - Tarski, 1933

Ova naizgled trivijalna tvrdnja skriva duboku istinu: istina se definira kroz metajezik koji

govori o objektnom jeziku.

Za logiku predikata, trebamo definirati:

o Domenu (univerzum diskursa)

e Interpretaciju konstanti, funkcija i predikata

e Valuaciju varijabli

Implementirajmo Tarskijevu semantiku:

@dataclass
class Model:

"""Tarskijeva struktura za interpretaciju logike predikata."""

domena: Set [Any]
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interpretacija: Dict[str, Any]
def interpretiraj_konstantu(self, simbol: str) -> Any:
"""Interpretira konstantu."""
if simbol in self.interpretacija:
return self.interpretacijalsimbol]
raise ValueError(f"Konstanta {simbol} nije definirana")
def interpretiraj_funkciju(self, simbol: str, argumenti: List([Any]) -> Any:
"""Interpretira funkcijski simbol."""
if simbol in self.interpretacija:
funkcija = self.interpretacijal[simbol]
if callable(funkcija):
return funkcija(*argumenti)
# Za jednostavne slucajeve, moZemo koristiti rjelnik
if isinstance(funkcija, dict):
kljuc = tuple(argumenti) if len(argumenti) > 1 else argumenti[0]
return funkcija.get(kljuc)
raise ValueError(f"Funkcija {simbol} nije definirana")
def interpretiraj_predikat(self, simbol: str, argumenti: List[Any]) -> bool:
"""Provjerava je li predikat istinit za dane argumente."""
if simbol in self.interpretacija:
ekstenzija = self.interpretacija[simbol]
if len(argumenti) ==
return ekstenzija # Propozicijska konstanta
elif len(argumenti) ==
return argumenti[0] in ekstenzija
else:
return tuple(argumenti) in ekstenzija
return False
@dataclass

class Valuacija:

"""Pridjeljuje vrijednostt varijablama."""

vrijednosti: Dict[str, Any]

def __getitem__(self, varijabla: str) -> Any:

return self.vrijednosti.get(varijabla)

def __setitem__(self, varijabla: str, vrijednost: Any):

self .vrijednosti[varijabla] = vrijednost

def kopija(self) -> 'Valuacija':
"""Stvara kopiju valuacije."""

return Valuacija(self.vrijednosti.copy())

def promijeni(self, varijabla: str, vrijednost: Any) -> 'Valuacija':
"""Yraéa novu valuaciju s promijenjenom wvarijablom. """
nova = self.kopija()
noval[varijabla] = vrijednost

return nova
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def evaluiraj_term(term: Term, model: Model, valuacija: Valuacija) -> Any:
"""Evyaluira term u modelu s danom waluacijom."""
if term.tip == TipTerm.KONSTANTA:
return model.interpretiraj_konstantu(term.simbol)
elif term.tip == TipTerm.VARIJABLA:
return valuacija[term.simbol]
elif term.tip == TipTerm.FUNKCIJA:
arg_vrijednosti = [evaluiraj_term(arg, model, valuacija)
for arg in term.argumenti]
return model.interpretiraj_funkciju(term.simbol, arg_vrijednosti)

raise ValueError(f"Nepoznat tip terma: {term.tip}")

# Primjer Tarsktijeve strukture
filozofi_model = Model/(
domena={'sokrat', 'platon', 'aristotel'},
interpretacija={
'sokrat': 'sokrat',
'platon': 'platon',
'aristotel': 'aristotel',
'Filozof': {'sokrat', 'platon', 'aristotel'},
'Ucitelj': {('sokrat', 'platon'), ('platon', 'aristotel')},
'Smrtan': {'sokrat', 'platon', 'aristotel'},

'ucitelj': {'sokrat': 'platon', 'platon': 'aristotel'}

val = Valuacija({'x': 'sokrat', 'y': 'platon'})

print("Tarskijeva struktura (model):")

print (" 0%

print (f"\nDomena D = {filozofi_model.domenal")

print("\nInterpretacija I:")

for simbol in ['sokrat', 'platon', 'Filozof', 'Ucitelj', 'Smrtan']:
if simbol in filozofi_model.interpretacija:

print(f" I({simbol}) = {filozofi_model.interpretacijalsimbol]}")

print("\nValuacija v:")
for varl, val_var in val.vrijednosti.items():
print(f" v({vari}) = {val_var}")

print ("\nEvaluacija termova:")
tl = konst('sokrat')

t2 = var('x")

t3 = funk('ucitelj', var('x'))

print (£" [[{t1}11°{{M,v}}
print (£" [[{t2}11°{{M,v}}
print (£" [[{t3}11°{{M,v}}

{evaluiraj_term(tl, filozofi_model, val)}")

{evaluiraj_term(t2, filozofi_model, val)}")

{evaluiraj_term(t3, filozofi_model, val)l}")
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Output

Tarskijeva struktura (model):

Domena D = {'platon', 'aristotel', 'sokrat'}

Interpretacija I:
I(sokrat) = sokrat
I(platon) = platon
I(Filozof) = {'platon', 'aristotel', 'sokrat'}
I(Ucitelj) = {('platon', 'aristotel'), ('sokrat', 'platon')}
I(Smrtan) = {'platon', 'aristotel', 'sokrat'}

Valuacija v:
v(x) = sokrat
v(y) = platon

Evaluacija termova:
[[sokrat]]~{M,v} = sokrat
[[x]1°{M,v} = sokrat
[[ucitelj(x)]1]1"{M,v} = platon

Tarskijeva rekurzivna definicija istine definira kada je formula ¢ istinita u modelu M s
valuacijom v, $to pisemo M, v |= ¢:

1. M,v = P(t1,...,t,) ako (I(t1),...,I(t,)) € I(P)

2. M,v = =p ako M, v [~ ¢

3. MivEpAyYpako Mo EpiMvEY

4. M,v = Vxyp ako za svaki d € D: M,v[z/d] = ¢
5. M,v |= Jzp ako postoji d € D: M, v[z/d] = ¢

Implementirajmo ovu rekurzivnu definiciju:

1 def evaluiraj_formulu(formula: Formula, model: Model, valuacija: Valuacija) -> bool:

2 """Rekurzivno evaluira formulu prema Tarskijevoj definicijsi."""

3

4 if formula.tip == TipFormula.PREDIKAT:

5 simbol, termovi = formula.sadrzaj

6 arg_vrijednosti = [evaluiraj_term(t, model, valuacija) for t in termovil

7 return model.interpretiraj_predikat(simbol, arg_vrijednosti)
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9 elif formula.tip == TipFormula.JEDNAKOST:
10 tl, t2 = formula.sadrzaj
11 vl = evaluiraj_term(tl, model, valuacija)
12 v2 = evaluiraj_term(t2, model, valuacija)
13 return vl == v2
14
15 elif formula.tip == TipFormula.NEGACIJA:
16 return not evaluiraj_formulu(formula.sadrzaj, model, valuacija)
17
18 elif formula.tip == TipFormula.KONJUNKCIJA:
19 f1, £2 = formula.sadrzaj
20 return (evaluiraj_formulu(f1l, model, valuacija) and
21 evaluiraj_formulu(f2, model, valuacija))
22
23 elif formula.tip == TipFormula.DISJUNKCIJA:
24 f1, £f2 = formula.sadrzaj
25 return (evaluiraj_formulu(f1l, model, valuacija) or
26 evaluiraj_formulu(f2, model, valuacija))
27
28 elif formula.tip == TipFormula.IMPLIKACIJA:
29 f1, £2 = formula.sadrzaj
30 return (not evaluiraj_formulu(fl, model, valuacija) or
31 evaluiraj_formulu(f2, model, valuacija))
32
33 elif formula.tip == TipFormula.UNIVERZALNI:
34 varijabla, podformula = formula.sadrzaj
35 # Provjeri za sve elemente domene
36 for element in model.domena:
37 nova_valuacija = valuacija.promijeni(varijabla, element)
38 if not evaluiraj_formulu(podformula, model, nova_valuacija):
39 return False
40 return True
41
42 elif formula.tip == TipFormula.EGZISTENCIJALNI:
43 varijabla, podformula = formula.sadrzaj
44 # Provjeri postoji lt barem jedan element
45 for element in model.domena:
46 nova_valuacija = valuacija.promijeni(varijabla, element)
47 if evaluiraj_formulu(podformula, model, nova_valuacija):
48 return True
49 return False
50
51 raise ValueError (f"Nepoznat tip formule: {formula.tipl}")
52

53 def prikazi_evaluaciju(formula: Formula, model: Model, valuacija: Valuacija):

54 """Prikazuje rTezultat evaluacije."""

55 rezultat = evaluiraj_formulu(formula, model, valuacija)
56 simbol = "T" if rezultat else "L"

57 print(f" M, v = {formula} = {simboll}")

58

59 # Testiranje evaluacije

60 print("Evaluacija formula:")

61 print ("

ll)
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print ("\nAtomarne formule:")

f1 = pred('Filozof', konst('sokrat'))

f2 = pred('Ucitelj', konst('sokrat'), konst('platon'))
£3 = pred('Ucitelj', konst('platon'), konst('sokrat'))

prikazi_evaluaciju(fi, filozofi_model, val)
prikazi_evaluaciju(f2, filozofi_model, val)

prikazi_evaluaciju(£f3, filozofi_model, val)

print ("\nSlozene formule:")
f4
£5

konj(pred('Filozof', var('x')), pred('Smrtan', var('x')))

impl(pred('Filozof', var('x')), pred('Smrtan', var('x')))

prikazi_evaluaciju(f4, filozofi_model, val)

prikazi_evaluaciju(f5, filozofi_model, val)

print("\nKvantificirane formule:")

f6 = svaki('x', pred('Smrtan', var('x')))
£7
£8 = svaki('x', impl(pred('Filozof', var('x')), pred('Smrtan', var('x'))))
9
£10 = svaki('x', postoji('y', pred('Ucitelj', var('x'), var('y'))))

postoji('x', pred('Ucitelj', var('x'), konst('platon')))

postoji('x', postoji('y', pred('Ucitelj', var('x'), var('y'))))

prikazi_evaluaciju(f6, filozofi_model, val)
prikazi_evaluaciju(f7, filozofi_model, val)
prikazi_evaluaciju(£f8, filozofi_model, val)
prikazi_evaluaciju(f9, filozofi_model, val)

prikazi_evaluaciju(£f10, filozofi_model, val)

Output

Evaluacija formula:

Atomarne formule:
M, v | Filozof(sokrat) = T
M, v = Ucitelj(sokrat, platon)
M, v | Ucitelj(platon, sokrat)

o
-

SloZene formule:
M, v |= (Filozof(x) A Smrtan(x)) = T
M, v |= (Filozof(x) — Smrtan(x)) = T

Kvantificirane formule:

M, v = Vx Smrtan(x) = T

M, v = Jx Ucitelj(x, platon) = T
, v = Vx (Filozof(x) — Smrtan(x)) = T
, v | 3x Jy Ucitelj(x, y) = T

v | Vx Jdy Ucitelj(x, y) = L

== =

b
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Quine je naglasio vaznost razlikovanja slobodnih i vezanih varijabli:

"Biti znaci biti vrijednost vezane varijable" (To be is to be the value of a bound
variable) - Quine, 1948

Varijabla je vezana ako je u dosegu kvantifikatora, inace je slobodna.

Formula bez slobodnih varijabli naziva se zatvorena formula ili reCenica.

def slobodne_varijable(formula: Formula, vezane: Set[str] = None) -> Set[str]:
"""Vraéa skup slobodnih wvarijabli u formulz."""
if vezane is None:

vezane = set()

if formula.tip == TipFormula.PREDIKAT:
_, termovi = formula.sadrzaj
slobodne = set()
for term in termovi:
if term.tip == TipTerm.VARIJABLA and term.simbol not in vezane:
slobodne.add(term.simbol)
elif term.tip == TipTerm.FUNKCIJA:
slobodne.update (term.slobodne_varijable() - vezane)

return slobodne

elif formula.tip == TipFormula.JEDNAKOST:
tl, t2 = formula.sadrzaj
slobodne = set()
if t1.tip == TipTerm.VARIJABLA and tl.simbol not in vezane:
slobodne.add(t1l.simbol)
if t2.tip == TipTerm.VARIJABLA and t2.simbol not in vezane:
slobodne.add (t2.simbol)

return slobodne

elif formula.tip == TipFormula.NEGACIJA:

return slobodne_varijable(formula.sadrzaj, vezane)

elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
< TipFormula.IMPLIKACIJA]:
f1, £2 = formula.sadrzaj

return slobodne_varijable(fl, vezane) | slobodne_varijable(f2, vezane)

elif formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
varijabla, podformula = formula.sadrzaj
nove_vezane = vezane | {varijabla}

return slobodne_varijable(podformula, nove_vezane)

return set()
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39 def vezane_varijable(formula: Formula) -> Set[str]:

40 """Vraca skup vezanih wvartijabli u formuli."""

41 vezane = set()

42

43 if formula.tip == TipFormula.NEGACIJA:

44 return vezane_varijable(formula.sadrzaj)

45

46 elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
— TipFormula.IMPLIKACIJA]:

47 f1, £2 = formula.sadrzaj

48 return vezane_varijable(f1) | vezane_varijable(£f2)

49

50 elif formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:

51 varijabla, podformula = formula.sadrzaj

52 return {varijabla} | vezane_varijable(podformula)

53

54 return vezane

55

56 def je_zatvorena(formula: Formula) -> bool:
57 ""iproyjerava je li formula zatvorena (redenica).”""

58 return len(slobodne_varijable(formula)) ==

60 def substituiraj(formula: Formula, varijabla: str, term: Term) -> Formula:

61 """Substituira term za wvarijablu u formulc."""

62 if formula.tip == TipFormula.PREDIKAT:

63 simbol, termovi = formula.sadrzaj

64 novi_termovi = []

65 for t in termovi:

66 if t.tip == TipTerm.VARIJABLA and t.simbol == varijabla:

67 novi_termovi.append(term)

68 else:

69 novi_termovi.append(t)

70 return pred(simbol, *novi_termovi)

71

72 elif formula.tip == TipFormula.NEGACIJA:

73 return neg(substituiraj(formula.sadrzaj, varijabla, term))

74

75 elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
< TipFormula.IMPLIKACIJA]:

76 f1, £2 = formula.sadrzaj

77 nova_f1l = substituiraj(f1, varijabla, term)

78 nova_f2 = substituiraj(f2, varijabla, term)

79 if formula.tip == TipFormula.KONJUNKCIJA:

80 return konj(nova_f1, nova_f2)

81 elif formula.tip == TipFormula.DISJUNKCIJA:

82 return disj(nova_f1, nova_£f2)

83 else:

84 return impl(nova_f1, nova_f2)

85

86 elif formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:

87 kvant_var, podformula = formula.sadrzaj

88 if kvant_var == varijabla:
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# Varijabla je wezana, ne substituiraj

return formula
nova_podformula = substituiraj(podformula, varijabla, term)
if formula.tip == TipFormula.UNIVERZALNI:

return svaki(kvant_var, nova_podformula)
else:

return postoji(kvant_var, nova_podformula)

return formula

# Testiranje

print("Analiza varijabli:")
print ( n " )
formule_test = [
pred('Voli', var('x'), var('y')),
svaki('x', pred('Voli', var('x'), var('y'))),
svaki('x', postoji('y', pred('Voli', var('x'), var('y')))),
impl(svaki('x', pred('P', var('x'))), pred('P', var('y')))
]
for £ in formule_test:

slobodne = slobodne_varijable(f)

vezane = vezane_varijable(f)
zatvorena = "T" if je_zatvorena(f) else "L"
print (f"\nFormula: {f}")
print(f" Slobodne varijable: {slobodne}")
print(f" Vezane varijable: {vezanel}")
print(f" Zatvorena? {zatvorenal")

print ("\nSubstitucija:")

print ("=============")

f1 = pred('P', var('x'))

f2 = svaki('x', pred('P', var('x')))

£3 = svaki('x', pred('P', var('x'), var('y')))

print (£"\n{f1} [x/sokrat] = {substituiraj(fil, 'x', konst('sokrat'))}")

print (£"{£2} [x/sokrat] = {substituiraj(f2, 'x', konst('sokrat'))}")
print (£"{£3}[y/sokrat] = {substituiraj(f3, 'y', konst('sokrat'))}")

Output

Analiza varijabli:

Formula: Voli(x, y)
Slobodne varijable: {'y', 'x'}
Vezane varijable: set()
Zatvorena? |
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Formula: Vx Voli(x, y)
Slobodne varijable: {'y'}
Vezane varijable: {'x'}
Zatvorena? L

Formula: Vx Jdy Voli(x, y)
Slobodne varijable: set()
Vezane varijable: {'y', 'x'}
Zatvorena? T

Formula: (Vx P(x) — P(y))
Slobodne varijable: {'y'}
Vezane varijable: {'x'}
Zatvorena? |

Substitucija:

P(x) [x/sokrat] = P(sokrat)
Vx P(x) [x/sokrat] = Vx P(x)
Vx P(x, y)[y/sokrat] = Vx P(x, sokrat)

U logici predikata razlikujemo:

o Valjanost (logicki istinita) formula: istinita u svim modelima
e Zadovoljiva formula: istinita u barem jednom modelu

¢ Nezadovoljiva formula: lazna u svim modelima

GA9qdel je dokazao potpunost logike predikata prvog reda:

"Svaka valjana formula logike predikata prvog reda je dokaziva' - Goedel, 1929

Ali takoder i nepotpunost aritmetike:

"U svakom dovoljno bogatom formalnom sustavu postoje istinite tvrdnje koje se
ne mogu dokazati" - GA€del, 1931

1 def je_validna(formula: Formula, modeli: List[Model]) -> bool:
2 """Provjerava je li formula validna w svim danim modelima."""

3 for model in modeli:
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# Za svaku mogucu valuaciju
# (za jednostavnost, provjeravamo samo praznu valuaciju za zatvorene formule)
if je_zatvorena(formula):

val = Valuacija({})

if not evaluiraj_formulu(formula, model, val):

return False

else:

# Za formule sa slobodnim varijablama, trebamo provjeriti sve valuacije

slobodne = slobodne_varijable(formula)

def sve_valuacije(varijable, domena, trenutna={}):
if not varijable:
yield Valuacija(trenutna.copy())
else:
var = varijablel[0]
for element in domena:
trenutnal[var] = element
yield from sve_valuacije(varijable[1:], domena, trenutna)

del trenutnal[var]

for val in sve_valuacije(list(slobodne), model.domena) :
if not evaluiraj_formulu(formula, model, val):
return False

return True

def je_zadovoljiva(formula: Formula, modeli: List[Model]) -> bool:
"""Provjerava je li formula zadovoljiva u barem jednom modelwu."""
for model in modeli:
if je_zatvorena(formula):
val = Valuacija({})
if evaluiraj_formulu(formula, model, val):
return True
else:

slobodne = slobodne_varijable(formula)

def sve_valuacije(varijable, domena, trenutna={}):
if not varijable:
yield Valuacija(trenutna.copy())
else:
var = varijablel[0]
for element in domena:
trenutna[var] = element
yield from sve_valuacije(varijable[1:], domena, trenutna)

del trenutnal[var]

for val in sve_valuacije(list(slobodne), model.domena) :
if evaluiraj_formulu(formula, model, val):
return True

return False

# Testni model?t
modell = Model(

domena={'a', 'b'},
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interpretacija={
'P'Z {lal}’
'R': {(lal’ 'b'), (Ibv’ |a|)}

model2 = Model(
domena={'1', '2'},
interpretacija={
'P': set(),
'R': {(C'1r, "1")}

model3 = Model(
domena={'x', 'y', 'z'},
interpretacija={
P {'x", 'y'},
'R': {Cx', 'y, Cy', 'y, Cz', 'y}

modeli = [modell, model2, model3]

# Test formula

print ("Provjera validnosti i zadovoljivosti:")

print ( " n )

test_formule = [
("Zakon identiteta", svaki('x', impl(pred('P', var('x')), pred('P', var('x'))))),
("Egzistencija P", postoji('x', pred('P', var('x')))),
("Kontradikcija", konj(svaki('x', pred('P', var('x'))),
neg(svaki('x', pred('P', var('x')))))),
("Svaki ima nekoga", svaki('x', postoji('y', pred('R', var('x'), var('y'))))),
("Postoji za sve", postoji('y', svaki('x', pred('R', var('x'), var('y')))))

for naziv, formula in test_formule:

print (f"\nFormula: {formulal}")

# Evaluiraj u svakom modelu
rezultati = []
for i, model in enumerate(modeli, 1):

val = Valuacija({})

rez = evaluiraj_formulu(formula, model, val)
rezultati.append(rez)

print(£" Model {i}: {'T' if rez else 'Ll'}")

# Odredi status
if all(rezultati):

print(" Status: VALIDNA v'")
elif any(rezultati):

print(" Status: ZADOVOLJIVA")
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else:
print (" Status: NEZADOVOLJIVA x")

print("\nVaZno zapaZanje:")

print(" Vxdy R(x,y) # JyVvx R(x,y)")
print (" Redoslijed kvantifikatora je bitan!")

Output

Provjera validnosti i zadovoljivosti:

Formula: Vx (P(x) — P(x))
Model 1: T
Model 2: T
Model 3: T
Status: VALIDNA V

Formula: JIx P(x)
Model 1: T
Model 2:
Model 3: T
Status: ZADOVOLJIVA

Formula: (Vx P(x) A —Vx P(x))
Model 1: L
Model 2: L
Model 3: L
Status: NEZADOVOLJIVA X

Formula: Vx Jy R(x, y)
Model 1: T
Model 2: L
Model 3: T
Status: ZADOVOLJIVA

Formula: Jy Vx R(x, y)
Model 1: L
Model 2: L
Model 3: T
Status: ZADOVOLJIVA

Vazno zapazZanje:
Vxdy R(x,y) # dyVx R(x,y)
Redoslijed kvantifikatora je bitan!

4.1.6 Skolemizacija i prenex normalna forma

Thoralf Skolem pokazao je kako eliminirati egzistencijalne kvantifikatore:
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"Svaka formula logike predikata moze se transformirati u ekvivalentnu formulu bez
egzistencijalnih kvantifikatora" - Skolem, 1920

Prenex normalna forma: svi kvantifikatori su na pocéetku formule.

Skolemizacija: zamjena egzistencijalnih kvantifikatora Skolemovim funkcijama.

def u_prenex_formu(formula: Formula, kvantifikatori=[]) -> Formula:
"""Pretvara formulu u prenex normalnu formu.
(Pojednostavljena verzija za demonstractju)
nmnn
# Ovo je pojednostavljena implementactja

# Potpuna implementacija bi trebala rukovati svim slucajevima

if formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
var, podformula = formula.sadrzaj

return u_prenex_formu(podformula, kvantifikatori + [(formula.tip, var)])

# Rekonstruiraj formulu s kvantifikatorima na pocletku
rezultat = formula
for tip_kvant, var in reversed(kvantifikatori):
if tip_kvant == TipFormula.UNIVERZALNI:
rezultat = svaki(var, rezultat)
else:

rezultat = postoji(var, rezultat)

return rezultat

def skolemizuj(formula: Formula, univerzalni_kontekst=[]) -> Formula:
"""Skolemizacija — eliminactija egzistencijalnih kvantifikatora.

(Pojednostavljena verzija)

mwimn

if formula.tip == TipFormula.UNIVERZALNI:
var, podformula = formula.sadrzaj
nova_podformula = skolemizuj(podformula, univerzalni_kontekst + [var])

return svaki(var, nova_podformula)

elif formula.tip == TipFormula.EGZISTENCIJALNI:

var, podformula = formula.sadrzaj

# Stvori Skolemov term
if not univerzalni_kontekst:
# Skolemova konstanta
skolem_term = konst(f"c_{var}")
else:
# Skolemova funkcija
argumenti = [var(v) for v in univerzalni_kontekst]

skolem_term = funk(f"f_{var}", *argumenti)
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# Substituiraj
nova_podformula = substituiraj(podformula, var, skolem_term)

return skolemizuj(nova_podformula, univerzalni_kontekst)

elif formula.tip == TipFormula.NEGACIJA:

return neg(skolemizuj(formula.sadrzaj, univerzalni_kontekst))

elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
— TipFormula.IMPLIKACIJA]:

f1, £2 = formula.sadrzaj

nova_f1 = skolemizuj(f1l, univerzalni_kontekst)

nova_f2 = skolemizuj(f2, univerzalni_kontekst)

if formula.tip == TipFormula.KONJUNKCIJA:

return konj(nova_f1, nova_£2)
elif formula.tip == TipFormula.DISJUNKCIJA:
return disj(nova_f1, nova_f2)
else:
return impl(nova_f1, nova_£f2)
return formula
print ("Prenex normalna forma:")
print ( n n )

# Primjeri prenex transformacije

f1 = impl(svaki('x', pred('P', var('x'))), postoji('y', pred('Q', var('y'))))
print (£"\nOriginal: {f1}")

print (f"Prenex: Jx dy (=P(x) V Q(y))")

£f2 = svaki('x', impl(pred('P', var('x')), postoji('y', pred('R', var('x'), var('y')))))
print (£"\nOriginal: {f2}")
print (f"Prenex: Vx dy (—P(x) V R(x, y))")

print ("\nSkolemizacija:")

# Primjer 1: Egzistencijalni kvantifikator bez univerzalnog konteksta
£3 = postoji('x', pred('P', var('x')))

print (£"\nOriginal: {£3}")

print (£"Skolemizovano: P(c)")

print(" gdje je c nova Skolemova konstanta")

# Primjer 2: Egzistencijalni u kontekstu univerzalnog

f4 = svaki('x', postoji('y', pred('R', var('x'), var('y'))))
print (£"\nOriginal: {f4}")

print (f"Skolemizovano: Vx R(x, £(x))")

print(" gdje je f nova Skolemova funkcija")

# Primjer 3: SloZeniji slucaj

£f5 = postoji('x', svaki('y', postoji('z', pred('S', var('x'), var('y'), var('z')))))
print (£"\nOriginal: {f5}")

print (f"Skolemizovano: Vy S(a, y, g(y))")

print(" gdje su a konstanta i g funkcija")
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print ("\nKorak po korak - formula: Vx (P(x) — dJy R(x, y))")

print (" ")
print("\nl. Eliminacija implikacije:")

print(" Vx (—-P(x) V Jy R(x, y))")

print("\n2. PremjeStanje kvantifikatora (prenex):")

print(" Vx Jy (=P(x) V R(x, y))")

print("\n3. Skolemizacija:")

print(" Vx (=P(x) V R(x, £(x)))")

print(" gdje f(x) je Skolemova funkcija")

print ("\n4. Rezultat je ekvizadovoljiv s originalnom formulom")

Output

Prenex normalna forma:

Original: (Vx P(x) — 3Jy Q(y))
Prenex: dJx dy (=P(x) V Q(y))

Original: Vx (P(x) — Jy R(x, y))
Prenex: Vx dy (=P(x) V R(x, y))

Skolemizacija:

Original: dx P(x)
Skolemizovano: P(c)
gdje je c nova Skolemova konstanta

Original: Vx Jy R(x, y)
Skolemizovano: Vx R(x, f(x))
gdje je f nova Skolemova funkcija

Original: dx Vy dJz S(x, y, 2z)
Skolemizovano: Vy S(a, y, g(y))

gdje su a konstanta i g funkcija

Korak po korak - formula: Vx (P(x) — dJy R(x, y))

1. Eliminacija implikacije:
Vx (=P(x) V Jy R(x, y))

2. PremjesStanje kvantifikatora (prenex):
Vx Jdy (=P(x) V R(x, y))

3. Skolemizacija:
Vx (=P(x) V R(x, £(x)))
gdje f(x) je Skolemova funkcija
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4. Rezultat je ekvizadovoljiv s originalnom formulom

Jacques Herbrand pokazao je kako svesti problem zadovoljivosti na propozicijski slucaj:

"Zadovoljivost formule prvog reda moze se svesti na zadovoljivost beskonac¢nog
skupa propozicijskih formula" - Herbrand, 1930

Herbrandov univerzum: skup svih termova koji se mogu konstruirati iz konstanti i funkcija.

def generiraj_herbrandov_univerzum(konstante: Set[str], funkcije: Dict[str, int], dubina: int
— = 2):

"""Generira Herbrandov univerzum do zadane dubine.

funkcije: dict koji mapira time funkcije u njen aritet

mnmn

H =[]

# Hy - samo konstante

H.append(set (konstante))

for d in range(l, dubina + 1):

novi = set(H[d-1]) # Ukljuci sve iz prethodne razine

# Za svaku funkciju
for funk_ime, aritet in funkcije.items():
# Generiraj sve kombinacije argumenata iz H[d-1]
import itertools
for args in itertools.product(H[d-1], repeat=aritet):
args_str = ", ".join(args)
novi.add(f"{funk_ime} ({args_str})")

H.append (novi)

return H

def generiraj_herbrandovu_bazu(predikati: Dict[str, int], termovi: Set([str]):
"""Generira Herbrandovu bazu - sve atomarne formule s Herbrandovim termovima.
predikati: dict koji mapira ime predikata u njegov aritet

i

baza = set()

for pred_ime, aritet in predikati.items():
if aritet == O:
baza.add(pred_ime)

else:
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import itertools

for args in itertools.product(termovi, repeat=aritet):
args_str = ", ".join(args)
baza.add(f"{pred_ime} ({args_str})")

return baza
# Primjer
konstante = {'a', 'b'}
funkcije = {'f': 1, 'g': 2} # f je umarna, g je binarna

predikati = {'P': 1, 'R': 2} # P je unarni, R je binarni

print ("Herbrandov univerzum:")

print ( " " )
print (f"\nKonstante: {konstantel}")

print (f"Funkcije: {{{', '.join(f'{f}/{a}' for f, a in funkcije.items())}}}")

H = generiraj_herbrandov_univerzum(konstante, funkcije, 2)

print (£"\nHy = {H[0]}")
print(£"H; = {H[1]1}")
print (£"Hs ({len(H[2])} termova)")

print ("\nHerbrandova baza:")

print ( n " )

baza = generiraj_herbrandovu_bazu(predikati, H[0])
print(£"\nZa predikate P/1 i R/2:")

print("By = {")

baza_lista = sorted(list(baza))

print(f" {', '.join(baza_listal[:2])},")
print(f" {', '.join(baza_lista[2:]1)}")
print("}")

print ("\nHerbrandove interpretacije:")

print (" ")

print (£"\nBroj moguéih interpretacija za Bp: 2° = {2#*len(baza)l}")
print("\nPrimjer interpretacije I;:")

print(" P(a) = T, P(b) = L")

print(" R(a, a) = T, R(a, b) = T")

print(" R(b, a) = L, R(b, b) = T")

print ("\nHerbrandov teorem:")

print (" L))

print ("\nFormula Vx Jy R(x, y) je zadovoljiva")

print ("<=")
print("Skup {R(a, f£(a)), R(b, £(b)), ...} je zadovoljiv")

print ("\nTime se problem prvog reda svodi na propozicijski!")
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Implementirajmo jednostavan dokaziva¢ teorema koji koristi rezoluciju:

1 class Klauzula:

2 """Predstavlja klauzulu w CNF formz."""

3 def __init__(self, literali):

4 self .literali = set(literali)

5

6 def __repr__(self):

7 if not self.literali:

8 return "U" # Prazna klauzula

9 return "{" + ", ".join(str(l) for 1 in self.literali) + "}"

10

11 def je_prazna(self):

12 return len(self.literali) ==

13

14 class Literal:

15 """predstavlja literal (atomarna formula %l%i njena negacija)."""

16 def __init__(self, predikat, argumenti, negiran=False):

17 self.predikat = predikat

18 self.argumenti = argumenti

19 self .negiran = negiran

20

21 def __repr__(self):

22 args = "(" + ", ".join(str(a) for a in self.argumenti) + ")" if self.argumenti else
o mn

23 return ("—" if self.negiran else "") + self.predikat + args

24

25 def __eq__(self, other):

26 return (self.predikat == other.predikat and

27 self.argumenti == other.argumenti and

28 self .negiran == other.negiran)

29

30 def __hash__(self):

31 return hash((self.predikat, tuple(self.argumenti), self.negiran))

32

33 def komplementaran(self, other):

34 """Proyjerava jesu li literali komplementarnz."""

35 return (self.predikat == other.predikat and

36 self.argumenti == other.argumenti and

37 self .negiran != other.negiran)

38

39 def unifikacija(tl, t2, subst={}):

40 "t Jjednostavna unifikacija za konstante i warijable."""

41 if t1 == t2:

42 return subst

43 elif tl.startswith('x') or tl.startswith('y') or til.startswith('z'):

44 # t1 je varijabla

45 if t1 in subst:

46 return unifikacija(subst[t1], t2, subst)
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else:
subst [t1] = t2
return subst
elif t2.startswith('x') or t2.startswith('y') or t2.startswith('z'):
# t2 je varijabla
return unifikacija(t2, t1, subst)
else:

return None # Unifikacija neuspjesna

def primijeni_substituciju(literal, subst):
"""Primjenjuje substituciju na literal."""
novi_argumenti = []
for arg in literal.argumenti:
if arg in subst:
novi_argumenti.append(subst [arg])
else:
novi_argumenti.append(arg)

return Literal(literal.predikat, novi_argumenti, literal.negiran)

# Demonstractija

print ("Rezolucijski dokazivaé teorema:")

print (" ")
print("\nCilj: Dokazati da Sokrat je smrtan")
print("\nPremise:")

print(" 1. Vx (Covjek(x) — Smrtan(x))")
print(" 2. Covjek(sokrat)")

# Pretvorba u klauzule

k1l = Klauzula([Literal("Covjek", ['x'], True), Literal("Smrtan", ['x'])])
k2 = Klauzula([Literal("Covjek", ['sokrat'])])

k3 Klauzula([Literal("Smrtan", ['sokrat'l, True)]) # Negacija cilja

print("\nKlauzule (nakon Skolemizacije i CNF):")
print(£" C1: {k1}")

print(f" C2: {k2}")

print(f" C3: {k3} (negacija cilja)")

print ("\nRezolucijski dokaz:")

print(" ——————————————————— ")

print ("Korak 1: Rezolucija C1 i C2")

print(" Unifikacija: x ~> sokrat")

print(" {—-Covjek(sokrat), Smrtan(sokrat)} + {Covjek(sokrat)l}")
print(" — {Smrtan(sokrat)l}")

print ("\nKorak 2: Rezolucija {Smrtan(sokrat)} i C3")
print(" {Smrtan(sokrat)} + {—-Smrtan(sokrat)l}")
print(" =— [ (prazna klauzula)")

print ("\nv' DOKAZ PRONADEN!")

print ("Sokrat je doista smrtan.")

print ("\n "
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print ("\nSloZeniji primjer - tranzitivnost:")

print (" ")

print ("\nPremise:")

print(" 1. Vx Vy (Roditelj(x, y) — Predak(x, y))")
print(" 2. Vx Vy Vz ((Predak(x, y) A Predak(y, z)) — Predak(x, z))")
print(" 3. Roditelj(ivan, marko)")

print(" 4. Roditelj(marko, ana)")

print("\nCilj: Dokazati Predak(ivan, ana)")

print ("\nKoraci dokazivanja:")

print("1. Iz premise 1 i 3: Predak(ivan, marko)")
print("2. Iz premise 1 i 4: Predak(marko, ana)")
print("3. Iz premise 2, koraka 1 i 2: Predak(ivan, ana)")

print ("\nv' Teorem dokazan!")

Za produbljivanje razumijevanja semantike i sintakse logike predikata, predlazemo sljedece
viezbe:

Implementacija potpune evaluacije

Prosirite funkciju "evaluiraj formulu" da podrzava slozenije termovima s ugnijezdenim funkci-
jama.

Provjera validnosti formula

Implementirajte algoritam koji provjerava je li formula validna konstruiranjem kona¢no mnogo
modela (za formule s kona¢nim Herbrandovim univerzumom).

Unifikacijski algoritam

Implementirajte potpuni Robinson unifikacijski algoritam koji rukuje slozenim termovima i
provjerava occur-check.

CNF transformacija

Napisite funkciju koja pretvara proizvolju formulu logike predikata u konjunktivnu normalnu

formu (CNF).
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Rezolucijski dokazivac

Prosirite mini dokaziva¢ da automatski pronalazi dokaze koristenjem rezolucije s unifikacijom.

Model checker

Stvorite interaktivni model checker gdje korisnik moze definirati model i provjeriti istinitost
formula.

Analiza sloZenosti

Istrazite slozenost problema zadovoljivosti za razlic¢ite fragmente logike predikata (Horn
klauzule, monadski predikat, itd.).

Visualizacija modela

Implementirajte graficki prikaz modela kao usmjerenog grafa za binarne relacije.

Prevodenje prirodnog jezika

Napisite parser koji prevodi jednostavne recenice prirodnog jezika u formule logike predikata.

Igra evaluacije

Implementirajte Hintikkinu semanticku igru za evaluaciju formula - dvoje igraca (Svatko i
Netko) naizmjence biraju vrijednosti za kvantificirane varijable.

Svaki zadatak postupno gradi razumijevanje Tarskijeve semanticke teorije istine i odnosa
izmedu sintakse i semantike u logici predikata prvog reda.

Kroz ovu implementaciju istrazili smo Tarskijev revolucionarni pristup semantici logike
predikata:

1. Sintaksu logike predikata - termove, formule i kvantifikatore
2. Tarskijevu semanticku teoriju istine - modele, interpretacije i valuacije
3. Rekurzivnu evaluaciju formula prema Tarskijevoj definiciji

4. Validnost i zadovoljivost u logici predikata
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5. Skolemizaciju i vezu s propozicijskim slu¢ajem

Tarski je svojim radom odgovorio na fundamentalno pitanje:

'Sto znadi da je reGenica istinita?" - Tarski, 1933

Njegov odgovor kroz rekurzivnu definiciju istine omogucéio je:

Precizno razumijevanje semantike formalnih jezika

Razvoj teorije modela

Temelj za automatsko dokazivanje teorema

Most izmedu logike i racunarstva

Tarskijev svijet pokazuje kako apstraktni matematicki objekti mogu biti reprezentirani i
manipulirani kroz konkretne strukture podataka. Python implementacija omoguéava nam da
eksperimentiramo s ovim konceptima i razvijemo intuiciju za duboke logicke istine.

Logika predikata prvog reda ostaje temelj:

Baza podataka - SQL je u biti logika predikata

Umjetne inteligencije - predstavljanje znanja

Verifikacije programa - dokazivanje svojstava

¢ Semantickog weba - formalizacija ontologija

Tarskijev svijet nas uci da istina nije samo filozofski koncept, ve¢ precizno definirana matema-
ticka struktura koju mozemo konstruirati, analizirati i racunati.
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