
Poglavlje 4

Tarskijev svijet: Semantika logike
predikata prvog reda

4.1 Od sudova k predikatima

Dok su Wittgenstein i Gentzen istraživali logiku sudova, Alfred Tarski (1901-1983) revoluci-
onirao je naše razumijevanje logike predikata kroz svoju semantičku teoriju istine.

"Semantički pojam istine i temelji semantike" (The Semantic Conception of Truth
and the Foundations of Semantics) - Tarski, 1944

Tarskijev pristup omogućava precizno definiranje što znači da je formula istinita u modelu,
čime se premošćuje jaz između formalnog jezika i stvarnosti koju opisuje.

4.1.1 Ograničenja logike sudova

Logika sudova ne može adekvatno izraziti jednostavne zaključke poput:

• Svi ljudi su smrtni

• Sokrat je čovjek

• Dakle, Sokrat je smrtan

Aristotel je ovaj oblik zaključivanja nazvao silogizmom, ali tek je Frege formalizirao logiku
predikata koja može izraziti:

"Funkcija čiji je argument nedefiniran izraz postaje sud kada joj damo određeni
argument" - Frege, Begriffsschrift, 1879

47

48
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

Implementirajmo osnovne strukture logike predikata:

1 from dataclasses import dataclass
2 from typing import List, Dict, Set, Union, Optional, Any
3 from enum import Enum
4

5 class TipTerm(Enum):
6 """Tipovi termova u logici predikata."""
7 KONSTANTA = "konstanta"
8 VARIJABLA = "varijabla"
9 FUNKCIJA = "funkcija"

10

11 @dataclass
12 class Term:
13 """Predstavlja term u logici predikata."""
14 tip: TipTerm
15 simbol: str
16 argumenti: Optional[List['Term']] = None
17

18 def __repr__(self):
19 if self.tip == TipTerm.FUNKCIJA and self.argumenti:
20 args = ", ".join(str(a) for a in self.argumenti)
21 return f"{self.simbol}({args})"
22 return self.simbol
23

24 def slobodne_varijable(self):
25 """Vraća skup slobodnih varijabli u termu."""
26 if self.tip == TipTerm.VARIJABLA:
27 return {self.simbol}
28 elif self.tip == TipTerm.FUNKCIJA and self.argumenti:
29 rezultat = set()
30 for arg in self.argumenti:
31 rezultat.update(arg.slobodne_varijable())
32 return rezultat
33 return set()
34

35 class TipFormula(Enum):
36 """Tipovi formula u logici predikata."""
37 PREDIKAT = "predikat"
38 JEDNAKOST = "="
39 NEGACIJA = "¬"
40 KONJUNKCIJA = "∧"
41 DISJUNKCIJA = "∨"
42 IMPLIKACIJA = "→"
43 UNIVERZALNI = "∀"
44 EGZISTENCIJALNI = "∃"
45

46 @dataclass
47 class Formula:
48 """Predstavlja formulu logike predikata."""
49 tip: TipFormula

4.1. OD SUDOVA K PREDIKATIMA 49

50 sadrzaj: Any
51

52 def __repr__(self):
53 if self.tip == TipFormula.PREDIKAT:
54 simbol, termovi = self.sadrzaj
55 if termovi:
56 args = ", ".join(str(t) for t in termovi)
57 return f"{simbol}({args})"
58 return simbol
59 elif self.tip == TipFormula.JEDNAKOST:
60 t1, t2 = self.sadrzaj
61 return f"{t1} = {t2}"
62 elif self.tip == TipFormula.NEGACIJA:
63 return f"¬{self.sadrzaj}"
64 elif self.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,

TipFormula.IMPLIKACIJA]:↪→

65 f1, f2 = self.sadrzaj
66 return f"({f1} {self.tip.value} {f2})"
67 elif self.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
68 var, formula = self.sadrzaj
69 return f"{self.tip.value}{var} {formula}"
70 return str(self.sadrzaj)
71

72 # Konstruktori za lakše kreiranje termova i formula
73 def konst(ime): return Term(TipTerm.KONSTANTA, ime)
74 def var(ime): return Term(TipTerm.VARIJABLA, ime)
75 def funk(ime, *args): return Term(TipTerm.FUNKCIJA, ime, list(args))
76

77 def pred(ime, *termovi): return Formula(TipFormula.PREDIKAT, (ime, list(termovi)))
78 def jednako(t1, t2): return Formula(TipFormula.JEDNAKOST, (t1, t2))
79 def neg(f): return Formula(TipFormula.NEGACIJA, f)
80 def konj(f1, f2): return Formula(TipFormula.KONJUNKCIJA, (f1, f2))
81 def disj(f1, f2): return Formula(TipFormula.DISJUNKCIJA, (f1, f2))
82 def impl(f1, f2): return Formula(TipFormula.IMPLIKACIJA, (f1, f2))
83 def svaki(var, f): return Formula(TipFormula.UNIVERZALNI, (var, f))
84 def postoji(var, f): return Formula(TipFormula.EGZISTENCIJALNI, (var, f))
85

86 # Primjeri
87 print("Strukture logike predikata:")
88 print("============================")
89 print("\nTermovi:")
90 print(f" konstante: {konst('sokrat')}, {konst('atena')}, {konst('5')}")
91 print(f" varijable: {var('x')}, {var('y')}, {var('z')}")
92 print(f" funkcije: {funk('otac', konst('sokrat'))}, {funk('plus', konst('2'), konst('3'))}")
93

94 print("\nAtomarne formule:")
95 print(f" {pred('Covjek', konst('sokrat'))} - 'Sokrat je čovjek'")
96 print(f" {pred('Voli', var('x'), var('y'))} - 'x voli y'")
97 print(f" {jednako(var('x'), var('y'))} - 'x je jednak y'")
98

99 print("\nKvantificirane formule:")
100 print(f" {svaki('x', pred('Smrtan', var('x')))} - 'Svi su smrtni'")

50
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

101 print(f" {postoji('x', pred('Mudrac', var('x')))} - 'Postoji mudrac'")

Output

Strukture logike predikata:
============================

Termovi:
konstante: sokrat, atena, 5
varijable: x, y, z
funkcije: otac(sokrat), plus(2, 3)

Atomarne formule:
Covjek(sokrat) - 'Sokrat je čovjek'
Voli(x, y) - 'x voli y'
x = y - 'x je jednak y'

Kvantificirane formule:
∀x Smrtan(x) - 'Svi su smrtni'
∃x Mudrac(x) - 'Postoji mudrac'

4.1.2 Tarskijeva semantička teorija istine

Tarski je formulirao svoju čuvenu T-konvenciju koja definira uvjete adekvatnosti za definiciju
istine:

"’Snijeg je bijel’ je istinito ako i samo ako je snijeg bijel" - Tarski, 1933

Ova naizgled trivijalna tvrdnja skriva duboku istinu: istina se definira kroz metajezik koji
govori o objektnom jeziku.

Za logiku predikata, trebamo definirati:

• Domenu (univerzum diskursa)

• Interpretaciju konstanti, funkcija i predikata

• Valuaciju varijabli

Implementirajmo Tarskijevu semantiku:

1 @dataclass
2 class Model:
3 """Tarskijeva struktura za interpretaciju logike predikata."""
4 domena: Set[Any]

4.1. OD SUDOVA K PREDIKATIMA 51

5 interpretacija: Dict[str, Any]
6

7 def interpretiraj_konstantu(self, simbol: str) -> Any:
8 """Interpretira konstantu."""
9 if simbol in self.interpretacija:

10 return self.interpretacija[simbol]
11 raise ValueError(f"Konstanta {simbol} nije definirana")
12

13 def interpretiraj_funkciju(self, simbol: str, argumenti: List[Any]) -> Any:
14 """Interpretira funkcijski simbol."""
15 if simbol in self.interpretacija:
16 funkcija = self.interpretacija[simbol]
17 if callable(funkcija):
18 return funkcija(*argumenti)
19 # Za jednostavne slučajeve, možemo koristiti rječnik
20 if isinstance(funkcija, dict):
21 kljuc = tuple(argumenti) if len(argumenti) > 1 else argumenti[0]
22 return funkcija.get(kljuc)
23 raise ValueError(f"Funkcija {simbol} nije definirana")
24

25 def interpretiraj_predikat(self, simbol: str, argumenti: List[Any]) -> bool:
26 """Provjerava je li predikat istinit za dane argumente."""
27 if simbol in self.interpretacija:
28 ekstenzija = self.interpretacija[simbol]
29 if len(argumenti) == 0:
30 return ekstenzija # Propozicijska konstanta
31 elif len(argumenti) == 1:
32 return argumenti[0] in ekstenzija
33 else:
34 return tuple(argumenti) in ekstenzija
35 return False
36

37 @dataclass
38 class Valuacija:
39 """Pridjeljuje vrijednosti varijablama."""
40 vrijednosti: Dict[str, Any]
41

42 def __getitem__(self, varijabla: str) -> Any:
43 return self.vrijednosti.get(varijabla)
44

45 def __setitem__(self, varijabla: str, vrijednost: Any):
46 self.vrijednosti[varijabla] = vrijednost
47

48 def kopija(self) -> 'Valuacija':
49 """Stvara kopiju valuacije."""
50 return Valuacija(self.vrijednosti.copy())
51

52 def promijeni(self, varijabla: str, vrijednost: Any) -> 'Valuacija':
53 """Vraća novu valuaciju s promijenjenom varijablom."""
54 nova = self.kopija()
55 nova[varijabla] = vrijednost
56 return nova
57

52
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

58 def evaluiraj_term(term: Term, model: Model, valuacija: Valuacija) -> Any:
59 """Evaluira term u modelu s danom valuacijom."""
60 if term.tip == TipTerm.KONSTANTA:
61 return model.interpretiraj_konstantu(term.simbol)
62 elif term.tip == TipTerm.VARIJABLA:
63 return valuacija[term.simbol]
64 elif term.tip == TipTerm.FUNKCIJA:
65 arg_vrijednosti = [evaluiraj_term(arg, model, valuacija)
66 for arg in term.argumenti]
67 return model.interpretiraj_funkciju(term.simbol, arg_vrijednosti)
68 raise ValueError(f"Nepoznat tip terma: {term.tip}")
69

70 # Primjer Tarskijeve strukture
71 filozofi_model = Model(
72 domena={'sokrat', 'platon', 'aristotel'},
73 interpretacija={
74 'sokrat': 'sokrat',
75 'platon': 'platon',
76 'aristotel': 'aristotel',
77 'Filozof': {'sokrat', 'platon', 'aristotel'},
78 'Ucitelj': {('sokrat', 'platon'), ('platon', 'aristotel')},
79 'Smrtan': {'sokrat', 'platon', 'aristotel'},
80 'ucitelj': {'sokrat': 'platon', 'platon': 'aristotel'}
81 }
82)
83

84 val = Valuacija({'x': 'sokrat', 'y': 'platon'})
85

86 print("Tarskijeva struktura (model):")
87 print("==============================")
88 print(f"\nDomena D = {filozofi_model.domena}")
89 print("\nInterpretacija I:")
90 for simbol in ['sokrat', 'platon', 'Filozof', 'Ucitelj', 'Smrtan']:
91 if simbol in filozofi_model.interpretacija:
92 print(f" I({simbol}) = {filozofi_model.interpretacija[simbol]}")
93

94 print("\nValuacija v:")
95 for var1, val_var in val.vrijednosti.items():
96 print(f" v({var1}) = {val_var}")
97

98 print("\nEvaluacija termova:")
99 t1 = konst('sokrat')

100 t2 = var('x')
101 t3 = funk('ucitelj', var('x'))
102

103 print(f" [[{t1}]]^{{M,v}} = {evaluiraj_term(t1, filozofi_model, val)}")
104 print(f" [[{t2}]]^{{M,v}} = {evaluiraj_term(t2, filozofi_model, val)}")
105 print(f" [[{t3}]]^{{M,v}} = {evaluiraj_term(t3, filozofi_model, val)}")

4.1. OD SUDOVA K PREDIKATIMA 53

Output

Tarskijeva struktura (model):
==============================

Domena D = {'platon', 'aristotel', 'sokrat'}

Interpretacija I:
I(sokrat) = sokrat
I(platon) = platon
I(Filozof) = {'platon', 'aristotel', 'sokrat'}
I(Ucitelj) = {('platon', 'aristotel'), ('sokrat', 'platon')}
I(Smrtan) = {'platon', 'aristotel', 'sokrat'}

Valuacija v:
v(x) = sokrat
v(y) = platon

Evaluacija termova:
[[sokrat]]^{M,v} = sokrat
[[x]]^{M,v} = sokrat
[[ucitelj(x)]]^{M,v} = platon

4.1.3 Semantička evaluacija formula

Tarskijeva rekurzivna definicija istine definira kada je formula φ istinita u modelu M s
valuacijom v, što pišemo M, v |= φ:

1. M, v |= P (t1, ..., tn) ako (I(t1), ..., I(tn)) ∈ I(P)

2. M, v |= ¬φ ako M, v ̸|= φ

3. M, v |= φ ∧ ψ ako M, v |= φ i M, v |= ψ

4. M, v |= ∀xφ ako za svaki d ∈ D: M, v[x/d] |= φ

5. M, v |= ∃xφ ako postoji d ∈ D: M, v[x/d] |= φ

Implementirajmo ovu rekurzivnu definiciju:

1 def evaluiraj_formulu(formula: Formula, model: Model, valuacija: Valuacija) -> bool:
2 """Rekurzivno evaluira formulu prema Tarskijevoj definiciji."""
3

4 if formula.tip == TipFormula.PREDIKAT:
5 simbol, termovi = formula.sadrzaj
6 arg_vrijednosti = [evaluiraj_term(t, model, valuacija) for t in termovi]
7 return model.interpretiraj_predikat(simbol, arg_vrijednosti)
8

54
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

9 elif formula.tip == TipFormula.JEDNAKOST:
10 t1, t2 = formula.sadrzaj
11 v1 = evaluiraj_term(t1, model, valuacija)
12 v2 = evaluiraj_term(t2, model, valuacija)
13 return v1 == v2
14

15 elif formula.tip == TipFormula.NEGACIJA:
16 return not evaluiraj_formulu(formula.sadrzaj, model, valuacija)
17

18 elif formula.tip == TipFormula.KONJUNKCIJA:
19 f1, f2 = formula.sadrzaj
20 return (evaluiraj_formulu(f1, model, valuacija) and
21 evaluiraj_formulu(f2, model, valuacija))
22

23 elif formula.tip == TipFormula.DISJUNKCIJA:
24 f1, f2 = formula.sadrzaj
25 return (evaluiraj_formulu(f1, model, valuacija) or
26 evaluiraj_formulu(f2, model, valuacija))
27

28 elif formula.tip == TipFormula.IMPLIKACIJA:
29 f1, f2 = formula.sadrzaj
30 return (not evaluiraj_formulu(f1, model, valuacija) or
31 evaluiraj_formulu(f2, model, valuacija))
32

33 elif formula.tip == TipFormula.UNIVERZALNI:
34 varijabla, podformula = formula.sadrzaj
35 # Provjeri za sve elemente domene
36 for element in model.domena:
37 nova_valuacija = valuacija.promijeni(varijabla, element)
38 if not evaluiraj_formulu(podformula, model, nova_valuacija):
39 return False
40 return True
41

42 elif formula.tip == TipFormula.EGZISTENCIJALNI:
43 varijabla, podformula = formula.sadrzaj
44 # Provjeri postoji li barem jedan element
45 for element in model.domena:
46 nova_valuacija = valuacija.promijeni(varijabla, element)
47 if evaluiraj_formulu(podformula, model, nova_valuacija):
48 return True
49 return False
50

51 raise ValueError(f"Nepoznat tip formule: {formula.tip}")
52

53 def prikazi_evaluaciju(formula: Formula, model: Model, valuacija: Valuacija):
54 """Prikazuje rezultat evaluacije."""
55 rezultat = evaluiraj_formulu(formula, model, valuacija)
56 simbol = "⊤" if rezultat else "⊥"
57 print(f" M, v |= {formula} = {simbol}")
58

59 # Testiranje evaluacije
60 print("Evaluacija formula:")
61 print("===================")

4.1. OD SUDOVA K PREDIKATIMA 55

62

63 print("\nAtomarne formule:")
64 f1 = pred('Filozof', konst('sokrat'))
65 f2 = pred('Ucitelj', konst('sokrat'), konst('platon'))
66 f3 = pred('Ucitelj', konst('platon'), konst('sokrat'))
67

68 prikazi_evaluaciju(f1, filozofi_model, val)
69 prikazi_evaluaciju(f2, filozofi_model, val)
70 prikazi_evaluaciju(f3, filozofi_model, val)
71

72 print("\nSložene formule:")
73 f4 = konj(pred('Filozof', var('x')), pred('Smrtan', var('x')))
74 f5 = impl(pred('Filozof', var('x')), pred('Smrtan', var('x')))
75

76 prikazi_evaluaciju(f4, filozofi_model, val)
77 prikazi_evaluaciju(f5, filozofi_model, val)
78

79 print("\nKvantificirane formule:")
80 f6 = svaki('x', pred('Smrtan', var('x')))
81 f7 = postoji('x', pred('Ucitelj', var('x'), konst('platon')))
82 f8 = svaki('x', impl(pred('Filozof', var('x')), pred('Smrtan', var('x'))))
83 f9 = postoji('x', postoji('y', pred('Ucitelj', var('x'), var('y'))))
84 f10 = svaki('x', postoji('y', pred('Ucitelj', var('x'), var('y'))))
85

86 prikazi_evaluaciju(f6, filozofi_model, val)
87 prikazi_evaluaciju(f7, filozofi_model, val)
88 prikazi_evaluaciju(f8, filozofi_model, val)
89 prikazi_evaluaciju(f9, filozofi_model, val)
90 prikazi_evaluaciju(f10, filozofi_model, val)

Output

Evaluacija formula:
===================

Atomarne formule:
M, v |= Filozof(sokrat) = ⊤
M, v |= Ucitelj(sokrat, platon) = ⊤
M, v |= Ucitelj(platon, sokrat) = ⊥

Složene formule:
M, v |= (Filozof(x) ∧ Smrtan(x)) = ⊤
M, v |= (Filozof(x) → Smrtan(x)) = ⊤

Kvantificirane formule:
M, v |= ∀x Smrtan(x) = ⊤
M, v |= ∃x Ucitelj(x, platon) = ⊤
M, v |= ∀x (Filozof(x) → Smrtan(x)) = ⊤
M, v |= ∃x ∃y Ucitelj(x, y) = ⊤
M, v |= ∀x ∃y Ucitelj(x, y) = ⊥

56
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

4.1.4 Slobodne i vezane varijable

Quine je naglasio važnost razlikovanja slobodnih i vezanih varijabli:

"Biti znači biti vrijednost vezane varijable" (To be is to be the value of a bound
variable) - Quine, 1948

Varijabla je vezana ako je u dosegu kvantifikatora, inače je slobodna.

Formula bez slobodnih varijabli naziva se zatvorena formula ili rečenica.

1 def slobodne_varijable(formula: Formula, vezane: Set[str] = None) -> Set[str]:
2 """Vraća skup slobodnih varijabli u formuli."""
3 if vezane is None:
4 vezane = set()
5

6 if formula.tip == TipFormula.PREDIKAT:
7 _, termovi = formula.sadrzaj
8 slobodne = set()
9 for term in termovi:

10 if term.tip == TipTerm.VARIJABLA and term.simbol not in vezane:
11 slobodne.add(term.simbol)
12 elif term.tip == TipTerm.FUNKCIJA:
13 slobodne.update(term.slobodne_varijable() - vezane)
14 return slobodne
15

16 elif formula.tip == TipFormula.JEDNAKOST:
17 t1, t2 = formula.sadrzaj
18 slobodne = set()
19 if t1.tip == TipTerm.VARIJABLA and t1.simbol not in vezane:
20 slobodne.add(t1.simbol)
21 if t2.tip == TipTerm.VARIJABLA and t2.simbol not in vezane:
22 slobodne.add(t2.simbol)
23 return slobodne
24

25 elif formula.tip == TipFormula.NEGACIJA:
26 return slobodne_varijable(formula.sadrzaj, vezane)
27

28 elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
TipFormula.IMPLIKACIJA]:↪→

29 f1, f2 = formula.sadrzaj
30 return slobodne_varijable(f1, vezane) | slobodne_varijable(f2, vezane)
31

32 elif formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
33 varijabla, podformula = formula.sadrzaj
34 nove_vezane = vezane | {varijabla}
35 return slobodne_varijable(podformula, nove_vezane)
36

37 return set()

4.1. OD SUDOVA K PREDIKATIMA 57

38

39 def vezane_varijable(formula: Formula) -> Set[str]:
40 """Vraća skup vezanih varijabli u formuli."""
41 vezane = set()
42

43 if formula.tip == TipFormula.NEGACIJA:
44 return vezane_varijable(formula.sadrzaj)
45

46 elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
TipFormula.IMPLIKACIJA]:↪→

47 f1, f2 = formula.sadrzaj
48 return vezane_varijable(f1) | vezane_varijable(f2)
49

50 elif formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
51 varijabla, podformula = formula.sadrzaj
52 return {varijabla} | vezane_varijable(podformula)
53

54 return vezane
55

56 def je_zatvorena(formula: Formula) -> bool:
57 """Provjerava je li formula zatvorena (rečenica)."""
58 return len(slobodne_varijable(formula)) == 0
59

60 def substituiraj(formula: Formula, varijabla: str, term: Term) -> Formula:
61 """Substituira term za varijablu u formuli."""
62 if formula.tip == TipFormula.PREDIKAT:
63 simbol, termovi = formula.sadrzaj
64 novi_termovi = []
65 for t in termovi:
66 if t.tip == TipTerm.VARIJABLA and t.simbol == varijabla:
67 novi_termovi.append(term)
68 else:
69 novi_termovi.append(t)
70 return pred(simbol, *novi_termovi)
71

72 elif formula.tip == TipFormula.NEGACIJA:
73 return neg(substituiraj(formula.sadrzaj, varijabla, term))
74

75 elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
TipFormula.IMPLIKACIJA]:↪→

76 f1, f2 = formula.sadrzaj
77 nova_f1 = substituiraj(f1, varijabla, term)
78 nova_f2 = substituiraj(f2, varijabla, term)
79 if formula.tip == TipFormula.KONJUNKCIJA:
80 return konj(nova_f1, nova_f2)
81 elif formula.tip == TipFormula.DISJUNKCIJA:
82 return disj(nova_f1, nova_f2)
83 else:
84 return impl(nova_f1, nova_f2)
85

86 elif formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
87 kvant_var, podformula = formula.sadrzaj
88 if kvant_var == varijabla:

58
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

89 # Varijabla je vezana, ne substituiraj
90 return formula
91 nova_podformula = substituiraj(podformula, varijabla, term)
92 if formula.tip == TipFormula.UNIVERZALNI:
93 return svaki(kvant_var, nova_podformula)
94 else:
95 return postoji(kvant_var, nova_podformula)
96

97 return formula
98

99 # Testiranje
100 print("Analiza varijabli:")
101 print("==================")
102

103 formule_test = [
104 pred('Voli', var('x'), var('y')),
105 svaki('x', pred('Voli', var('x'), var('y'))),
106 svaki('x', postoji('y', pred('Voli', var('x'), var('y')))),
107 impl(svaki('x', pred('P', var('x'))), pred('P', var('y')))
108]
109

110 for f in formule_test:
111 slobodne = slobodne_varijable(f)
112 vezane = vezane_varijable(f)
113 zatvorena = "⊤" if je_zatvorena(f) else "⊥"
114 print(f"\nFormula: {f}")
115 print(f" Slobodne varijable: {slobodne}")
116 print(f" Vezane varijable: {vezane}")
117 print(f" Zatvorena? {zatvorena}")
118

119 print("\nSubstitucija:")
120 print("=============")
121

122 f1 = pred('P', var('x'))
123 f2 = svaki('x', pred('P', var('x')))
124 f3 = svaki('x', pred('P', var('x'), var('y')))
125

126 print(f"\n{f1}[x/sokrat] = {substituiraj(f1, 'x', konst('sokrat'))}")
127 print(f"{f2}[x/sokrat] = {substituiraj(f2, 'x', konst('sokrat'))}")
128 print(f"{f3}[y/sokrat] = {substituiraj(f3, 'y', konst('sokrat'))}")

Output

Analiza varijabli:
==================

Formula: Voli(x, y)
Slobodne varijable: {'y', 'x'}
Vezane varijable: set()
Zatvorena? ⊥

4.1. OD SUDOVA K PREDIKATIMA 59

Formula: ∀x Voli(x, y)
Slobodne varijable: {'y'}
Vezane varijable: {'x'}
Zatvorena? ⊥

Formula: ∀x ∃y Voli(x, y)
Slobodne varijable: set()
Vezane varijable: {'y', 'x'}
Zatvorena? ⊤

Formula: (∀x P(x) → P(y))
Slobodne varijable: {'y'}
Vezane varijable: {'x'}
Zatvorena? ⊥

Substitucija:
=============

P(x)[x/sokrat] = P(sokrat)
∀x P(x)[x/sokrat] = ∀x P(x)
∀x P(x, y)[y/sokrat] = ∀x P(x, sokrat)

4.1.5 Valjanost i zadovoljivost

U logici predikata razlikujemo:

• Valjanost (logički istinita) formula: istinita u svim modelima

• Zadovoljiva formula: istinita u barem jednom modelu

• Nezadovoljiva formula: lažna u svim modelima

GÃ¶del je dokazao potpunost logike predikata prvog reda:

"Svaka valjana formula logike predikata prvog reda je dokaziva" - Goedel, 1929

Ali također i nepotpunost aritmetike:

"U svakom dovoljno bogatom formalnom sustavu postoje istinite tvrdnje koje se
ne mogu dokazati" - GÃ¶del, 1931

1 def je_validna(formula: Formula, modeli: List[Model]) -> bool:
2 """Provjerava je li formula validna u svim danim modelima."""
3 for model in modeli:

60
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

4 # Za svaku moguću valuaciju
5 # (za jednostavnost, provjeravamo samo praznu valuaciju za zatvorene formule)
6 if je_zatvorena(formula):
7 val = Valuacija({})
8 if not evaluiraj_formulu(formula, model, val):
9 return False

10 else:
11 # Za formule sa slobodnim varijablama, trebamo provjeriti sve valuacije
12 slobodne = slobodne_varijable(formula)
13

14 def sve_valuacije(varijable, domena, trenutna={}):
15 if not varijable:
16 yield Valuacija(trenutna.copy())
17 else:
18 var = varijable[0]
19 for element in domena:
20 trenutna[var] = element
21 yield from sve_valuacije(varijable[1:], domena, trenutna)
22 del trenutna[var]
23

24 for val in sve_valuacije(list(slobodne), model.domena):
25 if not evaluiraj_formulu(formula, model, val):
26 return False
27 return True
28

29 def je_zadovoljiva(formula: Formula, modeli: List[Model]) -> bool:
30 """Provjerava je li formula zadovoljiva u barem jednom modelu."""
31 for model in modeli:
32 if je_zatvorena(formula):
33 val = Valuacija({})
34 if evaluiraj_formulu(formula, model, val):
35 return True
36 else:
37 slobodne = slobodne_varijable(formula)
38

39 def sve_valuacije(varijable, domena, trenutna={}):
40 if not varijable:
41 yield Valuacija(trenutna.copy())
42 else:
43 var = varijable[0]
44 for element in domena:
45 trenutna[var] = element
46 yield from sve_valuacije(varijable[1:], domena, trenutna)
47 del trenutna[var]
48

49 for val in sve_valuacije(list(slobodne), model.domena):
50 if evaluiraj_formulu(formula, model, val):
51 return True
52 return False
53

54 # Testni modeli
55 model1 = Model(
56 domena={'a', 'b'},

4.1. OD SUDOVA K PREDIKATIMA 61

57 interpretacija={
58 'P': {'a'},
59 'R': {('a', 'b'), ('b', 'a')}
60 }
61)
62

63 model2 = Model(
64 domena={'1', '2'},
65 interpretacija={
66 'P': set(),
67 'R': {('1', '1')}
68 }
69)
70

71 model3 = Model(
72 domena={'x', 'y', 'z'},
73 interpretacija={
74 'P': {'x', 'y'},
75 'R': {('x', 'y'), ('y', 'y'), ('z', 'y')}
76 }
77)
78

79 modeli = [model1, model2, model3]
80

81 # Test formula
82 print("Provjera validnosti i zadovoljivosti:")
83 print("=====================================")
84

85 test_formule = [
86 ("Zakon identiteta", svaki('x', impl(pred('P', var('x')), pred('P', var('x'))))),
87 ("Egzistencija P", postoji('x', pred('P', var('x')))),
88 ("Kontradikcija", konj(svaki('x', pred('P', var('x'))),
89 neg(svaki('x', pred('P', var('x')))))),
90 ("Svaki ima nekoga", svaki('x', postoji('y', pred('R', var('x'), var('y'))))),
91 ("Postoji za sve", postoji('y', svaki('x', pred('R', var('x'), var('y')))))
92]
93

94 for naziv, formula in test_formule:
95 print(f"\nFormula: {formula}")
96

97 # Evaluiraj u svakom modelu
98 rezultati = []
99 for i, model in enumerate(modeli, 1):

100 val = Valuacija({})
101 rez = evaluiraj_formulu(formula, model, val)
102 rezultati.append(rez)
103 print(f" Model {i}: {'⊤' if rez else '⊥'}")
104

105 # Određi status
106 if all(rezultati):
107 print(" Status: VALIDNA ✓")
108 elif any(rezultati):
109 print(" Status: ZADOVOLJIVA")

62
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

110 else:
111 print(" Status: NEZADOVOLJIVA ×")
112

113 print("\nVažno zapažanje:")
114 print(" ∀x∃y R(x,y) ̸= ∃y∀x R(x,y)")
115 print(" Redoslijed kvantifikatora je bitan!")

Output

Provjera validnosti i zadovoljivosti:
=====================================

Formula: ∀x (P(x) → P(x))
Model 1: ⊤
Model 2: ⊤
Model 3: ⊤
Status: VALIDNA ✓

Formula: ∃x P(x)
Model 1: ⊤
Model 2: ⊥
Model 3: ⊤
Status: ZADOVOLJIVA

Formula: (∀x P(x) ∧ ¬∀x P(x))
Model 1: ⊥
Model 2: ⊥
Model 3: ⊥
Status: NEZADOVOLJIVA ×

Formula: ∀x ∃y R(x, y)
Model 1: ⊤
Model 2: ⊥
Model 3: ⊤
Status: ZADOVOLJIVA

Formula: ∃y ∀x R(x, y)
Model 1: ⊥
Model 2: ⊥
Model 3: ⊤
Status: ZADOVOLJIVA

Važno zapažanje:
∀x∃y R(x,y) ̸= ∃y∀x R(x,y)
Redoslijed kvantifikatora je bitan!

4.1.6 Skolemizacija i prenex normalna forma

Thoralf Skolem pokazao je kako eliminirati egzistencijalne kvantifikatore:

4.1. OD SUDOVA K PREDIKATIMA 63

"Svaka formula logike predikata može se transformirati u ekvivalentnu formulu bez
egzistencijalnih kvantifikatora" - Skolem, 1920

Prenex normalna forma: svi kvantifikatori su na početku formule.

Skolemizacija: zamjena egzistencijalnih kvantifikatora Skolemovim funkcijama.

1 def u_prenex_formu(formula: Formula, kvantifikatori=[]) -> Formula:
2 """Pretvara formulu u prenex normalnu formu.
3 (Pojednostavljena verzija za demonstraciju)
4 """
5 # Ovo je pojednostavljena implementacija
6 # Potpuna implementacija bi trebala rukovati svim slučajevima
7

8 if formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
9 var, podformula = formula.sadrzaj

10 return u_prenex_formu(podformula, kvantifikatori + [(formula.tip, var)])
11

12 # Rekonstruiraj formulu s kvantifikatorima na početku
13 rezultat = formula
14 for tip_kvant, var in reversed(kvantifikatori):
15 if tip_kvant == TipFormula.UNIVERZALNI:
16 rezultat = svaki(var, rezultat)
17 else:
18 rezultat = postoji(var, rezultat)
19

20 return rezultat
21

22 def skolemizuj(formula: Formula, univerzalni_kontekst=[]) -> Formula:
23 """Skolemizacija - eliminacija egzistencijalnih kvantifikatora.
24 (Pojednostavljena verzija)
25 """
26

27 if formula.tip == TipFormula.UNIVERZALNI:
28 var, podformula = formula.sadrzaj
29 nova_podformula = skolemizuj(podformula, univerzalni_kontekst + [var])
30 return svaki(var, nova_podformula)
31

32 elif formula.tip == TipFormula.EGZISTENCIJALNI:
33 var, podformula = formula.sadrzaj
34

35 # Stvori Skolemov term
36 if not univerzalni_kontekst:
37 # Skolemova konstanta
38 skolem_term = konst(f"c_{var}")
39 else:
40 # Skolemova funkcija
41 argumenti = [var(v) for v in univerzalni_kontekst]
42 skolem_term = funk(f"f_{var}", *argumenti)
43

64
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

44 # Substituiraj
45 nova_podformula = substituiraj(podformula, var, skolem_term)
46 return skolemizuj(nova_podformula, univerzalni_kontekst)
47

48 elif formula.tip == TipFormula.NEGACIJA:
49 return neg(skolemizuj(formula.sadrzaj, univerzalni_kontekst))
50

51 elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
TipFormula.IMPLIKACIJA]:↪→

52 f1, f2 = formula.sadrzaj
53 nova_f1 = skolemizuj(f1, univerzalni_kontekst)
54 nova_f2 = skolemizuj(f2, univerzalni_kontekst)
55 if formula.tip == TipFormula.KONJUNKCIJA:
56 return konj(nova_f1, nova_f2)
57 elif formula.tip == TipFormula.DISJUNKCIJA:
58 return disj(nova_f1, nova_f2)
59 else:
60 return impl(nova_f1, nova_f2)
61

62 return formula
63

64 print("Prenex normalna forma:")
65 print("======================")
66

67 # Primjeri prenex transformacije
68 f1 = impl(svaki('x', pred('P', var('x'))), postoji('y', pred('Q', var('y'))))
69 print(f"\nOriginal: {f1}")
70 print(f"Prenex: ∃x ∃y (¬P(x) ∨ Q(y))")
71

72 f2 = svaki('x', impl(pred('P', var('x')), postoji('y', pred('R', var('x'), var('y')))))
73 print(f"\nOriginal: {f2}")
74 print(f"Prenex: ∀x ∃y (¬P(x) ∨ R(x, y))")
75

76 print("\nSkolemizacija:")
77 print("===============")
78

79 # Primjer 1: Egzistencijalni kvantifikator bez univerzalnog konteksta
80 f3 = postoji('x', pred('P', var('x')))
81 print(f"\nOriginal: {f3}")
82 print(f"Skolemizovano: P(c)")
83 print(" gdje je c nova Skolemova konstanta")
84

85 # Primjer 2: Egzistencijalni u kontekstu univerzalnog
86 f4 = svaki('x', postoji('y', pred('R', var('x'), var('y'))))
87 print(f"\nOriginal: {f4}")
88 print(f"Skolemizovano: ∀x R(x, f(x))")
89 print(" gdje je f nova Skolemova funkcija")
90

91 # Primjer 3: Složeniji slučaj
92 f5 = postoji('x', svaki('y', postoji('z', pred('S', var('x'), var('y'), var('z')))))
93 print(f"\nOriginal: {f5}")
94 print(f"Skolemizovano: ∀y S(a, y, g(y))")
95 print(" gdje su a konstanta i g funkcija")

4.1. OD SUDOVA K PREDIKATIMA 65

96

97 print("\nKorak po korak - formula: ∀x (P(x) → ∃y R(x, y))")
98 print("==")
99 print("\n1. Eliminacija implikacije:")

100 print(" ∀x (¬P(x) ∨ ∃y R(x, y))")
101 print("\n2. Premještanje kvantifikatora (prenex):")
102 print(" ∀x ∃y (¬P(x) ∨ R(x, y))")
103 print("\n3. Skolemizacija:")
104 print(" ∀x (¬P(x) ∨ R(x, f(x)))")
105 print(" gdje f(x) je Skolemova funkcija")
106 print("\n4. Rezultat je ekvizadovoljiv s originalnom formulom")

Output

Prenex normalna forma:
======================

Original: (∀x P(x) → ∃y Q(y))
Prenex: ∃x ∃y (¬P(x) ∨ Q(y))

Original: ∀x (P(x) → ∃y R(x, y))
Prenex: ∀x ∃y (¬P(x) ∨ R(x, y))

Skolemizacija:
===============

Original: ∃x P(x)
Skolemizovano: P(c)

gdje je c nova Skolemova konstanta

Original: ∀x ∃y R(x, y)
Skolemizovano: ∀x R(x, f(x))

gdje je f nova Skolemova funkcija

Original: ∃x ∀y ∃z S(x, y, z)
Skolemizovano: ∀y S(a, y, g(y))

gdje su a konstanta i g funkcija

Korak po korak - formula: ∀x (P(x) → ∃y R(x, y))
==

1. Eliminacija implikacije:
∀x (¬P(x) ∨ ∃y R(x, y))

2. Premještanje kvantifikatora (prenex):
∀x ∃y (¬P(x) ∨ R(x, y))

3. Skolemizacija:
∀x (¬P(x) ∨ R(x, f(x)))
gdje f(x) je Skolemova funkcija

66
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

4. Rezultat je ekvizadovoljiv s originalnom formulom

4.1.7 Herbrandov univerzum i teorem

Jacques Herbrand pokazao je kako svesti problem zadovoljivosti na propozicijski slučaj:

"Zadovoljivost formule prvog reda može se svesti na zadovoljivost beskonačnog
skupa propozicijskih formula" - Herbrand, 1930

Herbrandov univerzum: skup svih termova koji se mogu konstruirati iz konstanti i funkcija.

1 def generiraj_herbrandov_univerzum(konstante: Set[str], funkcije: Dict[str, int], dubina: int
= 2):↪→

2 """Generira Herbrandov univerzum do zadane dubine.
3 funkcije: dict koji mapira ime funkcije u njen aritet
4 """
5 H = []
6

7 # H0 - samo konstante
8 H.append(set(konstante))
9

10 for d in range(1, dubina + 1):
11 novi = set(H[d-1]) # Uključi sve iz prethodne razine
12

13 # Za svaku funkciju
14 for funk_ime, aritet in funkcije.items():
15 # Generiraj sve kombinacije argumenata iz H[d-1]
16 import itertools
17 for args in itertools.product(H[d-1], repeat=aritet):
18 args_str = ", ".join(args)
19 novi.add(f"{funk_ime}({args_str})")
20

21 H.append(novi)
22

23 return H
24

25 def generiraj_herbrandovu_bazu(predikati: Dict[str, int], termovi: Set[str]):
26 """Generira Herbrandovu bazu - sve atomarne formule s Herbrandovim termovima.
27 predikati: dict koji mapira ime predikata u njegov aritet
28 """
29 baza = set()
30

31 for pred_ime, aritet in predikati.items():
32 if aritet == 0:
33 baza.add(pred_ime)
34 else:

4.1. OD SUDOVA K PREDIKATIMA 67

35 import itertools
36 for args in itertools.product(termovi, repeat=aritet):
37 args_str = ", ".join(args)
38 baza.add(f"{pred_ime}({args_str})")
39

40 return baza
41

42 # Primjer
43 konstante = {'a', 'b'}
44 funkcije = {'f': 1, 'g': 2} # f je unarna, g je binarna
45 predikati = {'P': 1, 'R': 2} # P je unarni, R je binarni
46

47 print("Herbrandov univerzum:")
48 print("=====================")
49 print(f"\nKonstante: {konstante}")
50 print(f"Funkcije: {{{', '.join(f'{f}/{a}' for f, a in funkcije.items())}}}")
51

52 H = generiraj_herbrandov_univerzum(konstante, funkcije, 2)
53

54 print(f"\nH0 = {H[0]}")
55 print(f"H1 = {H[1]}")
56 print(f"H2 = ... ({len(H[2])} termova)")
57

58 print("\nHerbrandova baza:")
59 print("==================")
60

61 baza = generiraj_herbrandovu_bazu(predikati, H[0])
62 print(f"\nZa predikate P/1 i R/2:")
63 print("B0 = {")
64 baza_lista = sorted(list(baza))
65 print(f" {', '.join(baza_lista[:2])},")
66 print(f" {', '.join(baza_lista[2:])}")
67 print("}")
68

69 print("\nHerbrandove interpretacije:")
70 print("============================")
71 print(f"\nBroj mogućih interpretacija za B0: 26 = {2**len(baza)}")
72

73 print("\nPrimjer interpretacije I1:")
74 print(" P(a) = ⊤, P(b) = ⊥")
75 print(" R(a, a) = ⊤, R(a, b) = ⊤")
76 print(" R(b, a) = ⊥, R(b, b) = ⊤")
77

78 print("\nHerbrandov teorem:")
79 print("==================")
80 print("\nFormula ∀x ∃y R(x, y) je zadovoljiva")
81 print("⇐⇒")
82 print("Skup {R(a, f(a)), R(b, f(b)), ...} je zadovoljiv")
83 print("\nTime se problem prvog reda svodi na propozicijski!")

68
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

4.1.8 Praktična primjena: Mini dokazivač teorema

Implementirajmo jednostavan dokazivač teorema koji koristi rezoluciju:

1 class Klauzula:
2 """Predstavlja klauzulu u CNF formi."""
3 def __init__(self, literali):
4 self.literali = set(literali)
5

6 def __repr__(self):
7 if not self.literali:
8 return "□" # Prazna klauzula
9 return "{" + ", ".join(str(l) for l in self.literali) + "}"

10

11 def je_prazna(self):
12 return len(self.literali) == 0
13

14 class Literal:
15 """Predstavlja literal (atomarna formula ili njena negacija)."""
16 def __init__(self, predikat, argumenti, negiran=False):
17 self.predikat = predikat
18 self.argumenti = argumenti
19 self.negiran = negiran
20

21 def __repr__(self):
22 args = "(" + ", ".join(str(a) for a in self.argumenti) + ")" if self.argumenti else

""↪→

23 return ("¬" if self.negiran else "") + self.predikat + args
24

25 def __eq__(self, other):
26 return (self.predikat == other.predikat and
27 self.argumenti == other.argumenti and
28 self.negiran == other.negiran)
29

30 def __hash__(self):
31 return hash((self.predikat, tuple(self.argumenti), self.negiran))
32

33 def komplementaran(self, other):
34 """Provjerava jesu li literali komplementarni."""
35 return (self.predikat == other.predikat and
36 self.argumenti == other.argumenti and
37 self.negiran != other.negiran)
38

39 def unifikacija(t1, t2, subst={}):
40 """Jednostavna unifikacija za konstante i varijable."""
41 if t1 == t2:
42 return subst
43 elif t1.startswith('x') or t1.startswith('y') or t1.startswith('z'):
44 # t1 je varijabla
45 if t1 in subst:
46 return unifikacija(subst[t1], t2, subst)

4.1. OD SUDOVA K PREDIKATIMA 69

47 else:
48 subst[t1] = t2
49 return subst
50 elif t2.startswith('x') or t2.startswith('y') or t2.startswith('z'):
51 # t2 je varijabla
52 return unifikacija(t2, t1, subst)
53 else:
54 return None # Unifikacija neuspješna
55

56 def primijeni_substituciju(literal, subst):
57 """Primjenjuje substituciju na literal."""
58 novi_argumenti = []
59 for arg in literal.argumenti:
60 if arg in subst:
61 novi_argumenti.append(subst[arg])
62 else:
63 novi_argumenti.append(arg)
64 return Literal(literal.predikat, novi_argumenti, literal.negiran)
65

66 # Demonstracija
67 print("Rezolucijski dokazivač teorema:")
68 print("================================")
69 print("\nCilj: Dokazati da Sokrat je smrtan")
70 print("\nPremise:")
71 print(" 1. ∀x (Covjek(x) → Smrtan(x))")
72 print(" 2. Covjek(sokrat)")
73

74 # Pretvorba u klauzule
75 k1 = Klauzula([Literal("Covjek", ['x'], True), Literal("Smrtan", ['x'])])
76 k2 = Klauzula([Literal("Covjek", ['sokrat'])])
77 k3 = Klauzula([Literal("Smrtan", ['sokrat'], True)]) # Negacija cilja
78

79 print("\nKlauzule (nakon Skolemizacije i CNF):")
80 print(f" C1: {k1}")
81 print(f" C2: {k2}")
82 print(f" C3: {k3} (negacija cilja)")
83

84 print("\nRezolucijski dokaz:")
85 print("-------------------")
86

87 print("Korak 1: Rezolucija C1 i C2")
88 print(" Unifikacija: x 7→ sokrat")
89 print(" {¬Covjek(sokrat), Smrtan(sokrat)} + {Covjek(sokrat)}")
90 print(" =⇒ {Smrtan(sokrat)}")
91

92 print("\nKorak 2: Rezolucija {Smrtan(sokrat)} i C3")
93 print(" {Smrtan(sokrat)} + {¬Smrtan(sokrat)}")
94 print(" =⇒ □ (prazna klauzula)")
95

96 print("\n✓ DOKAZ PRONAÐEN!")
97 print("Sokrat je doista smrtan.")
98

99 print("\n==")

70
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

100 print("\nSloženiji primjer - tranzitivnost:")
101 print("===================================")
102 print("\nPremise:")
103 print(" 1. ∀x ∀y (Roditelj(x, y) → Predak(x, y))")
104 print(" 2. ∀x ∀y ∀z ((Predak(x, y) ∧ Predak(y, z)) → Predak(x, z))")
105 print(" 3. Roditelj(ivan, marko)")
106 print(" 4. Roditelj(marko, ana)")
107 print("\nCilj: Dokazati Predak(ivan, ana)")
108 print("\nKoraci dokazivanja:")
109 print("1. Iz premise 1 i 3: Predak(ivan, marko)")
110 print("2. Iz premise 1 i 4: Predak(marko, ana)")
111 print("3. Iz premise 2, koraka 1 i 2: Predak(ivan, ana)")
112 print("\n✓ Teorem dokazan!")

4.1.9 Zadaci za vježbu

Za produbljivanje razumijevanja semantike i sintakse logike predikata, predlažemo sljedeće
vježbe:

Implementacija potpune evaluacije

Proširite funkciju "evaluiraj formulu" da podržava složenije termovima s ugniježđenim funkci-
jama.

Provjera validnosti formula

Implementirajte algoritam koji provjerava je li formula validna konstruiranjem konačno mnogo
modela (za formule s konačnim Herbrandovim univerzumom).

Unifikacijski algoritam

Implementirajte potpuni Robinson unifikacijski algoritam koji rukuje složenim termovima i
provjerava occur-check.

CNF transformacija

Napišite funkciju koja pretvara proizvolju formulu logike predikata u konjunktivnu normalnu
formu (CNF).

4.1. OD SUDOVA K PREDIKATIMA 71

Rezolucijski dokazivač

Proširite mini dokazivač da automatski pronalazi dokaze korištenjem rezolucije s unifikacijom.

Model checker

Stvorite interaktivni model checker gdje korisnik može definirati model i provjeriti istinitost
formula.

Analiza složenosti

Istražite složenost problema zadovoljivosti za različite fragmente logike predikata (Horn
klauzule, monadski predikat, itd.).

Visualizacija modela

Implementirajte grafički prikaz modela kao usmjerenog grafa za binarne relacije.

Prevođenje prirodnog jezika

Napišite parser koji prevodi jednostavne rečenice prirodnog jezika u formule logike predikata.

Igra evaluacije

Implementirajte Hintikkinu semantičku igru za evaluaciju formula - dvoje igrača (Svatko i
Netko) naizmjence biraju vrijednosti za kvantificirane varijable.

Svaki zadatak postupno gradi razumijevanje Tarskijeve semantičke teorije istine i odnosa
između sintakse i semantike u logici predikata prvog reda.

4.1.10 Zaključak

Kroz ovu implementaciju istražili smo Tarskijev revolucionarni pristup semantici logike
predikata:

1. Sintaksu logike predikata - termove, formule i kvantifikatore

2. Tarskijevu semantičku teoriju istine - modele, interpretacije i valuacije

3. Rekurzivnu evaluaciju formula prema Tarskijevoj definiciji

4. Validnost i zadovoljivost u logici predikata

72
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

5. Skolemizaciju i vezu s propozicijskim slučajem

Tarski je svojim radom odgovorio na fundamentalno pitanje:

"Što znači da je rečenica istinita?" - Tarski, 1933

Njegov odgovor kroz rekurzivnu definiciju istine omogućio je:

• Precizno razumijevanje semantike formalnih jezika

• Razvoj teorije modela

• Temelj za automatsko dokazivanje teorema

• Most između logike i računarstva

Tarskijev svijet pokazuje kako apstraktni matematički objekti mogu biti reprezentirani i
manipulirani kroz konkretne strukture podataka. Python implementacija omogućava nam da
eksperimentiramo s ovim konceptima i razvijemo intuiciju za duboke logičke istine.

Logika predikata prvog reda ostaje temelj:

• Baza podataka - SQL je u biti logika predikata

• Umjetne inteligencije - predstavljanje znanja

• Verifikacije programa - dokazivanje svojstava

• Semantičkog weba - formalizacija ontologija

Tarskijev svijet nas uči da istina nije samo filozofski koncept, već precizno definirana matema-
tička struktura koju možemo konstruirati, analizirati i računati.

	I SVJETOVI DEDUKTIVNE LOGIKE
	Tarskijev svijet: Semantika logike predikata prvog reda
	Od sudova k predikatima
	Ograničenja logike sudova
	Tarskijeva semantička teorija istine
	Semantička evaluacija formula
	Slobodne i vezane varijable
	Valjanost i zadovoljivost
	Skolemizacija i prenex normalna forma
	Herbrandov univerzum i teorem
	Praktična primjena: Mini dokazivač teorema
	Zadaci za vježbu
	Zaključak

