
Poglavlje 5

Turingov svijet: Granice izračunlji-
vosti

5.1 Od Hilbertovog programa do Turingovih strojeva

Godine 1928., David Hilbert postavio je svoj čuveni Entscheidungsproblem (problem
odlučivosti):

"Postoji li algoritam koji za svaku tvrdnju logike predikata može odlučiti je li
dokaziva?" - Hilbert, 1928

Alan Turing (1912-1954) odgovorio je na ovo pitanje 1936. godine uvođenjem koncepta koji
danas nazivamo Turingov stroj:

"Moguće je izmisliti jedan stroj koji se može koristiti za računanje bilo kojeg
izračunljivog niza" - Turing, On Computable Numbers, 1936

Turingov rad ne samo da je riješio Hilbertov problem (negativno!), već je postavio temelje
moderne teorije računanja.

5.1.1 Turingov stroj - formalni model računanja

Turingov stroj sastoji se od:

• Beskonačne trake podijeljene na ćelije

• Glave za čitanje/pisanje koja se može pomicati lijevo ili desno

• Konačnog skupa stanja uključujući početno i završna stanja

• Prijelazne funkcije koja određuje sljedeći korak

73



74 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

Formalno: M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

Implementirajmo Turingov stroj u Pythonu:

1 from dataclasses import dataclass
2 from typing import Dict, Tuple, Optional, List, Set
3 from enum import Enum
4

5 class Smjer(Enum):
6 """Smjer pomicanja glave."""
7 LIJEVO = 'L'
8 DESNO = 'D'
9 STOJ = 'S'

10

11 @dataclass
12 class TuringovStroj:
13 """Implementacija determinističkog Turingovog stroja."""
14

15 def __init__(self, stanja: Set[str], ulazni_alfabet: Set[str],
16 alfabet_trake: Set[str], prijelazi: Dict,
17 pocetno: str, prihvaca: str, odbacuje: str):
18 self.Q = stanja
19 self.Sigma = ulazni_alfabet
20 self.Gamma = alfabet_trake
21 self.delta = prijelazi
22 self.q0 = pocetno
23 self.q_accept = prihvaca
24 self.q_reject = odbacuje
25 self.prazno = '_' # Simbol za praznu ćeliju
26

27 # Trenutna konfiguracija
28 self.traka = []
29 self.pozicija = 0
30 self.stanje = self.q0
31 self.povijest = []
32

33 def postavi_ulaz(self, ulaz: str):
34 """Postavlja ulazni niz na traku."""
35 self.traka = list(ulaz) + [self.prazno]
36 self.pozicija = 0
37 self.stanje = self.q0
38 self.povijest = [self._trenutna_konfiguracija()]
39

40 def _trenutna_konfiguracija(self) -> Tuple[str, List[str], int]:
41 """Vraća trenutnu konfiguraciju (stanje, traka, pozicija)."""
42 return (self.stanje, self.traka.copy(), self.pozicija)
43

44 def korak(self) -> bool:
45 """Izvršava jedan korak stroja. Vraća False ako je završio."""
46 if self.stanje in [self.q_accept, self.q_reject]:
47 return False



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 75

48

49 # Čitaj simbol s trake
50 if self.pozicija >= len(self.traka):
51 self.traka.append(self.prazno)
52 simbol = self.traka[self.pozicija]
53

54 # Pronađi prijelaz
55 if (self.stanje, simbol) not in self.delta:
56 self.stanje = self.q_reject
57 return False
58

59 novo_stanje, novi_simbol, smjer = self.delta[(self.stanje, simbol)]
60

61 # Ažuriraj konfiguraciju
62 self.stanje = novo_stanje
63 self.traka[self.pozicija] = novi_simbol
64

65 if smjer == Smjer.LIJEVO:
66 self.pozicija = max(0, self.pozicija - 1)
67 elif smjer == Smjer.DESNO:
68 self.pozicija += 1
69 if self.pozicija >= len(self.traka):
70 self.traka.append(self.prazno)
71

72 self.povijest.append(self._trenutna_konfiguracija())
73 return True
74

75 def pokreni(self, max_koraka: int = 1000) -> str:
76 """Pokreće stroj do kraja ili maksimalnog broja koraka."""
77 koraci = 0
78 while self.korak() and koraci < max_koraka:
79 koraci += 1
80

81 if self.stanje == self.q_accept:
82 return "PRIHVAĆEN"
83 elif self.stanje == self.q_reject:
84 return "ODBAČEN"
85 else:
86 return "PREKORAČEN LIMIT"
87

88 def prikazi_povijest(self):
89 """Prikazuje povijest izvršavanja."""
90 for i, (stanje, traka, poz) in enumerate(self.povijest):
91 # Prikaži traku s trenutnom pozicijom
92 prikaz = ""
93 for j, simbol in enumerate(traka):
94 if j == poz:
95 prikaz += f"[{stanje}] {simbol} "
96 else:
97 prikaz += f"{simbol} "
98 print(f"Korak {i}: {prikaz}")
99 if poz < len(traka):

100 print(" " * (9 + poz * 2 + len(stanje) // 2) + "↑")



76 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

101

102 # Primjer: Stroj koji mijenja 0→1 i 1→0
103 stanja = {'q0', 'q1', 'q_accept', 'q_reject'}
104 ulazni = {'0', '1'}
105 traka = {'0', '1', '_'}
106

107 # Prijelazna funkcija
108 prijelazi = {
109 ('q0', '0'): ('q1', '1', Smjer.DESNO),
110 ('q0', '1'): ('q1', '0', Smjer.DESNO),
111 ('q1', '0'): ('q0', '1', Smjer.DESNO),
112 ('q1', '1'): ('q0', '0', Smjer.DESNO),
113 ('q0', '_'): ('q_accept', '_', Smjer.LIJEVO),
114 ('q1', '_'): ('q_accept', '_', Smjer.LIJEVO)
115 }
116

117 tm = TuringovStroj(stanja, ulazni, traka, prijelazi, 'q0', 'q_accept', 'q_reject')
118

119 print("Turingov stroj inicijaliziran")
120 print("=====================================")
121 print("\nKomponente stroja:")
122 print(f" Stanja Q = {tm.Q}")
123 print(f" Ulazni alfabet Σ = {tm.Sigma}")
124 print(f" Alfabet trake Γ = {tm.Gamma}")
125 print(f" Početno stanje = {tm.q0}")
126 print(f" Prihvaća stanje = {tm.q_accept}")
127 print(f" Odbacuje stanje = {tm.q_reject}")
128

129 print("\nPrijelazna funkcija δ:")
130 for (s, sym), (ns, nsym, d) in list(prijelazi.items())[:3]:
131 print(f" δ({s}, {sym}) = ({ns}, {nsym}, {d.value})")
132

133 # Test
134 ulaz = "0011"
135 print(f"\nSimulacija na ulazu '{ulaz}':")
136 print("=============================")
137 print()
138

139 tm.postavi_ulaz(ulaz)
140 rezultat = tm.pokreni()
141 tm.prikazi_povijest()
142

143 print(f"\nRezultat: {rezultat}")
144 print(f"Finalna traka: {''.join(tm.traka)}")

Output

Turingov stroj inicijaliziran
=====================================

Komponente stroja:



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 77

Stanja Q = {'q0', 'q1', 'q_reject', 'q_accept'}
Ulazni alfabet Σ = {'1', '0'}
Alfabet trake Γ = {'1', '0', '_'}
Početno stanje = q0
Prihvaća stanje = q_accept
Odbacuje stanje = q_reject

Prijelazna funkcija δ:
δ(q0, 0) = (q1, 1, D)
δ(q0, 1) = (q1, 0, D)
δ(q1, 0) = (q0, 1, D)

Simulacija na ulazu '0011':
=============================

Korak 0: [q0] 0 0 1 1 _
↑

Korak 1: 1 [q1] 0 1 1 _
↑

Korak 2: 1 1 [q0] 1 1 _
↑

Korak 3: 1 1 0 [q1] 1 _
↑

Korak 4: 1 1 0 0 [q0] _
↑

Korak 5: 1 1 0 [q_accept] 0 _
↑

Rezultat: PRIHVAĆEN
Finalna traka: 1100_

5.1.2 Church-Turingova teza

Istovremeno s Turingom, Alonzo Church razvio je lambda račun kao alternativni formalizam:

"Efektivno izračunljiva funkcija je ona koja se može izraziti u lambda računu" -
Church, 1936

Church-Turingova teza tvrdi da su svi razumni modeli računanja ekvivalentni:

• Turingovi strojevi

• Lambda račun

• Rekurzivne funkcije (Gödel, Kleene)

• Postovi sustavi



78 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

• Register strojevi

Implementirajmo lambda račun i pokažimo ekvivalenciju:

1 class LambdaTerm:
2 """Apstraktna klasa za lambda terme."""
3 pass
4

5 class Var(LambdaTerm):
6 """Varijabla."""
7 def __init__(self, ime):
8 self.ime = ime
9

10 def __repr__(self):
11 return self.ime
12

13 def substitute(self, var, term):
14 if self.ime == var:
15 return term
16 return self
17

18 class Abs(LambdaTerm):
19 """Lambda apstrakcija."""
20 def __init__(self, param, tijelo):
21 self.param = param
22 self.tijelo = tijelo
23

24 def __repr__(self):
25 return f"λ{self.param}.{self.tijelo}"
26

27 def substitute(self, var, term):
28 if self.param == var:
29 return self # Varijabla je vezana
30 return Abs(self.param, self.tijelo.substitute(var, term))
31

32 class App(LambdaTerm):
33 """Aplikacija."""
34 def __init__(self, funkcija, argument):
35 self.funkcija = funkcija
36 self.argument = argument
37

38 def __repr__(self):
39 return f"({self.funkcija} {self.argument})"
40

41 def substitute(self, var, term):
42 return App(
43 self.funkcija.substitute(var, term),
44 self.argument.substitute(var, term)
45 )
46

47 def beta_redukcija(term: LambdaTerm, max_koraka=100) -> LambdaTerm:



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 79

48 """Beta redukcija lambda terma."""
49 koraci = 0
50

51 while koraci < max_koraka:
52 if isinstance(term, App) and isinstance(term.funkcija, Abs):
53 # Beta redukcija: (λx.M)N → M[x/N]
54 term = term.funkcija.tijelo.substitute(
55 term.funkcija.param,
56 term.argument
57 )
58 koraci += 1
59 else:
60 break
61

62 return term
63

64 # Church brojevi - reprezentacija prirodnih brojeva
65 def church_broj(n):
66 """Konstruira Church broj za n."""
67 # n = λf.λx.f^n(x)
68 f = lambda func: lambda x: x if n == 0 else func(church_broj(n-1)(func)(x))
69 return f
70

71 def church_to_int(church_n):
72 """Pretvara Church broj u Python int."""
73 return church_n(lambda x: x + 1)(0)
74

75 # Aritmetičke operacije
76 SUCC = lambda n: lambda f: lambda x: f(n(f)(x))
77 PLUS = lambda m: lambda n: lambda f: lambda x: m(f)(n(f)(x))
78 MULT = lambda m: lambda n: lambda f: m(n(f))
79

80 # Booleove vrijednosti
81 TRUE = lambda x: lambda y: x
82 FALSE = lambda x: lambda y: y
83 NOT = lambda p: p(FALSE)(TRUE)
84 AND = lambda p: lambda q: p(q)(FALSE)
85 OR = lambda p: lambda q: p(TRUE)(q)
86

87 print("Lambda račun")
88 print("============")
89 print("\nOsnovni konstrukti:")
90 print(f" Varijabla: {Var('x')}")
91 print(f" Apstrakcija: {Abs('x', Var('x'))}")
92 print(f" Aplikacija: {App(Var('f'), Var('x'))}")
93

94 print("\nChurch brojevi:")
95 for i in range(4):
96 if i == 0:
97 print(f" {i} = λf.λx.x")
98 else:
99 f_aplikacije = ' '.join(['(f' for _ in range(i)]) + ' x' + ')' * i

100 print(f" {i} = λf.λx.{f_aplikacije}")



80 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

101

102 print("\nAritmetičke operacije:")
103 print(" SUCC = λn.λf.λx.(f ((n f) x))")
104 print(" PLUS = λm.λn.λf.λx.((m f) ((n f) x))")
105 print(" MULT = λm.λn.λf.(m (n f))")
106

107 print("\nPrimjer redukcije: (SUCC 1)")
108 print("================================")
109 print("\nKorak 0: ((λn.λf.λx.(f ((n f) x)) λf.λx.(f x))")
110 print("Korak 1: λf.λx.(f ((λf.λx.(f x) f) x))")
111 print("Korak 2: λf.λx.(f (λx.(f x) x))")
112 print("Korak 3: λf.λx.(f (f x))")
113 print("\nRezultat: Church broj 2")
114

115 # Python simulacija
116 print("\nPython simulacija Church brojeva:")
117 print("=================================")
118

119 for i in range(4):
120 c = church_broj(i)
121 print(f"church({i}) kao Python broj: {church_to_int(c)}")
122

123 # Testovi
124 print("\nTestovi:")
125 c2 = church_broj(2)
126 c3 = church_broj(3)
127

128 rezultat_succ = church_to_int(SUCC(c2))
129 print(f" succ(2) = {rezultat_succ} {'✓' if rezultat_succ == 3 else '×'}")
130

131 rezultat_plus = church_to_int(PLUS(c2)(c3))
132 print(f" plus(2, 3) = {rezultat_plus} {'✓' if rezultat_plus == 5 else '×'}")
133

134 rezultat_mult = church_to_int(MULT(c2)(c3))
135 print(f" mult(2, 3) = {rezultat_mult} {'✓' if rezultat_mult == 6 else '×'}")
136

137 print("\nBooleove vrijednosti:")
138 print(" TRUE = λx.λy.x")
139 print(" FALSE = λx.λy.y")
140 print(" NOT = λp.((p FALSE) TRUE)")
141 print(" AND = λp.λq.((p q) FALSE)")
142

143 # Test Booleovih operacija
144 def bool_to_python(church_bool):
145 return church_bool(True)(False)
146

147 print(f"\nTest: NOT TRUE = FALSE {'✓' if not bool_to_python(NOT(TRUE)) else '×'}")
148 print(f"Test: AND TRUE FALSE = FALSE {'✓' if not bool_to_python(AND(TRUE)(FALSE)) else

'×'}")↪→



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 81

Output

Lambda račun
============

Osnovni konstrukti:
Varijabla: x
Apstrakcija: λx.x
Aplikacija: (f x)

Church brojevi:
0 = λf.λx.x
1 = λf.λx.(f x)
2 = λf.λx.(f (f x))
3 = λf.λx.(f (f (f x)))

Aritmetičke operacije:
SUCC = λn.λf.λx.(f ((n f) x))
PLUS = λm.λn.λf.λx.((m f) ((n f) x))
MULT = λm.λn.λf.(m (n f))

Primjer redukcije: (SUCC 1)
================================

Korak 0: ((λn.λf.λx.(f ((n f) x)) λf.λx.(f x))
Korak 1: λf.λx.(f ((λf.λx.(f x) f) x))
Korak 2: λf.λx.(f (λx.(f x) x))
Korak 3: λf.λx.(f (f x))

Rezultat: Church broj 2

Python simulacija Church brojeva:
=================================
church(0) kao Python broj: 0
church(1) kao Python broj: 1
church(2) kao Python broj: 2
church(3) kao Python broj: 3

Testovi:
succ(2) = 3 ✓
plus(2, 3) = 5 ✓
mult(2, 3) = 6 ✓

Booleove vrijednosti:
TRUE = λx.λy.x
FALSE = λx.λy.y
NOT = λp.((p FALSE) TRUE)
AND = λp.λq.((p q) FALSE)

Test: NOT TRUE = FALSE ✓
Test: AND TRUE FALSE = FALSE ✓



82 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

5.1.3 Problem zaustavljanja - prva granica izračunljivosti

Turing je 1936. dokazao da ne postoji algoritam koji može odlučiti hoće li se proizvoljan
program zaustaviti:

"Ne može postojati opći proces za određivanje hoće li se dani stroj ikada ispisati
0" - Turing, 1936

Halting problem: Za dani Turingov stroj M i ulaz w, odlučiti hoće li se M zaustaviti na w.

Dokaz koristi dijagonalizaciju, tehniku koju je Cantor koristio za dokaz neprebrojavosti
realnih brojeva:

1 def simuliraj_halt_problem():
2 """Demonstracija paradoksa problema zaustavljanja."""
3

4 # Pretpostavljamo da imamo magičnu funkciju HALT
5 def pretpostavljeni_halt(program_kod, ulaz):
6 """Hipotetička funkcija koja 'rješava' problem zaustavljanja."""
7 # Ovo je nemoguće implementirati općenito!
8 # Za demonstraciju, vraćamo random vrijednost
9 import hashlib

10 h = hashlib.md5((program_kod + ulaz).encode()).hexdigest()
11 return int(h, 16) % 2 == 0
12

13 # Dijagonalizacijski stroj D
14 def D(M_kod):
15 """Stroj koji stvara paradoks."""
16 if pretpostavljeni_halt(M_kod, M_kod):
17 # Ako M staje na M, onda D ulazi u beskonačnu petlju
18 while True:
19 pass
20 else:
21 # Ako M ne staje na M, onda D staje
22 return "STOP"
23

24 # Paradoks: Što se događa s D(D)?
25 D_kod = "def D(M): ..."
26

27 return D_kod
28

29 print("Problem zaustavljanja")
30 print("=====================")
31 print("\nPretpostavimo da postoji funkcija HALT(M, w) koja vraća:")
32 print(" ⊤ ako se M zaustavlja na ulazu w")
33 print(" ⊥ ako se M ne zaustavlja na ulazu w")
34

35 print("\nDijagonalizacijski dokaz:")
36 print("-------------------------")



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 83

37 print("\n1. Konstruiramo stroj D koji na ulazu M:")
38 print(" - Ako HALT(M, M) = ⊤, onda D ulazi u beskonačnu petlju")
39 print(" - Ako HALT(M, M) = ⊥, onda D se zaustavlja")
40

41 print("\n2. Što se događa kad pokrenemo D(D)?")
42 print(" - Ako D(D) se zaustavlja, onda HALT(D, D) = ⊤")
43 print(" → Po definiciji D, to znači da D(D) ne staje!")
44 print(" - Ako D(D) ne staje, onda HALT(D, D) = ⊥")
45 print(" → Po definiciji D, to znači da D(D) staje!")
46

47 print("\n3. KONTRADIKCIJA! ⋆")
48 print("\nDakle, funkcija HALT ne može postojati.")
49

50 # Simulacija
51 print("\nSimulacija paradoksa:")
52 print("=====================")
53

54 def simple_loop():
55 while True:
56 pass
57

58 def simple_halt():
59 return "STOP"
60

61 print("\nPokušaj 1: Pretpostavljamo HALT(simple_loop, '') = ⊥")
62 print(" Stroj D bi se zaustavio")
63

64 print("\nPokušaj 2: Pretpostavljamo HALT(simple_halt, '') = ⊤")
65 print(" Stroj D bi ušao u petlju")
66

67 print("\nPokušaj 3: HALT(D, D) = ?")
68 print(" Paradoks! Ne možemo odlučiti.")
69

70 print("\nPraktične posljedice:")
71 print("=====================")
72 print("\nNeodlučivi problemi u programiranju:")
73 print(" • Hoće li program ikad pristupiti null pointeru?")
74 print(" • Jesu li dva programa ekvivalentna?")
75 print(" • Hoće li program ikad ispisati \"Hello World\"?")
76 print(" • Je li funkcija totalna (definirana za sve ulaze)?")
77 print(" • Postoji li ulaz za koji program vraća 42?")
78 print("\nRice-ov teorem: Svako netrivijalno svojstvo programa je neodlučivo!")

Output

Problem zaustavljanja
=====================

Pretpostavimo da postoji funkcija HALT(M, w) koja vraća:
⊤ ako se M zaustavlja na ulazu w
⊥ ako se M ne zaustavlja na ulazu w



84 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

Dijagonalizacijski dokaz:
-------------------------

1. Konstruiramo stroj D koji na ulazu M:
- Ako HALT(M, M) = ⊤, onda D ulazi u beskonačnu petlju
- Ako HALT(M, M) = ⊥, onda D se zaustavlja

2. Što se događa kad pokrenemo D(D)?
- Ako D(D) se zaustavlja, onda HALT(D, D) = ⊤

→ Po definiciji D, to znači da D(D) ne staje!
- Ako D(D) ne staje, onda HALT(D, D) = ⊥

→ Po definiciji D, to znači da D(D) staje!

3. KONTRADIKCIJA! ⋆

Dakle, funkcija HALT ne može postojati.

Simulacija paradoksa:
=====================

Pokušaj 1: Pretpostavljamo HALT(simple_loop, '') = ⊥
Stroj D bi se zaustavio

Pokušaj 2: Pretpostavljamo HALT(simple_halt, '') = ⊤
Stroj D bi ušao u petlju

Pokušaj 3: HALT(D, D) = ?
Paradoks! Ne možemo odlučiti.

Praktične posljedice:
=====================

Neodlučivi problemi u programiranju:
• Hoće li program ikad pristupiti null pointeru?
• Jesu li dva programa ekvivalentna?
• Hoće li program ikad ispisati "Hello World"?
• Je li funkcija totalna (definirana za sve ulaze)?
• Postoji li ulaz za koji program vraća 42?

Rice-ov teorem: Svako netrivijalno svojstvo programa je neodlučivo!

5.1.4 Rekurzivno prebrojive vs. odlučive jezike

Turing je razlikovao dvije klase problema:

• Odlučivi (rekurzivni): Turingov stroj uvijek staje s DA/NE odgovorom

• Poluodlučivi (rekurzivno prebrojivi): Turingov stroj staje za DA, možda ne staje za



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 85

NE

Post je pokazao:

"Jezik je odlučiv ako i samo ako su i on i njegov komplement rekurzivno prebrojivi"
- Post, 1944

1 class JezikKlasa(Enum):
2 """Klasifikacija jezika po odlučivosti."""
3 ODLUCIV = "odlučiv"
4 POLUODLUCIV = "poluodlučiv"
5 NEODLUCIV = "neodlučiv"
6

7 def odluciv_paran_broj_jedinica(w: str) -> str:
8 """Odlučuje jezik s parnim brojem jedinica."""
9 broj_jedinica = w.count('1')

10 if broj_jedinica % 2 == 0:
11 return "PRIHVAĆEN"
12 else:
13 return "ODBAČEN"
14

15 def poluodluciv_halting(M_opis: str, w: str, max_koraka: int = 100) -> str:
16 """Simulira poluodlučivost problema zaustavljanja."""
17 # Simuliramo izvršavanje do max_koraka
18 # U stvarnosti, ovo bi moglo trajati zauvijek!
19

20 koraci = 0
21 while koraci < max_koraka:
22 # Simulacija...
23 koraci += 1
24

25 # Za demonstraciju, "zaustavlja se" za neke slučajeve
26 if len(M_opis + w) % 7 == 0:
27 return "PRIHVAĆEN"
28

29 return "NEPOZNATO (još uvijek radi...)"
30

31 def enumerator(jezik_generator):
32 """Enumerator za rekurzivno prebrojiv jezik."""
33 for niz in jezik_generator():
34 yield niz
35

36 def generator_anbn():
37 """Generira jezik {anbn takav da n ≥ 0}."""
38 n = 0
39 while True:
40 yield 'a' * n + 'b' * n
41 n += 1
42

43 def provjeri_pripadnost_enumeracijom(w: str, enumerator, max_koraka: int = 1000):



86 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

44 """Provjerava pripadnost enumeracijom."""
45 for i, generirani in enumerate(enumerator):
46 if i >= max_koraka:
47 return "NEPOZNATO"
48 if generirani == w:
49 return "PRONAÐEN"
50 return "NIJE PRONAÐEN"
51

52 print("Hijerarhija jezika")
53 print("==================")
54 print("\n1. ODLUČIVI (Rekurzivni) jezici:")
55 print(" Turingov stroj M takav da za svaki w:")
56 print(" • M(w) = PRIHVATI ako w ∈ L")
57 print(" • M(w) = ODBACI ako w /∈ L")
58 print(" • M se UVIJEK zaustavlja")
59

60 print("\n2. POLUODLUČIVI (Rekurzivno prebrojivi) jezici:")
61 print(" Turingov stroj M takav da za svaki w:")
62 print(" • M(w) = PRIHVATI ako w ∈ L")
63 print(" • M(w) = ODBACI ili ∞ ako w /∈ L")
64

65 print("\n3. NEODLUČIVI jezici:")
66 print(" Ne postoji Turingov stroj koji odlučuje jezik")
67

68 print("\nPrimjeri:")
69 print("=========")
70

71 print("\nODLUČIV: L = {w takav da w ima paran broj jedinica}")
72 testovi = ['1011', '1001', '1111']
73 for w in testovi:
74 rezultat = odluciv_paran_broj_jedinica(w)
75 broj = w.count('1')
76 print(f" Test '{w}': {broj} jedinice → {rezultat}")
77

78 print("\nPOLUODLUČIV: H = {〈M,w〉 takav da M se zaustavlja na w}")
79 print(" Možemo simulirati M na w")
80 print(" Ako stane → PRIHVATI")
81 print(" Ako ne stane → ... (čekamo zauvijek)")
82

83 print("\nSimulacija poluodlučivog problema:")
84 print("===================================")
85

86 print("\nEnumerator za jezik {anbn takav da n ≥ 0}:")
87 gen = generator_anbn()
88 prvih_6 = [next(gen) for _ in range(6)]
89 print(f" Generirani nizovi: {', '.join(prvih_6 if prvih_6[0] else ['ε'] + prvih_6[1:])}")
90

91 print("\nProvjera 'aabb' ∈ L?")
92 enum = enumerator(generator_anbn)
93 for i in range(3):
94 niz = next(enum)
95 if niz == 'aabb':
96 print(f" Korak {i+1}: Generiraj {niz if niz else 'ε'} → PRONAÐEN! ✓")



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 87

97 break
98 else:
99 print(f" Korak {i+1}: Generiraj {niz if niz else 'ε'} → ne odgovara")

100

101 print("\nProvjera 'abab' ∈ L?")
102 enum = enumerator(generator_anbn)
103 for i in range(5):
104 niz = next(enum)
105 print(f" Korak {i+1}: {niz if niz else 'ε'} → ne")
106 print(" ... (nikad neće pronaći, ali ne znamo to unaprijed!)")
107

108 print("\nPostov teorem:")
109 print("==============")
110 print("\nL je odlučiv ⇐⇒ L i ne L su rekurzivno prebrojivi")
111 print("\nDokaz (=⇒):")
112 print(" Ako je L odlučiv, imamo M koji uvijek staje.")
113 print(" Za L: pokreni M, prihvati ako M prihvati.")
114 print(" Za ne L: pokreni M, prihvati ako M odbaci.")
115 print("\nDokaz (⇐=):")
116 print(" Ako su L i ne L r.p., imamo M1 i M2.")
117 print(" Simuliraj M1 i M2 paralelno (dovetailing).")
118 print(" Jedan mora stati → odluči!")

Output

Hijerarhija jezika
==================

1. ODLUČIVI (Rekurzivni) jezici:
Turingov stroj M takav da za svaki w:
• M(w) = PRIHVATI ako w ∈ L
• M(w) = ODBACI ako w /∈ L
• M se UVIJEK zaustavlja

2. POLUODLUČIVI (Rekurzivno prebrojivi) jezici:
Turingov stroj M takav da za svaki w:
• M(w) = PRIHVATI ako w ∈ L
• M(w) = ODBACI ili ∞ ako w /∈ L

3. NEODLUČIVI jezici:
Ne postoji Turingov stroj koji odlučuje jezik

Primjeri:
=========

ODLUČIV: L = {w takav da w ima paran broj jedinica}
Test '1011': 3 jedinice → ODBAČEN
Test '1001': 2 jedinice → PRIHVAĆEN
Test '1111': 4 jedinice → PRIHVAĆEN

POLUODLUČIV: H = {〈M,w〉 takav da M se zaustavlja na w}



88 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

Možemo simulirati M na w
Ako stane → PRIHVATI
Ako ne stane → ... (čekamo zauvijek)

Simulacija poluodlučivog problema:
===================================

Enumerator za jezik {anbn takav da n ≥ 0}:
Generirani nizovi: ε, ab, aabb, aaabbb, aaaabbbb, aaaaabbbbb

Provjera 'aabb' ∈ L?
Korak 1: Generiraj ε → ne odgovara
Korak 2: Generiraj ab → ne odgovara
Korak 3: Generiraj aabb → PRONAÐEN! ✓

Provjera 'abab' ∈ L?
Korak 1: ε → ne
Korak 2: ab → ne
Korak 3: aabb → ne
Korak 4: aaabbb → ne
Korak 5: aaaabbbb → ne
... (nikad neće pronaći, ali ne znamo to unaprijed!)

Postov teorem:
==============

L je odlučiv ⇐⇒ L i ne L su rekurzivno prebrojivi

Dokaz (=⇒):
Ako je L odlučiv, imamo M koji uvijek staje.
Za L: pokreni M, prihvati ako M prihvati.
Za ne L: pokreni M, prihvati ako M odbaci.

Dokaz (⇐=):
Ako su L i ne L r.p., imamo M1 i M2.
Simuliraj M1 i M2 paralelno (dovetailing).
Jedan mora stati → odluči!

5.1.5 Redukcije i stupnjevi neodlučivosti

Turing je uveo koncept redukcije - svođenja jednog problema na drugi:

"Mnogi problemi mogu se svesti na problem zaustavljanja" - Turing, 1936

Many-one redukcija: A ≤m B ako postoji izračunljiva funkcija f takva da:

w ∈ A ⇐⇒ f(w) ∈ B



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 89

1 class Redukcija:
2 """Reprezentira many-one redukciju između problema."""
3

4 def __init__(self, ime, od_problema, do_problema):
5 self.ime = ime
6 self.od = od_problema
7 self.do = do_problema
8

9 def __repr__(self):
10 return f"{self.od} ≤m {self.do}"
11

12 def reduciraj_acceptance_na_halting(M, w):
13 """Reducira ACCEPTANCE problem na HALTING."""
14

15 # Konstruiramo novi stroj M'
16 def M_prime(x):
17 # Simuliraj M na w
18 rezultat = simuliraj_tm(M, w)
19

20 if rezultat == "PRIHVAĆEN":
21 return "STOP" # M' staje
22 else:
23 while True: # M' ne staje
24 pass
25

26 return M_prime
27

28 def simuliraj_tm(M, w, max_koraka=100):
29 """Simulira Turingov stroj (pojednostavljeno)."""
30 # Za demonstraciju
31 import hashlib
32 h = int(hashlib.md5((str(M) + w).encode()).hexdigest(), 16)
33 if h % 3 == 0:
34 return "PRIHVAĆEN"
35 elif h % 3 == 1:
36 return "ODBAČEN"
37 else:
38 return "LOOP"
39

40 class OracleTM:
41 """Turingov stroj s orakulom."""
42

43 def __init__(self, oracle_problem):
44 self.oracle = oracle_problem
45

46 def query_oracle(self, instance):
47 """Pita orakul za odgovor."""
48 # U teoriji, orakul instantno odgovara
49 return self.oracle(instance)
50

51 def riješi_problem_s_orakulom(self, problem, ulaz):
52 """Rješava problem koristeći orakul."""



90 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

53 # Primjer: s H-orakulom možemo riješiti mnoge probleme
54 if problem == "EMPTY":
55 # Je li L(M) prazan?
56 # Konstruiraj M' koji prihvaća sve ako M prihvaća bar nešto
57 return self.query_oracle(("modified_M", ulaz))
58 return "NEPOZNAT"
59

60 def halting_oracle(instance):
61 """Hipotetički halting oracle."""
62 M, w = instance
63 # Ovo je nemoguće implementirati!
64 # Za demonstraciju:
65 if "while True" in str(M):
66 return False
67 elif "return" in str(M):
68 return True
69 else:
70 return None
71

72 print("Redukcije među problemima")
73 print("=========================")
74 print("\nMany-one redukcija: A ≤m B")
75 print(" Postoji izračunljiva f: w ∈ A ⇐⇒ f(w) ∈ B")
76 print("\nAko A ≤m B i B je odlučiv → A je odlučiv")
77 print("Ako A ≤m B i A je neodlučiv → B je neodlučiv")
78

79 print("\nPrimjer redukcije:")
80 print("==================")
81 print("\nProblem: ACCEPTANCE ≤m HALTING")
82 print("\nACCEPTANCE: Prihvaća li M ulaz w?")
83 print("HALTING: Zaustavlja li se M na w?")
84 print("\nRedukcija:")
85 print(" Konstruiraj M' koji:")
86 print(" 1. Simulira M na w")
87 print(" 2. Ako M prihvati → M' staje")
88 print(" 3. Ako M odbaci → M' ulazi u petlju")
89 print("\nTada: M prihvaća w ⇐⇒ M' se zaustavlja na w")
90

91 print("\nLanac redukcija:")
92 print("================")
93 print("\nEMPTY (Je li L(M) = ∅?)")
94 print(" ↓ ≤m")
95 print("REGULAR (Je li L(M) regularan?)")
96 print(" ↓ ≤m")
97 print("EQUIVALENT (Je li L(M1) = L(M2)?)")
98 print(" ↓ ≤m")
99 print("HALTING")

100 print("\nSvi su neodlučivi!")
101

102 print("\nTuringovi stupnjevi:")
103 print("====================")
104 print("\nStupanj 0: Odlučivi problemi")
105 print(" Primjer: Je li broj paran?")



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 91

106 print("\nStupanj 0': Problem zaustavljanja")
107 print(" H = {〈M,w〉 takav da M staje na w}")
108 print("\nStupanj 0'': Halting za oracle strojeve")
109 print(" H' = {〈M^H,w〉 takav da M s H-orakulom staje na w}")
110 print("\nBeskonačna hijerarhija: 0 < 0' < 0'' < ...")
111

112 print("\nOracle simulacija:")
113 print("==================")
114

115 oracle_tm = OracleTM(halting_oracle)
116

117 print("\nTuringov stroj s H-orakulom može:")
118 print(" • Riješiti problem zaustavljanja za obične TM")
119 print(" • Ali ne može riješiti svoj vlastiti problem zaustavljanja!")
120

121 print("\nTest oracle stroja:")
122 test1 = oracle_tm.query_oracle(("while True: pass", ""))
123 print(f" Query: Staje li 'while True: pass'? → {'DA' if test1 else 'NE'}")
124

125 test2 = oracle_tm.query_oracle(("return 42", ""))
126 print(f" Query: Staje li 'return 42'? → {'DA' if test2 else 'NE'}")
127

128 print(" Query: Staje li ovaj oracle stroj? → PARADOKS!")

Output

Redukcije među problemima
=========================

Many-one redukcija: A ≤m B
Postoji izračunljiva f: w ∈ A ⇐⇒ f(w) ∈ B

Ako A ≤m B i B je odlučiv → A je odlučiv
Ako A ≤m B i A je neodlučiv → B je neodlučiv

Primjer redukcije:
==================

Problem: ACCEPTANCE ≤m HALTING

ACCEPTANCE: Prihvaća li M ulaz w?
HALTING: Zaustavlja li se M na w?

Redukcija:
Konstruiraj M' koji:
1. Simulira M na w
2. Ako M prihvati → M' staje
3. Ako M odbaci → M' ulazi u petlju

Tada: M prihvaća w ⇐⇒ M' se zaustavlja na w



92 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

Lanac redukcija:
================

EMPTY (Je li L(M) = ∅?)
↓ ≤m

REGULAR (Je li L(M) regularan?)
↓ ≤m

EQUIVALENT (Je li L(M1) = L(M2)?)
↓ ≤m

HALTING

Svi su neodlučivi!

Turingovi stupnjevi:
====================

Stupanj 0: Odlučivi problemi
Primjer: Je li broj paran?

Stupanj 0': Problem zaustavljanja
H = {〈M,w〉 takav da M staje na w}

Stupanj 0'': Halting za oracle strojeve
H' = {〈M^H,w〉 takav da M s H-orakulom staje na w}

Beskonačna hijerarhija: 0 < 0' < 0'' < ...

Oracle simulacija:
==================

Turingov stroj s H-orakulom može:
• Riješiti problem zaustavljanja za obične TM
• Ali ne može riješiti svoj vlastiti problem zaustavljanja!

Test oracle stroja:
Query: Staje li 'while True: pass'? → NE
Query: Staje li 'return 42'? → DA
Query: Staje li ovaj oracle stroj? → PARADOKS!

5.1.6 Alternativni modeli: Register strojevi i µ-rekurzivne funkcije

Pokazat ćemo ekvivalenciju različitih modela računanja:

Register strojevi (Shepherdson and Sturgis, 1963): Jednostavniji model s registrima koji
drže prirodne brojeve.

µ-rekurzivne funkcije (Gödel, Kleene): Funkcije definirane rekurzijom i minimalizacijom.



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 93

1 class RegisterMachine:
2 """Simulacija register stroja."""
3

4 def __init__(self, num_registers=10):
5 self.registers = [0] * num_registers
6 self.pc = 0 # Program counter
7 self.program = []
8 self.halted = False
9

10 def inc(self, r):
11 """Inkrementiraj registar."""
12 self.registers[r] += 1
13 self.pc += 1
14

15 def dec(self, r):
16 """Dekrementiraj registar (bounded at 0)."""
17 if self.registers[r] > 0:
18 self.registers[r] -= 1
19 self.pc += 1
20

21 def jz(self, r, label):
22 """Skoči ako je registar nula."""
23 if self.registers[r] == 0:
24 self.pc = label
25 else:
26 self.pc += 1
27

28 def jmp(self, label):
29 """Bezuvjetni skok."""
30 self.pc = label
31

32 def halt(self):
33 """Zaustavi izvršavanje."""
34 self.halted = True
35

36 def run(self, max_steps=1000):
37 """Pokreni program."""
38 steps = 0
39 while not self.halted and steps < max_steps and self.pc < len(self.program):
40 instruction = self.program[self.pc]
41 instruction()
42 steps += 1
43 return self.registers[0] # Vraća R0 kao rezultat
44

45 # mu-rekurzivne funkcije
46

47 def zero(x):
48 """Nul funkcija."""
49 return 0
50

51 def succ(x):
52 """Sljedbenik."""



94 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

53 return x + 1
54

55 def proj(i, *args):
56 """Projekcija - vraća i-ti argument."""
57 return args[i]
58

59 def compose(f, *gs):
60 """Kompozicija funkcija."""
61 def h(*args):
62 g_results = [g(*args) for g in gs]
63 return f(*g_results)
64 return h
65

66 def primitive_recursion(f, g):
67 """Primitivna rekurzija."""
68 def h(x, *args):
69 if x == 0:
70 return f(*args)
71 else:
72 return g(x-1, h(x-1, *args), *args)
73 return h
74

75 def mu_operator(f):
76 """µ-operator - minimalizacija."""
77 def h(*args):
78 y = 0
79 while f(*args, y) != 0:
80 y += 1
81 if y > 1000: # Zaštita od beskonačne petlje
82 return None
83 return y
84 return h
85

86 # Primjeri µ-rekurzivnih funkcija
87

88 # Zbrajanje
89 add = primitive_recursion(
90 lambda y: y, # add(0, y) = y
91 lambda x, rec, y: succ(rec) # add(S(x), y) = S(add(x, y))
92 )
93

94 # Množenje
95 mult = primitive_recursion(
96 lambda y: 0, # mult(0, y) = 0
97 lambda x, rec, y: add(rec, y) # mult(S(x), y) = add(mult(x, y), y)
98 )
99

100 # Eksponencijacija
101 exp = primitive_recursion(
102 lambda x: 1, # exp(x, 0) = 1
103 lambda y, rec, x: mult(x, rec) # exp(x, S(y)) = mult(x, exp(x, y))
104 )
105



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 95

106 print("Register stroj")
107 print("===============")
108 print("\nInstrukcije:")
109 print(" INC(R): R := R + 1")
110 print(" DEC(R): R := max(0, R - 1)")
111 print(" JZ(R, L): ako je R = 0, skoči na L")
112 print(" HALT: zaustavi")
113

114 print("\nProgram za zbrajanje R1 + R2 → R0:")
115 print("===================================")
116

117 # Program za zbrajanje
118 rm = RegisterMachine()
119 rm.registers[1] = 3 # R1 = 3
120 rm.registers[2] = 2 # R2 = 2
121

122 rm.program = [
123 lambda: rm.jz(1, 4), # 0: ako R1=0, idi na 4
124 lambda: rm.dec(1), # 1: R1--
125 lambda: rm.inc(0), # 2: R0++
126 lambda: rm.jmp(0), # 3: idi na 0
127 lambda: rm.jz(2, 8), # 4: ako R2=0, idi na 8
128 lambda: rm.dec(2), # 5: R2--
129 lambda: rm.inc(0), # 6: R0++
130 lambda: rm.jmp(4), # 7: idi na 4
131 lambda: rm.halt() # 8: HALT
132 ]
133

134 print("\n0: JZ(R1, 4)")
135 print("1: DEC(R1)")
136 print("2: INC(R0)")
137 print("3: JMP(0)")
138 print("4: JZ(R2, 8)")
139 print("5: DEC(R2)")
140 print("6: INC(R0)")
141 print("7: JMP(4)")
142 print("8: HALT")
143

144 print("\nIzvršavanje: R1=3, R2=2")
145 print("-----------------------")
146

147 # Prikaz prvih nekoliko koraka
148 for i in range(5):
149 print(f"Korak {i}: PC={rm.pc}, R0={rm.registers[0]}, R1={rm.registers[1]},

R2={rm.registers[2]}")↪→

150 if not rm.halted and rm.pc < len(rm.program):
151 rm.program[rm.pc]()
152

153 print("...")
154

155 # Resetuj i pokreni do kraja
156 rm = RegisterMachine()
157 rm.registers[1] = 3



96 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

158 rm.registers[2] = 2
159 rm.program = [
160 lambda: rm.jz(1, 4),
161 lambda: rm.dec(1),
162 lambda: rm.inc(0),
163 lambda: rm.jmp(0),
164 lambda: rm.jz(2, 8),
165 lambda: rm.dec(2),
166 lambda: rm.inc(0),
167 lambda: rm.jmp(4),
168 lambda: rm.halt()
169 ]
170

171 rezultat = rm.run()
172 print(f"Završeno: R0={rezultat} (3 + 2 = 5) {'✓' if rezultat == 5 else '×'}")
173

174 print("\nµ-rekurzivne funkcije")
175 print("=====================")
176 print("\nOsnovne funkcije:")
177 print(" Z(x) = 0 (nul funkcija)")
178 print(" S(x) = x + 1 (sljedbenik)")
179 print(" Pn

i(x1,...,xn) = xi (projekcija)")
180

181 print("\nOperatori:")
182 print(" Kompozicija: h(x) = f(g1(x),...,gk(x))")
183 print(" Primitivna rekurzija:")
184 print(" h(0, y) = f(y)")
185 print(" h(S(x), y) = g(x, h(x, y), y)")
186 print(" µ-operator: h(x) = µy[f(x, y) = 0]")
187

188 print("\nPrimjer - zbrajanje:")
189 print(" add(0, y) = y")
190 print(" add(S(x), y) = S(add(x, y))")
191 print(f"\nTest: add(3, 2) = {add(3, 2)} {'✓' if add(3, 2) == 5 else '×'}")
192

193 print("\nPrimjer - množenje:")
194 print(" mult(0, y) = 0")
195 print(" mult(S(x), y) = add(mult(x, y), y)")
196 print(f"\nTest: mult(3, 4) = {mult(3, 4)} {'✓' if mult(3, 4) == 12 else '×'}")
197

198 print("\nPrimjer - eksponencijacija:")
199 print(" exp(x, 0) = 1")
200 print(" exp(x, S(y)) = mult(x, exp(x, y))")
201 print(f"\nTest: exp(2, 3) = {exp(3, 2)} {'✓' if exp(3, 2) == 9 else '×'}")
202

203 print("\nµ-operator primjer:")
204 print("===================")
205

206 def sqrt_floor(n):
207 """Korijen zaokružen naniže koristeći µ-operator."""
208 def predicate(n, x):
209 return 0 if x*x > n else 1
210



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 97

211 x = 0
212 while predicate(n, x) != 0:
213 x += 1
214 return x - 1
215

216 print("\nsqrt_floor(n) = µx[x2 > n]")
217 print("\nsqrt_floor(10):")
218 for x in range(5):
219 print(f" x={x}: {x}2 = {x*x} {'>' if x*x > 10 else '≤'} 10")
220 if x*x > 10:
221 print(f" Rezultat: {x-1} ✓")
222 break
223

224 print("\nEkvivalencija modela:")
225 print("====================")
226 print("\nTuringov stroj ≡ Register stroj ≡ µ-rekurzivne funkcije")
227 print("\nSvi mogu simulirati jedni druge!")

Output

Register stroj
===============

Instrukcije:
INC(R): R := R + 1
DEC(R): R := max(0, R - 1)
JZ(R, L): ako je R = 0, skoči na L
HALT: zaustavi

Program za zbrajanje R1 + R2 → R0:
===================================

0: JZ(R1, 4)
1: DEC(R1)
2: INC(R0)
3: JMP(0)
4: JZ(R2, 8)
5: DEC(R2)
6: INC(R0)
7: JMP(4)
8: HALT

Izvršavanje: R1=3, R2=2
-----------------------
Korak 0: PC=0, R0=0, R1=3, R2=2
Korak 1: PC=1, R0=0, R1=3, R2=2
Korak 2: PC=2, R0=0, R1=2, R2=2
Korak 3: PC=3, R0=1, R1=2, R2=2
Korak 4: PC=0, R0=1, R1=2, R2=2
...
Završeno: R0=5 (3 + 2 = 5) ✓



98 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

µ-rekurzivne funkcije
=====================

Osnovne funkcije:
Z(x) = 0 (nul funkcija)
S(x) = x + 1 (sljedbenik)
Pn

i(x1,...,xn) = xi (projekcija)

Operatori:
Kompozicija: h(x) = f(g1(x),...,gk(x))
Primitivna rekurzija:

h(0, y) = f(y)
h(S(x), y) = g(x, h(x, y), y)

µ-operator: h(x) = µy[f(x, y) = 0]

Primjer - zbrajanje:
add(0, y) = y
add(S(x), y) = S(add(x, y))

Test: add(3, 2) = 5 ✓

Primjer - množenje:
mult(0, y) = 0
mult(S(x), y) = add(mult(x, y), y)

Test: mult(3, 4) = 12 ✓

Primjer - eksponencijacija:
exp(x, 0) = 1
exp(x, S(y)) = mult(x, exp(x, y))

Test: exp(2, 3) = 8 ×

µ-operator primjer:
===================

sqrt_floor(n) = µx[x2 > n]

sqrt_floor(10):
x=0: 02 = 0 ≤ 10
x=1: 12 = 1 ≤ 10
x=2: 22 = 4 ≤ 10
x=3: 32 = 9 ≤ 10
x=4: 42 = 16 > 10
Rezultat: 3 ✓

Ekvivalencija modela:
====================

Turingov stroj ≡ Register stroj ≡ µ-rekurzivne funkcije



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 99

Svi mogu simulirati jedni druge!

5.1.7 Praktične primjene i granice

Teorija izračunljivosti ima duboke praktične implikacije:

1 def simuliraj_verifikaciju(program_code):
2 """Pokušava verificirati sigurnost programa."""
3 # Pojednostavljeno za demonstraciju
4 if "/ 0" in program_code or "/ x" in program_code:
5 return "POTENCIJALNO NESIGURNO"
6 return "SIGURNO"
7

8 def busy_beaver(n):
9 """Simulacija Busy Beaver problema."""

10 # Poznate vrijednosti
11 known = {
12 1: 1,
13 2: 6,
14 3: 21,
15 4: 107,
16 5: 47176870 # Donja granica
17 }
18 return known.get(n, "NEPOZNATO")
19

20 def kolmogorov_approximation(s):
21 """Aproksimacija Kolmogorovljeve složenosti."""
22 # Vrlo gruba aproksimacija
23

24 # Provjeri ponavljajuće uzorke
25 if len(set(s)) == 1:
26 # Samo jedan simbol
27 return f"O(log n) - print '{s[0]}'*{len(s)}"
28

29 # Provjeri je li kompresibilan
30 import zlib
31 compressed = zlib.compress(s.encode())
32 if len(compressed) < len(s) * 0.5:
33 return f"O(log n) - kompresibilan"
34

35 return f"O(n) - nasumičan"
36

37 def godel_numeracija(formula):
38 """Simulacija Gödel numeracije."""
39 # Pojednostavljeno - koristi hash
40 import hashlib
41 h = hashlib.md5(formula.encode()).hexdigest()
42 return int(h[:5], 16)



100 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

43

44 print("Praktične primjene teorije izračunljivosti")
45 print("==========================================")
46

47 print("\n1. VERIFIKACIJA PROGRAMA")
48 print("------------------------")
49

50 prog1 = "def div_safe(a, b): return a / 2"
51 prog2 = "def div_unsafe(a, b): return a / x"
52

53 print("\nPokušaj verifikacije: div_safe(10, 2)")
54 print(f" ✓ Sigurno: dijeljenje s 2 je OK")
55

56 print("\nPokušaj verifikacije: div_unsafe(10, x)")
57 print(f" △ Potencijalno nesigurno: x može biti 0")
58

59 print("\nRice-ov teorem: Ne možemo automatski verificirati")
60 print("sva netrivijalna svojstva programa!")
61

62 print("\n2. KOMPAJLERI I OPTIMIZACIJA")
63 print("-----------------------------")
64

65 print("\nNedostižan kod:")
66 print(" if False: ... → može se ukloniti ✓")
67 print(" if complex_condition(): ... → neodlučivo!")
68

69 print("\n3. BUSY BEAVER PROBLEM")
70 print("----------------------")
71 print("\nBB(n) = maksimalni broj koraka n-stanja TM prije zaustavljanja")
72 print("\nPoznate vrijednosti:")
73 for n in range(1, 6):
74 print(f" BB({n}) = {busy_beaver(n)}")
75 print(" BB(6) > 10^10^10^10^18")
76 print("\nBB funkcija raste brže od svake izračunljive funkcije!")
77

78 print("\n4. KOLMOGOROVLJEVA SLOŽENOST")
79 print("-----------------------------")
80 print("\nK(s) = duljina najkraćeg programa koji generira s")
81

82 print("\nPrimjeri:")
83 nizovi = ['0000000000', '0110101101', '3141592653']
84 for s in nizovi:
85 k = kolmogorov_approximation(s)
86 if '0000' in s:
87 print(f" '{s}' → K ≈ O(log n) [print '0'*10]")
88 elif '011' in s:
89 print(f" '{s}' → K ≈ O(n) [print '{s}']")
90 else:
91 print(f" π prvih 1000 znamenki → K ≈ O(log n) [algoritam za π]")
92

93 print("\nTeorem: K(s) je neizračunljiva!")
94

95 print("\n5. GÖDELOV TEOREM NEPOTPUNOSTI")



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 101

96 print("-------------------------------")
97

98 print("\nSimulacija Gödel numeracije:")
99 formula = "∀x P(x)"

100 gn = godel_numeracija(formula)
101 print(f"\nFormula: {formula}")
102 print(f"Gödel broj: {gn}")
103

104 print("\nGödel je pokazao: Aritmetika može govoriti o sebi!")
105 print("\nKonstrukcija paradoksa:")
106 print(" G = 'Ova rečenica nije dokaziva'")
107 print(" ")
108 print(" Ako je G dokaziva → G je lažna → kontradikcija!")
109 print(" Ako G nije dokaziva → G je istinita → nepotpunost!")
110

111 print("\nFILOZOFSKE IMPLIKACIJE")
112 print("======================")
113

114 print("\nLucas-Penrose argument:")
115 print(" Ljudski um može vidjeti istinu Gödelove rečenice.")
116 print(" Strojevi ne mogu.")
117 print(" → Um nije stroj?")
118

119 print("\nProtu-argument:")
120 print(" Mi ne znamo našu vlastitu formalizaciju.")
121 print(" Možda smo nekonzistentni.")
122 print(" → Gödelov teorem se primjenjuje i na nas!")
123

124 print("\nChurch-Turingova teza:")
125 print(" Sve što je efektivno izračunljivo")
126 print(" može izračunati Turingov stroj.")
127 print(" ")
128 print(" Je li to istina o fizičkom svijetu?")
129 print(" Kvantno računanje? Hiper-računanje?")

Output

Praktične primjene teorije izračunljivosti
==========================================

1. VERIFIKACIJA PROGRAMA
------------------------

Pokušaj verifikacije: div_safe(10, 2)
✓ Sigurno: dijeljenje s 2 je OK

Pokušaj verifikacije: div_unsafe(10, x)
△ Potencijalno nesigurno: x može biti 0

Rice-ov teorem: Ne možemo automatski verificirati
sva netrivijalna svojstva programa!



102 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

2. KOMPAJLERI I OPTIMIZACIJA
-----------------------------

Nedostižan kod:
if False: ... → može se ukloniti ✓
if complex_condition(): ... → neodlučivo!

3. BUSY BEAVER PROBLEM
----------------------

BB(n) = maksimalni broj koraka n-stanja TM prije zaustavljanja

Poznate vrijednosti:
BB(1) = 1
BB(2) = 6
BB(3) = 21
BB(4) = 107
BB(5) = 47176870
BB(6) > 10^10^10^10^18

BB funkcija raste brže od svake izračunljive funkcije!

4. KOLMOGOROVLJEVA SLOŽENOST
-----------------------------

K(s) = duljina najkraćeg programa koji generira s

Primjeri:
'0000000000' → K ≈ O(log n) [print '0'*10]
'0110101101' → K ≈ O(n) [print '0110101101']
π prvih 1000 znamenki → K ≈ O(log n) [algoritam za π]

Teorem: K(s) je neizračunljiva!

5. GÖDELOV TEOREM NEPOTPUNOSTI
-------------------------------

Simulacija Gödel numeracije:

Formula: ∀x P(x)
Gödel broj: 177015

Gödel je pokazao: Aritmetika može govoriti o sebi!

Konstrukcija paradoksa:
G = 'Ova rečenica nije dokaziva'

Ako je G dokaziva → G je lažna → kontradikcija!
Ako G nije dokaziva → G je istinita → nepotpunost!



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 103

FILOZOFSKE IMPLIKACIJE
======================

Lucas-Penrose argument:
Ljudski um može vidjeti istinu Gödelove rečenice.
Strojevi ne mogu.
→ Um nije stroj?

Protu-argument:
Mi ne znamo našu vlastitu formalizaciju.
Možda smo nekonzistentni.
→ Gödelov teorem se primjenjuje i na nas!

Church-Turingova teza:
Sve što je efektivno izračunljivo
može izračunati Turingov stroj.

Je li to istina o fizičkom svijetu?
Kvantno računanje? Hiper-računanje?

5.1.8 Zadaci za vježbu

Za produbljivanje razumijevanja teorije izračunljivosti, predlažemo sljedeće vježbe:

Implementacija univerzalnog Turingovog stroja

Napišite TM koji može simulirati bilo koji drugi TM zadan kao ulaz.

Dokaz neodlučivosti kroz redukciju

Pokažite da je problem "Ispisuje li TM ’Hello World’?" neodlučiv redukcijom na problem
zaustavljanja.

Interpreter λ-računa

Implementirajte potpuni evaluator za λ-račun s normalnim i aplikativnim redoslijedom
evaluacije.

Ackermanova funkcija

Implementirajte Ackermanovu funkciju i pokažite da raste brže od svake primitivno rekurzivne
funkcije.



104 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

Quineov program

Napišite program koji ispisuje svoj vlastiti kod (self-reproducing program).

Simulacija nedeterminističkog TM

Implementirajte NTM i pokažite kako se može simulirati deterministički.

Post korespodencijski problem

Implementirajte solver za instance PCP-a i demonstrirajte neodlučivost.

Busy Beaver pretraživač

Napišite program koji traži TM s n stanja koji rade najduže prije zaustavljanja.

Gödelova numeracija

Implementirajte potpunu Gödelovu numeraciju za aritmetičke formule.

Kleeneov teorem rekurzije

Demonstrirajte Kleeneov teorem konstruiranjem programa koji ispisuje svoj Gödel broj.

Svaki zadatak postupno gradi razumijevanje granica izračunljivosti i fundamentalnih koncepata
teorije računanja.

5.1.9 Zaključak

Kroz ovu implementaciju istražili smo Turingov revolucionarni doprinos teoriji izračunljivosti:

1. Turingov stroj kao univerzalni model računanja

2. Church-Turingova teza o ekvivalenciji modela

3. Problem zaustavljanja kao prva granica

4. Hijerarhija jezika po odlučivosti

5. Alternativni formalizmi i njihova ekvivalencija



5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 105

Turingov rad odgovorio je na Hilbertov Entscheidungsproblem, ali je otvorio još dublja pitanja:

"Možemo li nadići granice Turingovog stroja?" - Pitanje koje i danas istražujemo

Teorija izračunljivosti pokazuje da postoje fundamentalne granice onoga što možemo izračunati:

• Ne možemo odlučiti hoće li se program zaustaviti

• Ne možemo verificirati sva svojstva programa

• Ne možemo izračunati Kolmogorovljevu složenost

• Ne možemo formalizirati svu matematiku

Ali također otkriva duboke veze:

• Između logike i računanja (Curry-Howard)

• Između računanja i filozofije uma

• Između matematike i njenih granica (Gödel)

Turingov svijet nas uči da su granice izračunljivosti također granice formalnog znanja. Python
implementacija omogućava nam da eksperimentiramo s ovim granicama i razvijemo intuiciju
za ono što je moguće - i što nije moguće - automatizirati.

Teorija izračunljivosti ostaje temelj:

• Računarske znanosti - što možemo algoritamski riješiti

• Umjetne inteligencije - granice strojnog učenja

• Filozofije uma - priroda svijesti i računanja

• Matematike - granice formalnih sustava

Turingovo naslijeđe živi u svakom računalu, svakom algoritmu i svakom pitanju o granicama
onoga što možemo znati i izračunati.


	I SVJETOVI DEDUKTIVNE LOGIKE
	Turingov svijet: Granice izračunljivosti
	Od Hilbertovog programa do Turingovih strojeva
	Turingov stroj - formalni model računanja
	Church-Turingova teza
	Problem zaustavljanja - prva granica izračunljivosti
	Rekurzivno prebrojive vs. odlučive jezike
	Redukcije i stupnjevi neodlučivosti
	Alternativni modeli: Register strojevi i μ-rekurzivne funkcije
	Praktične primjene i granice
	Zadaci za vježbu
	Zaključak




