Poglavlje 5

Turingov svijet: Granice izracunlji-
vosti

5.1 Od Hilbertovog programa do Turingovih strojeva

Godine 1928., David Hilbert postavio je svoj ¢uveni Entscheidungsproblem (problem
odlucivosti):

"Postoji li algoritam koji za svaku tvrdnju logike predikata moze odluciti je li
dokaziva?" - Hilbert, 1928

Alan Turing (1912-1954) odgovorio je na ovo pitanje 1936. godine uvodenjem koncepta koji
danas nazivamo Turingov stroj:

"Moguée je izmisliti jedan stroj koji se moze Kkoristiti za rac¢unanje bilo kojeg
izracunljivog niza" - Turing, On Computable Numbers, 1936

Turingov rad ne samo da je rijesio Hilbertov problem (negativno!), veé je postavio temelje
moderne teorije ra¢unanja.

Turingov stroj sastoji se od:

o Beskonacne trake podijeljene na celije
» Glave za c¢itanje/pisanje koja se moze pomicati lijevo ili desno
¢ Konac¢nog skupa stanja ukljucujuéi pocetno i zavrsna stanja

e Prijelazne funkcije koja odreduje sljedeéi korak
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Formalno: M = (Qa E, F, 57 40, Qaccept qreject)

Implementirajmo Turingov stroj u Pythonu:

from dataclasses import dataclass
from typing import Dict, Tuple, Optional, List, Set

from enum import Enum

class Smjer (Enum) :

"""Smjer pomicanja glave."""

LIJEVO = 'L’
DESNO = 'D'
ST0J = 'S!
Q@dataclass
class TuringovStroj:

"""Implementacija deterministickog Turingovog stroja."""

def __init__(self, stanja: Set[str], ulazni_alfabet: Set[str],

alfabet_trake: Set[str], prijelazi: Dict,
pocetno: str, prihvaca: str, odbacuje: str):

self.Q = stanja

self.Sigma = ulazni_alfabet

self.Gamma = alfabet_trake

self.delta = prijelazi

self.q0 = pocetno

self.q_accept = prihvaca

self.q_reject = odbacuje

self.prazno = '_' # Simbol za praznu celiju

# Trenutna konfiguracija
self .traka = []
self.pozicija = 0
self.stanje = self.q0
self.povijest = []

def postavi_ulaz(self, ulaz: str):
"""Postavlja ulazni niz na traku."""
self .traka = list(ulaz) + [self.prazno]
self.pozicija = 0
self.stanje = self.q0

self .povijest = [self._trenutna_konfiguracija()]

def _trenutna_konfiguracija(self) -> Tuplel[str, List[str], int]:

""nYraéa trenutnu konfiguraciju (stanje, traka, pozicija)."""

return (self.stanje, self.traka.copy(), self.pozicija)

def korak(self) -> bool:

"""ITzyrsava jedan korak stroja. Vraca False ako je zavrsio."""

if self.stanje in [self.q_accept, self.q_reject]:

return False
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def

def

# Citaj simbol s trake

if self.pozicija >= len(self.traka):
self.traka.append(self.prazno)

simbol = self.traka[self.pozicijal

# Pronadi prijelaz
if (self.stanje, simbol) not in self.delta:
self.stanje = self.q_reject

return False
novo_stanje, novi_simbol, smjer = self.deltal[(self.stanje, simbol)]

# AZuriraj konfiguraciju
self.stanje = novo_stanje

self.traka[self.pozicijal = novi_simbol

if smjer == Smjer.LIJEVO:
self .pozicija = max(0, self.pozicija - 1)
elif smjer == Smjer.DESNO:
self.pozicija += 1
if self.pozicija >= len(self.traka):
self.traka.append(self.prazno)

self .povijest.append(self._trenutna_konfiguracija())

return True

pokreni(self, max_koraka: int = 1000) -> str:

"""Pokreée stroj do kraja tli maksimalnog broja koraka."""
koraci = 0

while self.korak() and koraci < max_koraka:

koraci += 1

if self.stanje == self.q_accept:
return "PRIHVACEN"

elif self.stanje == self.q _reject:
return "ODBACEN"

else:
return "PREKORACEN LIMIT"

prikazi_povijest(self):
"""Prikazuje povijest tzvrsavanja."""
for i, (stanje, traka, poz) in enumerate(self.povijest):
# PrikaZt traku s trenutnom pozicijom
prikaz = ""
for j, simbol in enumerate(traka):
if j == poz:
prikaz += f"[{stanje}] {simboll} "
else:
prikaz += f"{simbol} "
print (f"Korak {i}: {prikazl}")
if poz < len(traka):
print(" " * (9 + poz * 2 + len(stanje) // 2) + "1")
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# Primjer: Stroj kojt mijenja 0—1 % 1—0
stanja = {'q0', 'ql', 'q_accept', 'q_reject'}
ulazni = {'0', '1'}

traka = {'0', '1', '_'}

# Prijelazna funkcija

prijelazi = {

('q0', '0'): ('ql', '1', Smjer.DESNO),

('q0', "1'): ('ql', '0O', Smjer.DESNO),

('ql", '0'): ('q0', '1', Smjer.DESNO),

('q1t", "1'): ('q0', '0', Smjer.DESNO),

('q0', '_'"): ('q_accept', '_', Smjer.LIJEVO),

('ql', '_"): ('g_accept', '_', Smjer.LIJEVO)
}
tm = TuringovStroj(stanja, ulazni, traka, prijelazi, 'q0', 'g_accept', 'q_reject')
print ("Turingov stroj inicijaliziran")

print (" )
print ("\nKomponente stroja:")

print(f" Stanja Q = {tm.Q}")

print(f" Ulazni alfabet ¥ = {tm.Sigmal}")
print(f" Alfabet trake I' = {tm.Gamma}")
print(f" Pocetno stanje = {tm.q0}")

print(f" Prihvaca stanje = {tm.q_acceptl}")
print(f" Odbacuje stanje = {tm.q_rejectl}")

print ("\nPrijelazna funkcija 6:")

for (s, sym), (ns, nsym, d) in list(prijelazi.items())[:3]:

print(£" §({s}, {sym}) = ({ns}, {nsym}, {d.value})")
# Test
ulaz = "0011"
print (f"\nSimulacija na ulazu '{ulazl}':")
print ( n n )
print )
tm.postavi_ulaz(ulaz)

rezultat = tm.pokreni()

tm.prikazi_povijest ()

print (£"\nRezultat: {rezultat}")
print (f"Finalna traka: {''.join(tm.traka)l}")

Turingov stroj inicijaliziran

Komponente stroja:
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Stanja Q = {'q0', 'ql', 'q_reject', 'q_accept'}
Ulazni alfabet ¥ = {'1', '0'}

Alfabet trake I' = {'1', '0', '_'}

Poletno stanje = q0

Prihvaca stanje = q_accept

Odbacuje stanje = gq_reject

Prijelazna funkcija d:
0(q0, 0) = (q1, 1, D)
0(q0, 1) = (q1, 0, D)
0(ql, 0) = (q0, 1, D)

Simulacija na ulazu '0011':

Korak 0: [q0] 0 0 1 1 _

+
Korak 1: 1 [q1] 0 1 1 _
T
Korak 2: 1 1 [q0] 1 1 _
T
Korak 3: 1 1 0 [ql] 1 _
T
Korak 4: 1 1 0 0 [q0] _
T
Korak 5: 1 1 0 [g_accept] 0 _
T

Rezultat: PRIHVACEN
Finalna traka: 1100_

Istovremeno s Turingom, Alonzo Church razvio je lambda rac¢un kao alternativni formalizam:

"Efektivno izracunljiva funkcija je ona koja se moze izraziti u lambda racunu" -
Church, 1936

Church-Turingova teza tvrdi da su svi razumni modeli racunanja ekvivalentni:

e Turingovi strojevi
o Lambda racun
o Rekurzivne funkcije (Godel, Kleene)

o Postovi sustavi
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o Register strojevi

Implementirajmo lambda racun i pokazimo ekvivalenciju:

class LambdaTerm:
"""Apstraktna klasa za lambda terme."""

pass

class Var(LambdaTerm) :
nn “Va?"'l;]abla. nmnn
def __init__(self, ime):

self.ime = ime

def __repr__(self):

return self.ime

def substitute(self, var, term):
if self.ime == var:
return term

return self

class Abs(LambdaTerm) :
"""Lambda apstrakcija."""

def __init__(self, param, tijelo):
self.param = param

self.tijelo = tijelo

def __repr__(self):
return f"A{self.param}.{self.tijelo}"

def substitute(self, var, term):
if self.param == var:
return self # Varijabla je wvezana

return Abs(self.param, self.tijelo.substitute(var, term))

class App(LambdaTerm) :
nn ”Apl’bkaclja. mnmn
def __init__(self, funkcija, argument):
self.funkcija = funkcija
self.argument = argument

def __repr__(self):
return f"({self.funkcija} {self.argument})"

def substitute(self, var, term):
return App(
self.funkcija.substitute(var, term),

self.argument.substitute(var, term)

def beta_redukcija(term: LambdaTerm, max_koraka=100) -> LambdaTerm:
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"""Beta redukcija lambda terma."""

koraci = 0

while koraci < max_koraka:

if isinstance(term, App) and isinstance(term.funkcija, Abs):

# Beta redukcija: (\z.M)N — M[z/N]

term = term.funkcija.tijelo.substitute(
term.funkcija.param,
term.argument

)

koraci += 1

else:
break

return term

# Church brojevi — reprezentactija prirodnih brojeva
def church_broj(n):

"""Konstruira Church broj za n."""

#n = \f.)\z.fn(z)

f = lambda func: lambda x: x if n == 0 else func(church_broj(n-1) (func) (x))

return f

def church_to_int(church_n):
"""Pretvara Church broj w Python int."""

return church_n(lambda x: x + 1) (0)

# AritmeticCke operacije

SUCC = lambda n: lambda f: lambda x: f(n(f)(x))
PLUS
MULT = lambda m: lambda n: lambda f: m(n(f))

# Booleove wvrijednosti

TRUE = lambda x: lambda y: x

FALSE = lambda x: lambda y: y

NOT = lambda p: p(FALSE) (TRUE)

AND = lambda p: lambda q: p(q) (FALSE)
OR = lambda p: lambda q: p(TRUE)(q)

print ("Lambda raéun")

print ("\nOsnovni konstrukti:")

print(f" Varijabla: {Var('x')}")

print(f" Apstrakcija: {Abs('x', Var('x'))}")
print(f" Aplikacija: {App(Var('f'), Var('x'))}")

print ("\nChurch brojevi:")
for i in range(4):
if i ==

print(f" {i} Af . Ax.x")

else:

f_aplikacije = ' '.join(['(f' for _ in range(i)]) + ' x' + ')' % i

print(£" {i} = Af.Ax.{f_aplikacijel}")

lambda m: lambda n: lambda f: lambda x: m(f) (n(f) (x))
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print ("\nAritmeticke operacije:")

print(" SUCC = An.Af.Ax.(f ((n £) x))")
print(" PLUS = Am.An.Af.Ax.((m £) ((m £) x))")
print(" MULT = Am.An.Af.(m (n £))")

print ("\nPrimjer redukcije: (SUCC 1)")

print (" ")

print ("\nKorak 0: ((An.Af.Ax.(f ((m £) x)) Af.Ax.(f x))")
print ("Korak 1: Af.Ax.(f ((Af. Ax.(f x) £) x))")

print ("Korak 2: Af.Ax.(f (Ax.(f x) x))")

print ("Korak 3: Af.Ax.(f (f x))")

print ("\nRezultat: Church broj 2")

# Python simulacija

print ("\nPython simulacija Church brojeva:")

print ( n n )

for i in range(4):
¢ = church_broj(i)
print (f"church({i}) kao Python broj: {church_to_int(c)}")

# Testovi

print("\nTestovi:")
c2 = church_broj(2)
c3 = church_broj(3)

rezultat_succ = church_to_int (SUCC(c2))

print(£" succ(2) = {rezultat_succ} {'v'' if rezultat_succ == 3 else 'X'}")

rezultat_plus = church_to_int (PLUS(c2) (c3))
print(f" plus(2, 3) = {rezultat_plus} {'V'' if rezultat_plus == 5 else 'X'}")

rezultat_mult = church_to_int (MULT (c2) (c3))
print(f" mult(2, 3) = {rezultat_mult} {'v'' if rezultat_mult == 6 else 'X'}")

print ("\nBooleove vrijednosti:")
print(" TRUE = Ax.\y.x")

print(" FALSE = Ax.\y.y")

print(" NOT = Ap.((p FALSE) TRUE)")
print(" AND = Ap.)\q.((p q) FALSE)")

# Test Booleovth operacija
def bool_to_python(church_bool):

return church_bool(True) (False)

print (£"\nTest: NOT TRUE = FALSE {'v'' if not bool_to_python(NOT(TRUE)) else 'Xx'}")
print (£f"Test: AND TRUE FALSE = FALSE {'V'' if not bool_to_python(AND(TRUE) (FALSE)) else
. |><|}||)
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Output

Lambda racun

Osnovni konstrukti:
Varijabla: x
Apstrakcija: Ax.x
Aplikacija: (£ x)

Church brojevi:

0 = M. Ax.x

1 = M. x.(f x)

2 = M. Ax.(f (f x))

3 =M. x.(f (£ (f x)))

Aritmeticke operacije:
SUCC = An.Af.Xx.(f ((n £) x))
PLUS = Am.An.Af. Ax.((m £) ((n £) %))
MULT = Am.An.Af.(m (n £))

Primjer redukcije: (SUCC 1)

Korak 0: ((An.Af. Ax.(f ((n f) x)) Af.Ax.(f %))
Korak 1: Af. Ax.(f ((Af.Ax.(f x) £) x))

Korak 2: Af.Ax.(f (Ax.(f x) x))

Korak 3: Af.Ax.(f (f x))

Rezultat: Church broj 2

Python simulacija Church brojeva:

church(0) kao Python broj:
church(1) kao Python broj:
church(2) kao Python broj:
church(3) kao Python broj:

w N =~ O

Testovi:
succ(2) = 3 V
plus(2, 3) =5 V
mult(2, 3) = 6 V

Booleove vrijednosti:
TRUE = Ax.\y.x
FALSE = Ax.\Ay.y
NOT = Ap.((p FALSE) TRUE)
AND = Ap.)Aq.((p q) FALSE)

Test: NOT TRUE = FALSE v
Test: AND TRUE FALSE = FALSE Vv
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Turing je 1936. dokazao da ne postoji algoritam koji moze odluciti hoce li se proizvoljan
program zaustaviti:

"Ne moze postojati opéi proces za odredivanje hoce li se dani stroj ikada ispisati
0" - Turing, 1936

Halting problem: Za dani Turingov stroj M i ulaz w, odluciti hoée li se M zaustaviti na w.

Dokaz koristi dijagonalizaciju, tehniku koju je Cantor koristio za dokaz neprebrojavosti
realnih brojeva:

def simuliraj_halt_problem():

"""Demonstracija paradoksa problema zaustavljanja."""

# Pretpostavljamo da imamo magicnu funkciju HALT

def pretpostavljeni_halt(program_kod, ulaz):
"""Hipoteticka funkcija koja 'rjeSava' problem zaustavljanja."""
# Ovo je nemoguée implementirati opcentito!
# Za demonstractiju, wvracamo random vTrijednost
import hashlib
h = hashlib.md5((program_kod + ulaz).encode()) .hexdigest()
return int(h, 16) % 2 ==

# Dijagonalizacijski stroj D
def D(M_kod) :
"""Stroj koji stvara paradoks."""
if pretpostavljeni_halt(M_kod, M_kod):
# Ako M staje ma M, onda D ulazi u beskonacnu petlju
while True:
pass
else:
# Ako M ne staje ma M, onda D staje
return "STOP"

# Paradoks: Sto se dogada s D(D)?
D_kod = "def D(M): ..."

return D_kod

print ("Problem zaustavljanja")

print ( n n )
print ("\nPretpostavimo da postoji funkcija HALT(M, w) koja vraca:")
print(" T ako se M zaustavlja na ulazu w")

print(" L ako se M ne zaustavlja na ulazu w")

print ("\nDijagonalizacijski dokaz:")

print ( Meo—— ——-—-—-—-;—_-;—_ ;— .— . —.;(—_ (——;_—-( . — n )
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print("\nl. Konstruiramo stroj D koji na ulazu M:")
print(" - Ako HALT(M, M) = T, onda D ulazi u beskonalnu petlju")
print(" - Ako HALT(M, M) = 1, onda D se zaustavlja")

print("\n2. Sto se dogada kad pokrenemo D(D)?")

print(" - Ako D(D) se zaustavlja, onda HALT(D, D) = T")
print (" — Po definiciji D, to znacli da D(D) ne staje!")
print(" - Ako D(D) ne staje, onda HALT(D, D) = L")

print (" — Po definiciji D, to znaci da D(D) staje!")

print ("\n3. KONTRADIKCIJA! ")
print ("\nDakle, funkcija HALT ne moZe postojati.")

# Simulactja

print ("\nSimulacija paradoksa:")

print ( n n )
def simple_loop():
while True:

pass

def simple_halt():
return "STOP"

print ("\nPokuSaj 1: Pretpostavljamo HALT(simple_loop, '') = L")

print(" Stroj D bi se zaustavio")

print("\nPokusaj 2: Pretpostavljamo HALT(simple_halt, '') = T")
print(" Stroj D bi uSao u petlju")

print ("\nPokuSaj 3: HALT(D, D) = ?")

print(" Paradoks! Ne moZemo odluiiti.")

print ("\nPrakticne posljedice:")

print (" ")

print ("\nNeodlucivi problemi u programiranju:")

print(" e Hoce 1li program ikad pristupiti null pointeru?")
print(" e Jesu li dva programa ekvivalentna?")

print(" e Hoée li program ikad ispisati \"Hello World\"?")
print(" e Je 1li funkcija totalna (definirana za sve ulaze)?")

print(" e Postoji 1li ulaz za koji program vraéa 427")

print ("\nRice-ov teorem: Svako netrivijalno svojstvo programa je neodluéivo!")

Output

Problem zaustavljanja

Pretpostavimo da postoji funkcija HALT(M, w) koja vraca:
T ako se M zaustavlja na ulazu w
1 ako se M ne zaustavlja na ulazu w
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Dijagonalizacijski dokaz:

1. Konstruiramo stroj D koji na ulazu M:
- Ako HALT(M, M) = T, onda D ulazi u beskonaénu petlju
- Ako HALT(M, M)

1, onda D se zaustavlja

2. Sto se dogada kad pokrenemo D(D)?
- Ako D(D) se zaustavlja, onda HALT(D, D) = T
— Po definiciji D, to znali da D(D) ne staje!
- Ako D(D) ne staje, onda HALT(D, D) = L
— Po definiciji D, to znali da D(D) staje!

3. KONTRADIKCIJA! *
Dakle, funkcija HALT ne moZe postojati.

Simulacija paradoksa:

Poku8aj 1: Pretpostavljamo HALT(simple_loop, '') = L
Stroj D bi se zaustavio
PokuSaj 2: Pretpostavljamo HALT(simple_halt, '') = T

Stroj D bi uSao u petlju

Pokusaj 3: HALT(D, D) = 7
Paradoks! Ne moZemo odluciti.

Prakticne posljedice:

Neodlucdivi problemi u programiranju:
e HoCe 1li program ikad pristupiti null pointeru?
e Jesu 1li dva programa ekvivalentna?
e HoCe 1li program ikad ispisati "Hello World"?
e Je 1i funkcija totalna (definirana za sve ulaze)?
e Postoji 1li ulaz za koji program vraca 427

Rice-ov teorem: Svako netrivijalno svojstvo programa je neodlucivo!

Turing je razlikovao dvije klase problema:

e Odludivi (rekurzivni): Turingov stroj uvijek staje s DA/NE odgovorom

o Poluodlucivi (rekurzivno prebrojivi): Turingov stroj staje za DA, mozda ne staje za
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NE

Post je pokazao:

"Jezik je odluciv ako i samo ako su i on i njegov komplement rekurzivno prebrojivi"
- Post, 1944

1 class JezikKlasa(Enum) :

2 """Klastfikacija jezika po odlucivosts."""
3 ODLUCIV = "odluciv"

4 POLUODLUCIV = "poluodluciv"

5 NEODLUCIV = "neodluciv"

7 def odluciv_paran_broj_jedinica(w: str) -> str:

8 """OdluCuje jezik s parnim brojem jedinica."""
9 broj_jedinica = w.count('1')

10 if broj_jedinica 7 2 ==

11 return "PRIHVACEN"

12 else:

13 return "ODBACEN"

14

15 def poluodluciv_halting(M_opis: str, w: str, max_koraka: int = 100) -> str:

16 ""Simulira poluodlucivost problema zaustavljanja."""
17 # Simuliramo tizvrsSavanje do maz_koraka

18 # U stwarnosti, ovo bt moglo trajati zauvijek!

19

20 koraci = 0

21 while koraci < max_koraka:

22 # Simulacija. ..

23 koraci += 1

24

25 # Za demonstraciju, "zaustavlja se" za neke slucajeve
26 if len(M_opis + w) % 7 == O:

27 return "PRIHVACEN"

28

29 return "NEPOZNATO (jo$ uvijek radi...)"

30

31 def enumerator(jezik_generator):

32 """Enumerator za rekurzivno prebrojiv jezik."""
33 for niz in jezik_generator():

34 yield niz

35

36 def generator_anbn():

37 ""iGenerira jezik {a"b" takav da n > OF."""
38 n=20

39 while True:

40 yield 'a' * n + 'b' * n

41 n+=1

42

43 def provjeri_pripadnost_enumeracijom(w: str, enumerator, max_koraka: int = 1000):
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"""Proyjerava pripadnost enumeracijom."""
for i, generirani in enumerate(enumerator):
if i >= max_koraka:
return "NEPOZNATO"
if generirani ==
return "PRONADEN"
return "NIJE PRONADEN"

print("Hijerarhija jezika")

print ( n " )
print("\nl. ODLUCIVI (Rekurzivni) jezici:")
print("  Turingov stroj M takav da za svaki w:")

print (" o M(w) PRIHVATI ako w € L")
print(" e M(w) = ODBACI ako w ¢ L")
print(" e M se UVIJEK zaustavlja")

print("\n2. POLUODLUCIVI (Rekurzivno prebrojivi) jezici:")
print("  Turingov stroj M takav da za svaki w:")

PRIHVATI ako w € L")

ODBACI ili oo ako w ¢ L")

print(" o M(w)

print(" o M(w)

print("\n3. NEODLUCIVI jezici:")

print(" Ne postoji Turingov stroj koji odluluje jezik")

print ("\nPrimjeri:")

print ("\nODLUCIV: L = {w takav da w ima paran broj jedinical}")
testovi = ['1011', '1001', '1111']
for w in testovi:

rezultat = odluciv_paran_broj_jedinica(w)

broj = w.count('1')

print(f" Test '{w}': {broj} jedinice — {rezultatl}")

print ("\nPOLUODLUCIV: H = {{M,w) takav da M se zaustavlja na w}")
print(" MoZemo simulirati M na w")
print(" Ako stane — PRIHVATI")

print(" Ako ne stane — ... (Cekamo zauvijek)")

print ("\nSimulacija poluodluiivog problema:")

print ( " n )

print ("\nEnumerator za jezik {a"b" takav da n > 0}:")
gen = generator_anbn()

prvih_6 = [next(gen) for _ in range(6)]

print(f" Generirani nizovi: {', '.join(prvih_6 if prvih_6[0] else ['ec'] + prvih_6[1:1)}")

print("\nProvjera 'aabb' € L?")
enum = enumerator (generator_anbn)
for i in range(3):
niz = next(enum)
if niz == 'aabb':
print(f" Korak {i+1}: Generiraj {niz if niz else 'e'} — PRONADEN! ")
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break
else:

print(f" Korak {i+1}: Generiraj {niz if niz else 'e'} — ne odgovara")

print("\nProvjera 'abab' € L?")
enum = enumerator (generator_anbn)
for i in range(5):
niz = next(enum)
print(f" Korak {i+1}: {niz if niz else 'e'} — ne")

print(" ... (nikad nee pronaci, ali ne znamo to unaprijed!)")
print ("\nPostov teorem:")

print("\nL je odluéiv <= L i ne L su rekurzivno prebrojivi")
print ("\nDokaz (=):")

print(" Ako je L odluciv, imamo M koji uvijek staje.")
print(" Za L: pokreni M, prihvati ako M prihvati.")

print(" Za ne L: pokreni M, prihvati ako M odbaci.")

print ("\nDokaz (<=):")

print(" Ako su L i ne L r.p., imamo M; i Mp.")

print(" Simuliraj M; i Mz paralelno (dovetailing).")

print(" Jedan mora stati — odluéi!")

Output

Hijerarhija jezika

1. ODLUCIVI (Rekurzivni) jezici:
Turingov stroj M takav da za svaki w:
o M(w) = PRIHVATI ako w € L
e M(w) = ODBACI ako w ¢ L
e M se UVIJEK zaustavlja

2. POLUODLUCIVI (Rekurzivno prebrojivi) jezici:
Turingov stroj M takav da za svaki w:
e M(w) = PRIHVATI ako w € L
e M(w) = ODBACI ili oo ako w ¢ L

3. NEODLUCIVI jezici:
Ne postoji Turingov stroj koji odluluje jezik

Primjeri:

ODLUCIV: L = {w takav da w ima paran broj jedinica}
Test '1011': 3 jedinice — ODBACEN
Test '1001': 2 jedinice — PRIHVACEN
Test '1111': 4 jedinice — PRIHVACEN

POLUODLUCIV: H

{<{M,w) takav da M se zaustavlja na w}
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MoZemo simulirati M na w
Ako stane — PRIHVATI
Ako ne stane — ... (Cekamo zauvijek)

Simulacija poluodlucivog problema:

Enumerator za jezik {a"b" takav da n > 0}:
Generirani nizovi: €, ab, aabb, aaabbb, aaaabbbb, aaaaabbbbb

Provjera 'aabb' € L?
Korak 1: Generiraj € — ne odgovara
Korak 2: Generiraj ab — ne odgovara
Korak 3: Generiraj aabb — PRONADEN!

Provjera 'abab' € L7
Korak 1: € — ne
Korak 2: ab — ne
Korak 3: aabb — ne
Korak 4: aaabbb — ne
Korak 5: aaaabbbb — ne
(nikad neée pronaéi, ali ne znamo to unaprijed!)

Postov teorem:

L je odlu¢iv <= L i ne L su rekurzivno prebrojivi

Dokaz (=):
Ako je L odluciv, imamo M koji uvijek staje.
Za L: pokreni M, prihvati ako M prihvati.
Za ne L: pokreni M, prihvati ako M odbaci.

Dokaz («=):
Ako su L i ne L r.p., imamo M; i M».
Simuliraj M; i Mp paralelno (dovetailing).
Jedan mora stati — odluci!

Turing je uveo koncept redukcije - svodenja jednog problema na drugi:

"Mnogi problemi mogu se svesti na problem zaustavljanja" - Turing, 1936

Many-one redukcija: A <,, B ako postoji izracunljiva funkcija f takva da:

weEA << f(w)eB
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1 class Redukcija:

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

41

42

43

44

45

46

47

48

49

50

51

52

def

def

"""Reprezentira many-one redukciju izmedu problema."""

def __init__(self, ime, od_problema, do_problema) :
self.ime = ime
self.od = od_problema
self.do = do_problema

def __repr__(self):
return f"{self.od} <,, {self.do}"

reduciraj_acceptance_na_halting(M, w):
"""Reducira ACCEPTANCE problem na HALTING."""

# Konstruiramo novi stroj M'
def M_prime(x):
# Simuliraj M na w

rezultat = simuliraj_tm(M, w)

if rezultat == "PRIHVACEN":
return "STOP" # M' staje
else:
while True: # M' ne staje

pass

return M_prime

simuliraj_tm(M, w, max_koraka=100):
"hSimulira Turingov stroj (pojednostavljeno). """
# Za demonstraciju

import hashlib

h = int(hashlib.md5((str(M) + w).encode()).hexdigest(), 16)

if h ), 3 == 0:

return "PRIHVACEN"
elif h % 3 == 1:

return "ODBACEN"
else:

return "LOOP"

class OracleTM:

"""Turingov stroj s orakulom."""

def __init__(self, oracle_problem):

self.oracle = oracle_problem

def query_oracle(self, instance):
"""Pita orakul za odgovor."""
# U teoriji, orakul instantno odgovara

return self.oracle(instance)

def rijeSi_problem_s_orakulom(self, problem, ulaz):

"""RjeSava problem koristeét orakul."""
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# Primjer: s H-orakulom moZemo rijeSiti mnoge probleme

if problem == "EMPTY":
# Je 11 L(M) prazan?
# Konstruiraj M' koji prihvaca sve ako M prihvaéa bar nesto
return self.query_oracle(("modified M", ulaz))

return "NEPOZNAT"

def halting_oracle(instance):
"""Hipoteticks: halting oracle."""
M, w = instance
# Ovo je nemoguce implementirats!
# Za demonstractiju:
if "while True" in str(M):
return False
elif "return" in str(M):
return True
else:

return None

print ("Redukcije medu problemima')

print (" )

print ("\nMany-one redukcija: A <,, B")

print(" Postoji izracunljiva f: w € A <= f(w) € B")
print("\nAko A <,, B i B je odlu¢iv — A je odlué&iv")
print("Ako A <,, B i A je neodluiv — B je neodluéiv")

print ("\nPrimjer redukcije:")

print (" ")

print ("\nProblem: ACCEPTANCE <,, HALTING")
print("\nACCEPTANCE: Prihvaéa 1i M ulaz w?")
print ("HALTING: Zaustavlja 1i se M na w?")
print ("\nRedukcija:")

print(" Konstruiraj M' koji:")

print(" 1. Simulira M na w")

print(" 2. Ako M prihvati — M' staje")
print(" 3. Ako M odbaci — M' ulazi u petlju")

print("\nTada: M prihvaéa w <= M' se zaustavlja na w")

print("\nLanac redukcija:")

print (" ")

print ("\nEMPTY (Je 1i L(M) = 0?)")

print (" L <"

print ("REGULAR (Je 1i L(M) regularan?)")
print (" & <m0

print ("EQUIVALENT (Je 1i L(M;) = L(M2)7)")
print (" 1 <"

print ("HALTING")

print("\nSvi su neodluivi!")

print ("\nTuringovi stupnjevi:")

pI‘iIlt ( n n )
print ("\nStupanj 0: 0dluéivi problemi")

print(" Primjer: Je li broj paran?")
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106 print("\nStupanj O': Problem zaustavljanja")

107 print(" H = {{M,w) takav da M staje na w}")

108 print("\nStupanj O'': Halting za oracle strojeve")

109 print(" H' = {{M"H,w) takav da M s H-orakulom staje na w}")
110 print("\nBeskonac¢na hijerarhija: 0 < 0' < 0'' < ...")

111

112 print("\nOracle simulacija:")

113 print (" ")

114

115 oracle_tm = OracleTM(halting_oracle)

116

117 print("\nTuringov stroj s H-orakulom moZe:")

118 print(" e RijeS8iti problem zaustavljanja za obiéne TM")

119 print(" e Ali ne moZe rijeSiti svoj vlastiti problem zaustavljanja!")
120

121 print("\nTest oracle stroja:")

122 testl = oracle_tm.query_oracle(("while True: pass", ""))

123 print(f" Query: Staje 1li 'while True: pass'? — {'DA' if testl else 'NE'}")
124

125 test2 = oracle_tm.query_oracle(("return 42", ""))

126 print(f" Query: Staje 1i 'return 42'? — {'DA' if test2 else 'NE'}")
127

128 print(" Query: Staje 1li ovaj oracle stroj? — PARADOKS!")

Output

Redukcije medu problemima

Many-one redukcija: A <, B
Postoji izraéunljiva f: w € A < f(w) € B

Ako A <, B 1 B je odlué¢iv — A je odlucliv
Ako A <, B i A je neodluc¢iv — B je neodluciv

Primjer redukcije:

Problem: ACCEPTANCE <,, HALTING

ACCEPTANCE: Prihvaca 1i M ulaz w?
HALTING: Zaustavlja 1li se M na w?

Redukcija:
Konstruiraj M' koji:
1. Simulira M na w
2. Ako M prihvati — M' staje
3. Ako M odbaci — M' ulazi u petlju

Tada: M prihvacéa w <= M' se zaustavlja na w
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Lanac redukcija:

EMPTY (Je 1i L(M) = 07)
<

REGULAR (Je 1i L(M) regularan?)
L <

EQUIVALENT (Je 1i L(M;) = L(My)?)
L <

HALTING

Svi su neodlucivi!

Turingovi stupnjevi:

Stupanj 0: 0dlucivi problemi
Primjer: Je 1li broj paran?

Stupanj 0': Problem zaustavljanja
H = {{M,w) takav da M staje na w}

Stupanj 0'': Halting za oracle strojeve
H' = {{M"H,w) takav da M s H-orakulom staje na w}

Beskonac¢na hijerarhija: 0 < 0' < 0'' < ...

Oracle simulacija:

Turingov stroj s H-orakulom moZe:
e RijeSiti problem zaustavljanja za obicne TM
e Ali ne moZe rijeSiti svoj vlastiti problem zaustavljanja!

Test oracle stroja:
Query: Staje 1i 'while True: pass'? — NE
Query: Staje 1i 'return 42'7? — DA
Query: Staje 1i ovaj oracle stroj? — PARADOKS!

Pokazat éemo ekvivalenciju razli¢itih modela rac¢unanja:

Register strojevi (Shepherdson and Sturgis, 1963): Jednostavniji model s registrima koji

drze prirodne brojeve.

p-rekurzivne funkcije (Godel, Kleene): Funkcije definirane rekurzijom i minimalizacijom.
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1 class RegisterMachine:

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

"""Simulacija register stroja."""

def

def

def

def

def

def

def

__init__(self, num_registers=10):
self .registers = [0] * num_registers
self.pc = 0 # Program counter

self .program = []

self.halted = False

inc(self, r):
"""Inkrementiraj registar."""
self .registers[r] += 1

self.pc += 1

dec(self, r):
"""Dekrementiraj registar (bounded at 0)."""
if self.registers[r] > O:

self .registers[r] -= 1

self.pc += 1

jz(self, r, label):

"""Skoct ako je registar nula."""

if self.registers[r] == 0:
self.pc = label

else:

self.pc += 1

jmp(self, label):
"""Bezuvjetni skok."""

self.pc = label

halt(self):
"""Zaustavi izvrSavanje.
self.halted = True

mwmn

run(self, max_steps=1000):
"""Pokrent program."""

steps = 0

while not self.halted and steps < max_steps and self.pc < len(self.program):

instruction = self.program[self.pc]
instruction()
steps += 1

return self.registers[0] # Vraéa RO kao rezultat

# mu-rekurzivne funkcije

47 def zero(x):
nn llNuZ funkczja,' nnn

return 0O

48

49

50

51

52

def succ(x):
”””Sljedbenik. mmnn
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53 return x + 1
54

55 def proj(i, *args):

56 """Projekcija - vraca t-tt argument."""
57 return args[il
58

59 def compose(f, *gs):

60 """Kompozicija funkcija."""

61 def h(xargs):

62 g_results = [g(*args) for g in gs]
63 return f(*g_results)

64 return h

65

66 def primitive_recursion(f, g):

67 """Primitivna rekurzija."""

68 def h(x, *args):

69 if x ==

70 return f(*args)

71 else:

72 return g(x-1, h(x-1, *args), *args)
73 return h

74

75 def mu_operator (f):

76 """u-operator — minimalizactija."""

77 def h(*args):

78 y=0

79 while f(xargs, y) != O:

80 y +=1

81 if y > 1000: # ZaStita od beskonacne petlje
82 return None

83 return y

84 return h

85

86 # Primjert u-rekurzivnih funkcija

88 # Zbrajanje

89 add = primitive_recursion(

90 lambda y: y, # add(0, y) =y

91 lambda x, rec, y: succ(rec) # add(S(z), y) = S(add(z, y))
92 )

93

94 # MnoZenje

95 mult = primitive_recursion(

96 lambda y: 0, # mult(0, y) = 0

97 lambda x, rec, y: add(rec, y) # mult(S(z), y) = add(mult(z, y), y)
98 )

99

100 # Eksponencijacija

101 exp = primitive_recursion(

102 lambda x: 1, # exp(z, 0) = 1
103 lambda y, rec, x: mult(x, rec) # ezp(z, S(y)) = mult(z, exp(z, y))
104 )

105
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106 print("Register stroj")

107 print("=s=============")

108 print("\nInstrukcije:")

109 print(" INC(R): R := R + 1")

110 print(" DEC(R): R := max(0, R - 1)")

111 print(" JZ(R, L): ako je R = 0, sko&i na L")
112 print(" HALT: zaustavi")

113

114 print("\nProgram za zbrajanje R1 + R2 — RO:")

115 print (" ")
116
117 # Program za zbrajanje

118 rm = RegisterMachine()

119 rm.registers([1] = 3 # Rl = 3

120 rm.registers[2] = 2 # R2 = 2

121

122 rm.program = [

123 lambda: rm.jz(1, 4), # 0: ako R1=0, %di na 4
124 lambda: rm.dec(1), # 1: R1-—-

125 lambda: rm.inc(0), # 2: RO++

126 lambda: rm.jmp(0), # 3: 1di na 0

127 lambda: rm.jz(2, 8), # 4: ako R2=0, idi na 8
128 lambda: rm.dec(2), # 5: R2—-

129 lambda: rm.inc(0), # 6: RO++

130 lambda: rm.jmp(4), # 7: idi na 4

131 lambda: rm.halt() # 8: HALT

132 ]

133

134 print("\nO: JZ(R1, 4)")

135 print("1: DEC(R1)")

136 print("2: INC(RO)")

137 print("3: JMP(0)")

138 print("4: JZ(R2, 8)")

139 print("5: DEC(R2)")

140 print("6: INC(RO)")

141 print("7: JMP(4)")

142 print("8: HALT")

143

144 print("\nIzvrSavanje: R1=3, R2=2")
145 P G e S ")
146

147 # Prikaz prvih nekoliko koraka

148 for i in range(5):

149 print (f"Korak {i}: PC={rm.pc}, RO={rm.registers[0]}, Ri={rm.registers([1]},
— R2={rm.registers[2]}")

150 if not rm.halted and rm.pc < len(rm.program):

151 rm.program[rm.pc] ()

152

153 print("...")

154

155 # Resetuj 1 pokreni do kraja
156 rm = RegisterMachine()

157 rm.registers[1] = 3
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158 rm.registers[2] = 2

159 rm.program = [

160 lambda: rm.jz(1, 4),
161 lambda: rm.dec(1),
162 lambda: rm.inc(0),
163 lambda: rm.jmp(0),
164 lambda: rm.jz(2, 8),
165 lambda: rm.dec(2),
166 lambda: rm.inc(0),
167 lambda: rm.jmp(4),
168 lambda: rm.halt()
169 ]

170

171 rezultat = rm.run()
172 print(f"ZavrSeno: RO={rezultat} (3 + 2 = 5) {'v'' if rezultat == 5 else 'Xx'}")

174 print ("\np-rekurzivne funkcije")

175 print (" ")

176 print("\nOsnovne funkcije:")

177 print(" Z(x) = 0 (nul funkcija)")
178 print(" S(x) = x + 1 (sljedbenik)")

179 print(" P";(x1,...,%,) = x; (projekcija)")

181 print("\nOperatori:")

182 print(" Kompozicija: h(x) = £(g1(x),...,ge(x))")
183 print(" Primitivna rekurzija:")

184 print (" h(0, y) = £(y)")

185 print (" h(S(x), y) = gz, h(x, y), ")

186 print(" p-operator: h(x) = uyl[f(x, y) = 01")

187

188 print("\nPrimjer - zbrajanje:")

189 print(" add(0, y) = y")

190 print(" add(S(x), y) = S(add(x, y))")

191 print(£"\nTest: add(3, 2) = {add(3, 2)} {'V' if add(3, 2) =

192

5 else 'X'}")

193 print("\nPrimjer - mnoZenje:")

194 print(" mult(0, y) = 0")

195 print (" mult(S(x), y) = add(mult(x, y), y)")
196 print(f"\nTest: mult(3, 4) = {mult(3, 4)} {'v' if mult(3, 4) == 12 else 'X'}")
197

198 print("\nPrimjer - eksponencijacija:")

199 print(" exp(x, 0) = 1")

200 print(" exp(x, S(y)) = mult(x, exp(x, y))")

201 print (f"\nTest: exp(2, 3) = {exp(3, 2)} {'V'' if exp(3, 2)

202

9 else 'x'}")

203 print("\np-operator primjer:")

204 print(" ")
205

206 def sqrt_floor(n):

207 """Korijen zaokruZen naniZe koristeét p—operator."""
208 def predicate(n, x):
209 return O if x*x > n else 1

210



211

212

213

214

215

2

t
[=2]

2

-
<Y

218

219

220

221

222

223

224

225

226

227

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA

97

x=0
while predicate(n, x) !'= 0:
x +=1

return x - 1

print ("\nsqrt_floor(n) = px[x® > nl")

print ("\nsqrt_floor(10):")

for x in range(5):

print (£" x={x}: {x}? = {x*x} {'>' if x*x > 10 else '<'} 10")

if x*x > 10:

print(f" Rezultat: {x-1} v'")

break

print("\nEkvivalencija modela:")

print ( n n )

print ("\nTuringov stroj = Register stroj = p-rekurzivne funkcije")

print ("\nSvi mogu simulirati jedni druge!")

Output

Register stroj

HALT: zaustavi

Instrukcije:
INC(R): R :=R + 1
DEC(R): R := max(0, R - 1)

JZ(R, L): ako je R = 0, skoi na L

Program za zbrajanje R1 + R2 — RO:

JZ(R1, 4)
DEC(R1)
INC(RO)
JMP (0)
JZ(R2, 8)
DEC(R2)
INC(RO)
JMP (4)
HALT

0 N O O1dbd WN - O

IzvrSavanje: R1=3, R2=2

Korak 0: PC=0, RO=0, R1=3,
Korak 1: PC=1, RO=0, R1=3,
Korak 2: PC=2, R0=0, R1=2,
Korak 3: PC=3, RO=1, R1=2,
Korak 4: PC=0, RO=1, R1=2,

ZavrSeno: R0=5 (3 + 2 = 5)

R2=2
R2=2
R2=2
R2=2
R2=2
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p-rekurzivne funkcije

Osnovne funkcije:
Z(x) = 0 (nul funkcija)
S(x) = x + 1 (sljedbenik)
P (x1,...,%y) = x; (projekcija)

Operatori:
Kompozicija: h(x) = f(g1(x),...,gr(x))
Primitivna rekurzija:
h(0, y) = £(y)
h(S(x), y) = glx, hix, y), y)
p-operator: h(x) = uylf(x, y) = 0]

Primjer - zbrajanje:

add(0, y) =y

add(S(x), y) = S(add(x, y))
Test: add(3, 2) =5 V
Primjer - mnoZenje:

mult(0, y) =0

mult(S(x), y) = add(mult(x, y), y)
Test: mult(3, 4) = 12 V
Primjer - eksponencijacija:

exp(x, 0) =1

exp(x, S(y)) = mult(x, exp(x, y))
Test: exp(2, 3) = 8 X

p—operator primjer:

sqrt_floor(n) = ux[x? > n]

sqrt_floor(10):

x=0: 02 =0 < 10
x=1: 12 =1 < 10
x=2: 22 =4 < 10
x=3: 32 =9 < 10
x=4: 42 = 16 > 10

Rezultat: 3 V

Ekvivalencija modela:

Turingov stroj = Register stroj = p-rekurzivne funkcije
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Svi mogu simulirati jedni druge!

5.1.7 Prakticne primjene i granice

Teorija izracunljivosti ima duboke prakti¢ne implikacije:

1 def
2
3
4
5
6
7
8 def

10
11
12
13
14
15
16
17
18
19
20 def
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 def
38
39
40
41

42

simuliraj_verifikaciju(program_code) :

"""PokuSava verificirati sigurnost programa."""

# Pojednostavljeno za demonstractju

if "/ 0" in program_code or "/ x" in program_code:
return "POTENCIJALNO NESIGURNO"

return "SIGURNQO"

busy_beaver (n) :
"""Simulacija Busy Beaver problema."""

# Poznate wvrijednosti

known = {
1: 1,
2: 6,
Bg 2l
4: 107,
5: 47176870 # Donja granica

}
return known.get(n, "NEPOZNAT0")

kolmogorov_approximation(s) :
"""Aproksimacija Kolmogorovljeve sloZemostt. """

# Vrlo gruba aproksimacija

# Provjert ponavljajule uzorke
if len(set(s)) ==
# Samo jedan simbol

return £"0(log n) - print '{s[0]}'*{len(s)}"

# Provjert je li kompresibilan

import zlib

compressed = zlib.compress(s.encode())
if len(compressed) < len(s) * 0.5:

return £"0(log n) - kompresibilan"

return f"O(n) - nasumicéan"

godel_numeracija(formula) :

"""Simulacija Godel numeracije."""

# Pojednostavljeno — koristi hash

import hashlib

h = hashlib.md5(formula.encode()) .hexdigest()
return int(h[:5], 16)
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print ("Prakticne primjene teorije izralunljivosti")

print (" )

print("\nl. VERIFIKACIJA PROGRAMA")

progl = "def div_safe(a, b): return a / 2"

prog2 = "def div_unsafe(a, b): return a / x"

print ("\nPokuSaj verifikacije: div_safe(10, 2)")
print(f"  Sigurno: dijeljenje s 2 je OK")

print ("\nPokusaj verifikacije: div_unsafe(10, x)")

print(f" A Potencijalno nesigurno: x moZe biti 0")

print("\nRice-ov teorem: Ne moZemo automatski verificirati')

print("sva netrivijalna svojstva programa!")

print ("\n2. KOMPAJLERI I OPTIMIZACIJA")
print(" ————————————————————————————— "

print ("\nNedostizan kod:")
print(" if False: ... — moZe se ukloniti v'")

print(" if complex_condition(): ... — neodluéivo!")

print("\n3. BUSY BEAVER PROBLEM")
print(" —————————————————————— n)

print ("\nBB(n) = maksimalni broj koraka n-stanja TM prije zaustavljanja")

print ("\nPoznate vrijednosti:")

for n in range(l, 6):
print(f" BB({n}) = {busy_beaver(n)}")
print(" BB(6) > 10710710710718")
print ("\nBB funkcija raste brZe od svake izracdunljive funkcije!")
print("\n4. KOLMOGOROVLJEVA SLOZENQOST")
print("---——--- === ===
print("\nK(s) = duljina najkraceg programa koji generira s")

print ("\nPrimjeri:")
nizovi = ['0000000000', '0110101101', '3141592653']
for s in nizovi:
k = kolmogorov_approximation(s)
if '0000' in s:
print(f" '{s}' — K = 0(log n) [print '0'*10]")
elif '011' in s:
print(f" '{s}' — K ~ 0(n) [print '{s}'1")

else:

print(f" m prvih 1000 znamenki — K ~ 0(log n) [algoritam za 7w]")

print ("\nTeorem: K(s) je neizraéunljiva!")

print("\n5. GODELOV TEOREM NEPOTPUNOSTI")
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06 P ")
97

98 print("\nSimulacija G6del numeracije:")
99 formula = "Vx P(x)"

100 gn = godel_numeracija(formula)

101 print(f£"\nFormula: {formula}")

102 print(£"Gédel broj: {gn}")

104 print("\nGédel je pokazao: Aritmetika moZe govoriti o sebi!")
105 print ("\nKonstrukcija paradoksa:")

106 print(" G = 'Ova recenica nije dokaziva'")

107 print(" ")

108 print(" Ako je G dokaziva — G je laZna — kontradikcija!")

109 print(" Ako G nije dokaziva — G je istinita — nepotpunost!")

110
111 print ("\nFILOZOFSKE IMPLIKACIJE")
112 print (" ")
113

114 print("\nLucas-Penrose argument:")

115 print (" Ljudski um moZe vidjeti istinu Gédelove relenice.")
116 print(" Strojevi ne mogu.")

117 print(" — Um nije stroj?")

118

119 print("\nProtu-argument:")

120 print(" Mi ne znamo nasu vlastitu formalizaciju.")
121 print(" Mozda smo nekonzistentni.")

122 print(" — Godelov teorem se primjenjuje i na nas!")
123

124 print ("\nChurch-Turingova teza:")

125 print(" Sve Sto je efektivno izralunljivo")

126 print(" moZe izracunati Turingov stroj.")

127 print(" ")

128 print(" Je 1li to istina o fizickom svijetu?")

129 print(" Kvantno racunanje? Hiper-racunanje?")

Output

Prakticne primjene teorije izracunljivosti

1. VERIFIKACIJA PROGRAMA

PokuSaj verifikacije: div_safe(10, 2)
v/ Sigurno: dijeljenje s 2 je OK

Pokusaj verifikacije: div_unsafe(10, x)
A Potencijalno nesigurno: x moZe biti 0

Rice-ov teorem: Ne moZemo automatski verificirati
sva netrivijalna svojstva programa!
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2. KOMPAJLERI I OPTIMIZACIJA

NedostiZan kod:
if False: ... — moZe se ukloniti Vv
if complex_condition(): ... — neodlugivo!

3. BUSY BEAVER PROBLEM

BB(n) = maksimalni broj koraka n-stanja TM prije zaustavljanja

Poznate vrijednosti:

BB(1) =1

BB(2) = 6

BB(3) = 21

BB(4) = 107

BB(5) = 47176870

BB(6) > 1071071071018

BB funkcija raste brZe od svake izracunljive funkcije!

4. KOLMOGOROVLJEVA SLOZENOST

K(s) = duljina najkraceg programa koji generira s

Primjeri:
'0000000000' — K 0(log n) [print '0'*10]
'0110101101' — K 0(n) [print '0110101101']
7 prvih 1000 znamenki — K ~ 0(log n) [algoritam za ]

~
~
~
~

Teorem: K(s) je neizracunljival!

5. GODELOV TEOREM NEPOTPUNOSTI

Simulacija Gédel numeracije:

Formula: Vx P(x)
Goédel broj: 177015

Godel je pokazao: Aritmetika moZe govoriti o sebi!

Konstrukcija paradoksa:
G = 'Ova recenica nije dokaziva'

Ako je G dokaziva — G je laZna — kontradikcija!
Ako G nije dokaziva — G je istinita — nepotpunost!
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FILOZOFSKE IMPLIKACIJE

Lucas-Penrose argument:
Ljudski um moZe vidjeti istinu Goédelove recenice.
Strojevi ne mogu.
— Um nije stroj?

Protu-argument:
Mi ne znamo nasSu vlastitu formalizaciju.
MoZda smo nekonzistentni.
— Go6delov teorem se primjenjuje i na nas!

Church-Turingova teza:
Sve Sto je efektivno izracunljivo
moZze izracunati Turingov stroj.

Je 1i to istina o fizickom svijetu?
Kvantno racunanje? Hiper-racunanje?

Za produbljivanje razumijevanja teorije izracunljivosti, predlazemo sljedeée vjezbe:

Implementacija univerzalnog Turingovog stroja

Napisite TM koji moze simulirati bilo koji drugi TM zadan kao ulaz.

Dokaz neodludivosti kroz redukciju

Pokazite da je problem "Ispisuje li TM ’Hello World’?" neodluciv redukcijom na problem
zaustavljanja.

Interpreter A-racuna

Implementirajte potpuni evaluator za A-raéun s normalnim i aplikativnim redoslijedom
evaluacije.

Ackermanova funkcija

Implementirajte Ackermanovu funkciju i pokazite da raste brze od svake primitivno rekurzivne
funkcije.
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Quineov program

Napisite program koji ispisuje svoj vlastiti kod (self-reproducing program).

Simulacija nedeterministickog TM

Implementirajte NTM i pokazite kako se moze simulirati deterministicki.

Post korespodencijski problem

Implementirajte solver za instance PCP-a i demonstrirajte neodlucivost.

Busy Beaver pretrazivac

Napisite program koji trazi TM s n stanja koji rade najduze prije zaustavljanja.

Godelova numeracija

Implementirajte potpunu Gédelovu numeraciju za aritmeticke formule.

Kleeneov teorem rekurzije

Demonstrirajte Kleeneov teorem konstruiranjem programa koji ispisuje svoj Godel broj.

Svaki zadatak postupno gradi razumijevanje granica izracunljivosti i fundamentalnih koncepata
teorije racunanja.

Kroz ovu implementaciju istrazili smo Turingov revolucionarni doprinos teoriji izracunljivosti:

1. Turingov stroj kao univerzalni model racunanja
2. Church-Turingova teza o ekvivalenciji modela
3. Problem zaustavljanja kao prva granica

4. Hijerarhija jezika po odlucivosti

5. Alternativni formalizmi i njihova ekvivalencija
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Turingov rad odgovorio je na Hilbertov Entscheidungsproblem, ali je otvorio jos dublja pitanja:

"Mozemo li nadié¢i granice Turingovog stroja?" - Pitanje koje i danas istrazujemo

Teorija izracunljivosti pokazuje da postoje fundamentalne granice onoga $to mozemo izracunati:

e Ne mozemo odluciti hoce li se program zaustaviti
e Ne mozemo verificirati sva svojstva programa
e Ne mozemo izracunati Kolmogorovljevu sloZenost

¢ Ne mozemo formalizirati svu matematiku

Ali takoder otkriva duboke veze:

o Izmedu logike i rac¢unanja (Curry-Howard)
e Izmedu raCunanja i filozofije uma

o Izmedu matematike i njenih granica (Godel)

Turingov svijet nas uci da su granice izracunljivosti takoder granice formalnog znanja. Python
implementacija omogué¢ava nam da eksperimentiramo s ovim granicama i razvijemo intuiciju
za ono $to je mogude - i Sto nije moguce - automatizirati.

Teorija izracunljivosti ostaje temelj:

¢ Racunarske znanosti - Sto mozemo algoritamski rijesiti

e Umjetne inteligencije - granice strojnog ucenja

Filozofije uma - priroda svijesti i racunanja

Matematike - granice formalnih sustava

Turingovo naslijede zivi u svakom racunalu, svakom algoritmu i svakom pitanju o granicama
onoga Sto mozemo znati i izra¢unati.
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