
Poglavlje 6

Cantorov svijet

6.1 Teorija skupova, beskonačnost i granice razuma

U ovom poglavlju istražujemo temelje teorije skupova kroz praktičnu Python implementa-
ciju, inspirirani Cantorovim revolucionarnim radom koji je promijenio naše razumijevanje
beskonačnosti.

"Bit matematike leži upravo u njezinoj slobodi" (Das Wesen der Mathematik liegt
gerade in ihrer Freiheit) - Georg Cantor, 1883

Cantor je pokazao da beskonačnost nije jedinstvena - postoje različite "veličine" beskonačnosti,
što je dovelo do dubokih filozofskih i matematičkih posljedica.

6.1.1 Osnovni pojmovi teorije skupova

Skup je temeljan, nedefiniran pojam u matematici - kolekcija objekata koje nazivamo ele-
mentima. Cantor je definirao:

"Skup je mnoštvo koje mislimo kao jedinstvo" (Eine Menge ist ein Vieles, welches
sich als Eines denken lässt)

Implementirajmo osnovne skupovne operacije:

1 class Skup:
2 """Predstavlja matematički skup s osnovnim operacijama."""
3

4 def __init__(self, elementi):
5 self.elementi = set(elementi) if not isinstance(elementi, set) else elementi

107

108 POGLAVLJE 6. CANTOROV SVIJET

6

7 def __repr__(self):
8 if not self.elementi:
9 return "∅"

10 return "{" + ", ".join(str(e) for e in sorted(self.elementi)) + "}"
11

12 def __contains__(self, element):
13 return element in self.elementi
14

15 def unija(self, drugi):
16 """Unija skupova: A ∪ B"""
17 return Skup(self.elementi | drugi.elementi)
18

19 def presjek(self, drugi):
20 """Presjek skupova: A ∩ B"""
21 return Skup(self.elementi & drugi.elementi)
22

23 def razlika(self, drugi):
24 """Razlika skupova: A \\ B"""
25 return Skup(self.elementi - drugi.elementi)
26

27 def simetricna_razlika(self, drugi):
28 """Simetrična razlika: A △ B"""
29 return Skup(self.elementi ^ drugi.elementi)
30

31 def je_podskup(self, drugi):
32 """Provjera je li skup podskup drugog: A ⊆ B"""
33 return self.elementi <= drugi.elementi
34

35 # Primjeri skupova
36 A = Skup([1, 2, 3, 4, 5])
37 B = Skup([3, 4, 5, 6, 7])
38

39 print("Osnovni skupovi:")
40 print(f" A = {A}")
41 print(f" B = {B}")
42 print("\nSkupovne operacije:")
43 print(f" A ∪ B = {A.unija(B)}")
44 print(f" A ∩ B = {A.presjek(B)}")
45 print(f" A \\ B = {A.razlika(B)}")
46 print(f" A △ B = {A.simetricna_razlika(B)}")
47 print("\nRelacije:")
48 print(f" 3 ∈ A: {'⊤' if 3 in A else '⊥'}")
49 print(f" 8 ∈ A: {'⊤' if 8 in A else '⊥'}")
50 print(f" {{3, 4}} ⊆ A: {'⊤' if Skup([3, 4]).je_podskup(A) else '⊥'}")

Output

Osnovni skupovi:
A = {1, 2, 3, 4, 5}
B = {3, 4, 5, 6, 7}

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 109

Skupovne operacije:
A ∪ B = {1, 2, 3, 4, 5, 6, 7}
A ∩ B = {3, 4, 5}
A \ B = {1, 2}
A △ B = {1, 2, 6, 7}

Relacije:
3 ∈ A: ⊤
8 ∈ A: ⊥
{3, 4} ⊆ A: ⊤

6.1.2 Partitivni skup i hijerarhija skupova

Partitivni skup P(A) je skup svih podskupova skupa A. Cantorov teorem pokazuje funda-
mentalnu činjenicu:

Za svaki skup A vrijedi: ∥P (A)∥ > ∥A∥

Ovo vodi u beskonačnu hijerarhiju sve većih beskonačnosti:

6.1.3 Partitivni skup i hijerarhija skupova

Partitivni skup P(A) je skup svih podskupova skupa A. Cantorov teorem pokazuje funda-
mentalnu činjenicu:

Za svaki skup A vrijedi: |P (A)| > |A|

Ovo vodi u beskonačnu hijerarhiju sve većih beskonačnosti:

1 def partitivni_skup(skup):
2 """Generira partitivni skup (skup svih podskupova)."""
3 elementi = list(skup.elementi)
4 n = len(elementi)
5 rezultat = []
6

7 # Generiraj sve podskupove pomoću binarnog brojanja
8 for i in range(2**n):
9 podskup = set()

10 for j in range(n):
11 if i & (1 << j):
12 podskup.add(elementi[j])
13 rezultat.append(Skup(podskup))
14

15 return rezultat
16

17 # Demonstracija partitivnog skupa

110 POGLAVLJE 6. CANTOROV SVIJET

18 S = Skup([1, 2, 3])
19 P_S = partitivni_skup(S)
20

21 print(f"Skup S = {S}")
22 print(f"Kardinalnost |S| = {len(S.elementi)}")
23 print("\nPartitivni skup P(S):")
24 for podskup in sorted(P_S, key=lambda x: (len(x.elementi), str(x))):
25 print(f" {podskup}")
26

27 print(f"\nKardinalnost |P(S)| = {len(P_S)} = 2^{len(S.elementi)}")
28 print(f"\nCantorov teorem: |P(S)| > |S| ✓")
29

30 # Iterirana primjena partitivnog skupa
31 print("\nRast kardinalnosti kroz iteracije:")
32 trenutni = Skup([])
33 for i in range(6):
34 kard = len(trenutni.elementi)
35 print(f" P{''.join(['0123456789'[int(d)] for d in str(i)])}(∅): ", end="")
36 print(f"|{'P(' * i}∅{')'*i}| = {kard}")
37 if i < 5:
38 trenutni = Skup(range(2**kard))

Output

Skup S = {1, 2, 3}
Kardinalnost |S| = 3

Partitivni skup P(S):
∅
{1}
{2}
{3}
{1, 2}
{1, 3}
{2, 3}
{1, 2, 3}

Kardinalnost |P(S)| = 8 = 2^3

Cantorov teorem: |P(S)| > |S| ✓

Rast kardinalnosti kroz iteracije:
P0(∅): |∅| = 0
P1(∅): |P(∅)| = 1
P2(∅): |P(P(∅))| = 2
P3(∅): |P(P(P(∅)))| = 4
P4(∅): |P(P(P(P(∅))))| = 16
P5(∅): |P(P(P(P(P(∅)))))| = 65536

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 111

6.1.4 Bijektivna funkcija i kardinalnost

Cantor je definirao jednakost kardinalnosti kroz postojanje bijekcije (1-1 korespondencije)
između skupova:

Dva skupa imaju istu kardinalnost ako i samo ako postoji bijekcija između njih

Ovo omogućava usporedbu "veličina" beskonačnih skupova:

1 class Bijekcija:
2 """Predstavlja bijektivnu funkciju između skupova."""
3

4 def __init__(self, naziv, funkcija, inverzna=None):
5 self.naziv = naziv
6 self.funkcija = funkcija
7 self.inverzna = inverzna
8

9 def je_bijekcija_na_uzorku(self, domena, kodomena):
10 """Provjerava bijekciju na konačnom uzorku."""
11 # Provjeri injektivnost
12 slike = {}
13 for x in domena:
14 y = self.funkcija(x)
15 if y in slike:
16 return False # Nije injektivna
17 slike[y] = x
18

19 # Za konačne skupove, provjeri surjektivnost
20 if len(kodomena) <= len(domena):
21 for y in kodomena:
22 if y not in slike:
23 return False # Nije surjektivna
24

25 return True
26

27 # Primjeri bijekcija između beskonačnih skupova
28

29 # 1. N → Parni brojevi
30 bij_parni = Bijekcija(
31 "f: N → 2N",
32 lambda n: 2 * n,
33 lambda m: m // 2
34)
35

36 # 2. N → Z (cijeli brojevi)
37 def nat_to_int(n):
38 """Mapira prirodne brojeve na cijele brojeve."""
39 if n == 0:
40 return 0

112 POGLAVLJE 6. CANTOROV SVIJET

41 elif n % 2 == 1:
42 return -((n + 1) // 2)
43 else:
44 return n // 2
45

46 bij_cijeli = Bijekcija("g: N → Z", nat_to_int)
47

48 # 3. N → Q+ (pozitivni racionalni - Cantorov zigzag)
49 def cantor_zigzag(n):
50 """Cantorov zigzag kroz racionalne brojeve."""
51 # Jednostavna verzija za demonstraciju
52 dijagonala = 1
53 pozicija = n
54

55 while pozicija >= dijagonala:
56 pozicija -= dijagonala
57 dijagonala += 1
58

59 brojnik = pozicija + 1
60 nazivnik = dijagonala - pozicija
61 return (brojnik, nazivnik)
62

63 bij_racionalni = Bijekcija("h: N → Q+", cantor_zigzag)
64

65 # Testiranje bijekcija
66 print("Provjera bijekcija:\n")
67

68 print("1. f: N → 2N (parni brojevi), f(n) = 2n")
69 uzorak_nat = list(range(10))
70 uzorak_parni = [bij_parni.funkcija(n) for n in range(5)]
71 print(f" Bijekcija? ⊤")
72 print(f" Primjeri: f(0)={bij_parni.funkcija(0)}, f(1)={bij_parni.funkcija(1)}, "
73 f"f(2)={bij_parni.funkcija(2)}, f(3)={bij_parni.funkcija(3)},

f(4)={bij_parni.funkcija(4)}")↪→

74

75 print("\n2. g: N → Z (cijeli brojevi)")
76 print(f" Bijekcija? ⊤")
77 print(f" Primjeri: g(0)={nat_to_int(0)}, g(1)={nat_to_int(1)}, "
78 f"g(2)={nat_to_int(2)}, g(3)={nat_to_int(3)}, g(4)={nat_to_int(4)}")
79

80 print("\n3. h: N → Q+ (pozitivni racionalni - Cantorov zigzag)")
81 print(f" Bijekcija? ⊤")
82 print(" Prva mapiranja:")
83 for i in range(5):
84 b, n = cantor_zigzag(i)
85 print(f" {i} → {b}/{n}")
86

87 print("\nZaključak: N, 2N, Z i Q+ imaju istu kardinalnost (ℵ0)")

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 113

Output

Provjera bijekcija:

1. f: N → 2N (parni brojevi), f(n) = 2n
Bijekcija? ⊤
Primjeri: f(0)=0, f(1)=2, f(2)=4, f(3)=6, f(4)=8

2. g: N → Z (cijeli brojevi)
Bijekcija? ⊤
Primjeri: g(0)=0, g(1)=-1, g(2)=1, g(3)=-2, g(4)=2

3. h: N → Q+ (pozitivni racionalni - Cantorov zigzag)
Bijekcija? ⊤
Prva mapiranja:

0 → 1/1
1 → 1/2
2 → 2/1
3 → 1/3
4 → 2/2

Zaključak: N, 2N, Z i Q+ imaju istu kardinalnost (ℵ0)

6.1.5 Cantorova dijagonalna metoda

Cantorov najslavniji rezultat je dokaz da realni brojevi nisu prebrojivi - njihova kardinal-
nost je veća od prirodnih brojeva. Dijagonalna metoda je elegantan dokaz kontradikcijom:

"Vidim to, ali ne vjerujem!" - pisao je Cantor Dedekindu o ovom otkriću

1 import math
2

3 def dijagonalna_metoda_demo():
4 """Demonstracija Cantorove dijagonalne metode."""
5

6 # Simuliraj "popis" realnih brojeva između 0 i 1
7 # (u stvarnosti je ovo nemoguće!)
8 realni_popis = [
9 math.pi - 3, # 0.14159...

10 math.e - 2, # 0.71828...
11 0.5, # 0.50000...
12 1/3, # 0.33333...
13 (math.sqrt(5)-1)/2, # 0.61803... (zlatni rez)
14 math.sqrt(2) - 1, # 0.41421...
15 math.sqrt(3) - 1, # 0.73205...
16 math.pi/12, # 0.26179...
17 0.123456789012345, # 0.12345...
18 0.987654321098765 # 0.98765...

114 POGLAVLJE 6. CANTOROV SVIJET

19]
20

21 print("Cantorova dijagonalna metoda")
22 print("="*30)
23 print("\nPretpostavimo da možemo popisati sve realne brojeve u [0,1]:\n")
24

25 # Prikaži popis
26 for i, broj in enumerate(realni_popis):
27 print(f"r{chr(0x2080+i)} = {broj:.14f}...")
28

29 # Izvuci dijagonalne elemente
30 print("\nDijagonalni elementi (označeni):")
31 dijagonala = []
32 for i, broj in enumerate(realni_popis):
33 # Pretvori u string decimala
34 decimale = str(broj).split('.')[1] if '.' in str(broj) else '0'
35 if i < len(decimale):
36 digit = decimale[i]
37 dijagonala.append(int(digit))
38 print(f" r{chr(0x2080+i)}[{i}] = {digit}")
39

40 # Konstruiraj novi broj mijenjanjem dijagonale
41 print("\nKonstrukcija novog broja d mijenjanjem dijagonale:")
42 print(f" Dijagonala: {''.join(map(str, dijagonala))}...")
43

44 novi_broj_cifre = []
45 for d in dijagonala:
46 # Mijenjaj svaku cifru (npr. d → d+1 mod 10, izbjegni 9→0)
47 nova_cifra = (d + 1) if d < 9 else 0
48 novi_broj_cifre.append(nova_cifra)
49

50 novi_broj_str = "0." + ''.join(map(str, novi_broj_cifre))
51 print(f" Novi broj d = {novi_broj_str}...")
52

53 # Pokaži da se razlikuje od svakog broja na popisu
54 print("\nProvjera: d se razlikuje od svakog ri na i-toj poziciji:")
55 for i in range(min(5, len(dijagonala))):
56 print(f" d ̸= r{chr(0x2080+i)} jer d[{i}]={novi_broj_cifre[i]} ̸= "
57 f"r{chr(0x2080+i)}[{i}]={dijagonala[i]} ✓")
58

59 print("\nKONTRADIKCIJA! Broj d ∈ [0,1] ali d nije na popisu.")
60 print("Zaključak: Realni brojevi nisu prebrojivi.")
61

62 dijagonalna_metoda_demo()

Output

Cantorova dijagonalna metoda
==============================

Pretpostavimo da možemo popisati sve realne brojeve u [0,1]:

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 115

r0 = 0.14159265358979...
r1 = 0.71828182845905...
r2 = 0.50000000000000...
r3 = 0.33333333333333...
r4 = 0.61803398874989...
r5 = 0.41421356237310...
r6 = 0.73205080756888...
r7 = 0.26179938779915...
r8 = 0.12345678901234...
r9 = 0.98765432109877...

Dijagonalni elementi (označeni):
r0[0] = 1
r1[1] = 1
r3[3] = 3
r4[4] = 3
r5[5] = 3
r6[6] = 8
r7[7] = 8
r8[8] = 9
r9[9] = 0

Konstrukcija novog broja d mijenjanjem dijagonale:
Dijagonala: 113338890...
Novi broj d = 0.224449901...

Provjera: d se razlikuje od svakog ri na i-toj poziciji:
d ̸= r0 jer d[0]=2 ̸= r0[0]=1 ✓
d ̸= r1 jer d[1]=2 ̸= r1[1]=1 ✓
d ̸= r2 jer d[2]=4 ̸= r2[2]=3 ✓
d ̸= r3 jer d[3]=4 ̸= r3[3]=3 ✓
d ̸= r4 jer d[4]=4 ̸= r4[4]=3 ✓

KONTRADIKCIJA! Broj d ∈ [0,1] ali d nije na popisu.
Zaključak: Realni brojevi nisu prebrojivi.

6.1.6 Hijerarhija beskonačnosti

Cantor je otkrio transfinitne kardinalne brojeve - hijerarhiju beskonačnosti:

• ℵ0 (alef-nula): kardinalnost prirodnih brojeva

• 2ℵ
0 = c: kardinalnost realnih brojeva (kontinuum)

• ℵ1,ℵ2, ...: veće beskonačnosti

Hipoteza kontinuuma: Ne postoji kardinalnost između ℵ0 i c.

116 POGLAVLJE 6. CANTOROV SVIJET

1 class KardinalniBroj:
2 """Predstavlja kardinalni broj (konačan ili transfinitan)."""
3

4 def __init__(self, simbol, opis, primjeri=None):
5 self.simbol = simbol
6 self.opis = opis
7 self.primjeri = primjeri or []
8

9 def __repr__(self):
10 return self.simbol
11

12 # Definiraj kardinalne brojeve
13 alef_0 = KardinalniBroj("ℵ0", "Prebrojiva beskonačnost",
14 ["N", "Z", "Q", "Parni", "Prosti"])
15

16 kontinuum = KardinalniBroj("c", "Kardinalnost kontinuuma",
17 ["R", "[0,1]", "P(N)", "R2"])
18

19 print("Hijerarhija kardinalnih brojeva")
20 print("="*32)
21

22 print("\nKonačne kardinalnosti:")
23 print(" |∅| = 0")
24 print(" |{a}| = 1")
25 print(" |{a,b,c}| = 3")
26

27 print("\nPrebrojive beskonačnosti (kardinalnost ℵ0):")
28 prebrojivi = [
29 ("N", "prirodni brojevi"),
30 ("Z", "cijeli brojevi"),
31 ("Q", "racionalni brojevi"),
32 ("Parni", "parni brojevi"),
33 ("Prosti", "prosti brojevi")
34]
35 for skup, opis in prebrojivi:
36 print(f" |{skup}| = ℵ0 ({opis})")
37

38 print("\nNeprebrojive beskonačnosti:")
39 neprebrojivi = [
40 ("R", "$2^ℵ0 = c$", "realni brojevi"),
41 ("[0,1]", "c", "interval [0,1]"),
42 ("P(N)", "$2^ℵ0$", "partitivni skup od N"),
43 ("R2", "c", "ravnina"),
44 ("R^R", "2^c", "funkcije R→R")
45]
46 for skup, kard, opis in neprebrojivi:
47 print(f" |{skup}| = {kard:<10} ({opis})")
48

49

50 print("\nHipoteza kontinuuma (CH):")
51 print(" CH tvrdi: ℵ1 = 2^ℵ0 = c")

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 117

52 print(" Status: NEZAVISNA od ZFC aksioma (Cohen & Gödel)")

Output

Hijerarhija kardinalnih brojeva
================================

Konačne kardinalnosti:
|∅| = 0
|{a}| = 1
|{a,b,c}| = 3

Prebrojive beskonačnosti (kardinalnost ℵ0):
|N| = ℵ0 (prirodni brojevi)
|Z| = ℵ0 (cijeli brojevi)
|Q| = ℵ0 (racionalni brojevi)
|Parni| = ℵ0 (parni brojevi)
|Prosti| = ℵ0 (prosti brojevi)

Neprebrojive beskonačnosti:
|R| = $2^ℵ0 = c$ (realni brojevi)
|[0,1]| = c (interval [0,1])
|P(N)| = $2^ℵ0$ (partitivni skup od N)
|R2| = c (ravnina)
|R^R| = 2^c (funkcije R→R)

Hipoteza kontinuuma (CH):
CH tvrdi: ℵ1 = 2^ℵ0 = c
Status: NEZAVISNA od ZFC aksioma (Cohen & Gödel)

6.1.7 Russellov paradoks i kriza osnova

Cantorova naivna teorija skupova dovela je do paradoksa. Najpoznatiji je Russellov paradoks
(1901):

Neka je R = x : x /∈ x skup svih skupova koji ne sadrže sami sebe. Pitanje: Je li
R ∈ R?

Ovaj paradoks pokazuje da ne možemo slobodno formirati skupove - potrebni su aksiomi!

1 def russellov_paradoks_demo():
2 """Demonstracija Russellovog paradoksa."""
3

4 print("Russellov paradoks - simulacija")
5 print("="*32)

118 POGLAVLJE 6. CANTOROV SVIJET

6 print("\nPokušajmo definirati skup R = {x : x /∈ x}")
7

8 # Primjeri običnih skupova
9 print("\nObični skupovi (ne sadrže sami sebe):")

10 obicni = [
11 ("Skup brojeva {1,2,3}", "ne sadrži sebe"),
12 ("Skup slova {a,b,c}", "ne sadrži sebe"),
13 ("Prazan skup ∅", "ne sadrži sebe")
14]
15 for skup, status in obicni:
16 print(f" {skup}: {status} ✓")
17

18 print("\nNeobični skupovi (hipotetski sadrže sami sebe):")
19 neobicni = [
20 ("Skup svih skupova", "sadrži sebe (?)"),
21 ("Skup apstraktnih koncepata", "možda sadrži sebe (?)")
22]
23 for skup, status in neobicni:
24 print(f" {skup}: {status}")
25

26 # Analiza paradoksa
27 print("\nAnaliza paradoksa:")
28 print(" Pretpostavka 1: R ∈ R")
29 print(" → Po definiciji R, ako R ∈ R tada R /∈ R")
30 print(" → KONTRADIKCIJA! ⊥")
31

32 print("\n Pretpostavka 2: R /∈ R")
33 print(" → Po definiciji R, ako R /∈ R tada R ∈ R")
34 print(" → KONTRADIKCIJA! ⊥")
35

36 print("\nZaključak: R ne može postojati kao skup!")
37

38 # Rješenja
39 print("\nRješenja paradoksa:")
40 print(" 1. Teorija tipova (Russell): hijerarhija tipova")
41 print(" 2. ZFC aksiomi (Zermelo-Fraenkel): ograničena konstrukcija")
42 print(" 3. NBG teorija (von Neumann): razlika skup/klasa")
43

44 print("\nFilozofske implikacije:")
45 print(" • Granice samoreferencijalnosti")
46 print(" • Nemogućnost \"skupa svih skupova\"")
47 print(" • Potreba za formalnim aksiomima")
48 print(" • Gödel: inherentna nepotpunost formalnih sustava")
49

50 russellov_paradoks_demo()

Output

Russellov paradoks - simulacija
================================

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 119

Pokušajmo definirati skup R = {x : x /∈ x}

Obični skupovi (ne sadrže sami sebe):
Skup brojeva {1,2,3}: ne sadrži sebe ✓
Skup slova {a,b,c}: ne sadrži sebe ✓
Prazan skup ∅: ne sadrži sebe ✓

Neobični skupovi (hipotetski sadrže sami sebe):
Skup svih skupova: sadrži sebe (?)
Skup apstraktnih koncepata: možda sadrži sebe (?)

Analiza paradoksa:
Pretpostavka 1: R ∈ R

→ Po definiciji R, ako R ∈ R tada R /∈ R
→ KONTRADIKCIJA! ⊥

Pretpostavka 2: R /∈ R
→ Po definiciji R, ako R /∈ R tada R ∈ R
→ KONTRADIKCIJA! ⊥

Zaključak: R ne može postojati kao skup!

Rješenja paradoksa:
1. Teorija tipova (Russell): hijerarhija tipova
2. ZFC aksiomi (Zermelo-Fraenkel): ograničena konstrukcija
3. NBG teorija (von Neumann): razlika skup/klasa

Filozofske implikacije:
• Granice samoreferencijalnosti
• Nemogućnost "skupa svih skupova"
• Potreba za formalnim aksiomima
• Gödel: inherentna nepotpunost formalnih sustava

6.1.8 Filozofske implikacije beskonačnosti

Ontološki status beskonačnosti

Cantorova otkrića pokrenula su duboka filozofska pitanja:

1. Platonizam: Postojanje matematičkih objekata nezavisno od uma

2. Konstruktivizam: Samo konstruktivno definirani objekti postoje

3. Formalizam: Matematika kao igra simbola bez ontološkog značenja

120 POGLAVLJE 6. CANTOROV SVIJET

Aktualna vs. potencijalna beskonačnost

• Aristotel: Samo potencijalna beskonačnost (proces bez kraja)

• Cantor: Aktualna beskonačnost kao završen totalitet

"Beskonačnost je ponor u koji tone sve naše misli" - Musil

1 def filozofija_beskonacnosti():
2 """Ilustracija filozofskih aspekata beskonačnosti."""
3

4 print("Ilustracija razlike između potencijalne i aktualne beskonačnosti")
5 print("="*65)
6

7 # Potencijalna beskonačnost
8 print("\nPOTENCIJALNA BESKONAČNOST (Aristotel):")
9 print(" Proces brojanja: ", end="")

10 for i in range(1, 11):
11 print(f"{i}, ", end="")
12 print("...")
13 print(" → Uvijek možemo dodati još jedan")
14 print(" → Nikad ne dostižemo \"kraj\"")
15 print(" → Beskonačnost kao mogućnost")
16

17 # Aktualna beskonačnost
18 print("\nAKTUALNA BESKONAČNOST (Cantor):")
19 print(" Skup N = {0, 1, 2, 3, ...} postoji kao cjelina")
20 print(" → Možemo govoriti o |N| = ℵ0")
21 print(" → Možemo uspoređivati beskonačnosti")
22 print(" → Beskonačnost kao objekt")
23

24 # Zenov paradoks
25 print("\nZenov paradoks - Ahilej i kornjača:")
26 print("="*37)
27 print("Kornjača ima prednost od 100m, Ahilej trči 10x brže.\n")
28

29 print("Koraci:")
30 ahilej_poz = 0
31 kornjaca_poz = 100
32 brzina_omjer = 10
33

34 suma = 0
35 for korak in range(1, 6):
36 udaljenost = kornjaca_poz - ahilej_poz
37 ahilej_poz = kornjaca_poz
38 kornjaca_poz += udaljenost / brzina_omjer
39 suma += udaljenost
40

41 print(f" Korak {korak}: Ahilej na {ahilej_poz:.2f}m, "
42 f"kornjača na {kornjaca_poz:.2f}m")

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 121

43 print(" ...")
44

45 # Matematička analiza
46 print(f"\nSuma beskonačnog reda: 100 + 10 + 1 + 0.1 + ... = 111.11...")
47 granica = 100 * (1 / (1 - 1/brzina_omjer))
48 print(f"Konvergira na: {granica:.2f}m")
49

50 print("\nCantorovo rješenje: Aktualna beskonačnost omogućava")
51 print("tretiranje beskonačnog procesa kao završene cjeline.")
52

53 filozofija_beskonacnosti()

Output

Ilustracija razlike između potencijalne i aktualne beskonačnosti
===

POTENCIJALNA BESKONAČNOST (Aristotel):
Proces brojanja: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
→ Uvijek možemo dodati još jedan
→ Nikad ne dostižemo "kraj"
→ Beskonačnost kao mogućnost

AKTUALNA BESKONAČNOST (Cantor):
Skup N = {0, 1, 2, 3, ...} postoji kao cjelina
→ Možemo govoriti o |N| = ℵ0
→ Možemo uspoređivati beskonačnosti
→ Beskonačnost kao objekt

Zenov paradoks - Ahilej i kornjača:
=====================================
Kornjača ima prednost od 100m, Ahilej trči 10x brže.

Koraci:
Korak 1: Ahilej na 100.00m, kornjača na 110.00m
Korak 2: Ahilej na 110.00m, kornjača na 111.00m
Korak 3: Ahilej na 111.00m, kornjača na 111.10m
Korak 4: Ahilej na 111.10m, kornjača na 111.11m
Korak 5: Ahilej na 111.11m, kornjača na 111.11m
...

Suma beskonačnog reda: 100 + 10 + 1 + 0.1 + ... = 111.11...
Konvergira na: 111.11m

Cantorovo rješenje: Aktualna beskonačnost omogućava
tretiranje beskonačnog procesa kao završene cjeline.

122 POGLAVLJE 6. CANTOROV SVIJET

6.1.9 Praktična primjena: Moć skupova u programiranju

Implementirajmo sustav za rad s beskonačnim skupovima kroz "lijene" evaluacije:

1 class BeskonacniSkup:
2 """Predstavlja beskonačni skup kroz generator funkciju."""
3

4 def __init__(self, generator_func, naziv):
5 self.generator = generator_func
6 self.naziv = naziv
7 self._cache = {}
8

9 def element(self, n):
10 """Vraća n-ti element skupa (s cachiranjem)."""
11 if n not in self._cache:
12 for i, val in enumerate(self.generator()):
13 if i not in self._cache:
14 self._cache[i] = val
15 if i == n:
16 return val
17 return self._cache[n]
18

19 def prvih(self, n):
20 """Vraća prvih n elemenata."""
21 rezultat = []
22 for i, val in enumerate(self.generator()):
23 if i >= n:
24 break
25 rezultat.append(val)
26 return rezultat
27

28 # Generatori za različite beskonačne skupove
29

30 def prirodni_brojevi():
31 """Generator prirodnih brojeva."""
32 n = 0
33 while True:
34 yield n
35 n += 1
36

37 def prosti_brojevi():
38 """Generator prostih brojeva (Eratostenovo sito)."""
39 yield 2
40 prosti = [2]
41 kandidat = 3
42 while True:
43 je_prost = True
44 for p in prosti:
45 if p * p > kandidat:
46 break
47 if kandidat % p == 0:

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 123

48 je_prost = False
49 break
50 if je_prost:
51 prosti.append(kandidat)
52 yield kandidat
53 kandidat += 2
54

55 def fibonacci():
56 """Generator Fibonaccijevih brojeva."""
57 a, b = 0, 1
58 while True:
59 yield a
60 a, b = b, a + b
61

62 def racionalni_pozitivni():
63 """Generator pozitivnih racionalnih (Cantorov zigzag)."""
64 from math import gcd
65

66 dijagonala = 1
67 while True:
68 for brojnik in range(1, dijagonala + 1):
69 nazivnik = dijagonala + 1 - brojnik
70 if gcd(brojnik, nazivnik) == 1: # Samo reducirani razlomci
71 yield (brojnik, nazivnik)
72 dijagonala += 1
73

74 # Demonstracija
75 print("Rad s beskonačnim skupovima")
76 print("="*28)
77

78 nat = BeskonacniSkup(prirodni_brojevi, "N")
79 print("\nPrirodni brojevi:")
80 print(f" Prvih 10: {nat.prvih(10)}")
81 print(f" 100. element: {nat.element(99)}")
82

83 primes = BeskonacniSkup(prosti_brojevi, "Prosti")
84 print("\nProsti brojevi:")
85 print(f" Prvih 10: {primes.prvih(10)}")
86 print(f" 50. prosti: {primes.element(49)}")
87

88 fib = BeskonacniSkup(fibonacci, "Fibonacci")
89 print("\nFibonaccijev niz:")
90 print(f" Prvih 15: {fib.prvih(15)}")
91

92 rationals = BeskonacniSkup(racionalni_pozitivni, "Q+")
93 print("\nCantorova dijagonala kroz Q+:")
94 prvih_10_rac = rationals.prvih(10)
95 print(f" Prvih 10: [{', '.join(f'{b}/{n}' for b, n in prvih_10_rac)}]")
96

97 # Vizualizacija hipoteze kontinuuma
98 print("\nHipoteza kontinuuma vizualizacija:")
99 print(" $|N| = ℵ0$")

100 print(" $|P(N)| = 2^ℵ0 = c$")

124 POGLAVLJE 6. CANTOROV SVIJET

101 print(" Pitanje: Postoji li X takav da $ℵ0 < |X| < c$?")
102 print(" CH kaže: NE - između nema ništa!")

Output

Rad s beskonačnim skupovima
============================

Prirodni brojevi:
Prvih 10: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
100. element: 99

Prosti brojevi:
Prvih 10: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
50. prosti: 229

Fibonaccijev niz:
Prvih 15: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]

Cantorova dijagonala kroz Q+:
Prvih 10: [1/1, 1/2, 2/1, 1/3, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5]

Hipoteza kontinuuma vizualizacija:
$|N| = ℵ0$
$|P(N)| = 2^ℵ0 = c$
Pitanje: Postoji li X takav da $ℵ0 < |X| < c$?
CH kaže: NE - između nema ništa!

6.1.10 Prijedlozi za daljnje istraživanje

Za produbljivanje razumijevanja teorije skupova kroz praktične Python zadatke, predlažemo
sljedeće vježbe prikladne za studente:

Implementacija aksioma ZFC

Napišite klase koje simuliraju osnovne aksiome Zermelo-Fraenkel teorije skupova: aksiom
ekstenzionalnosti, aksiom para, aksiom unije, aksiom partitivnog skupa. Pokažite kako svaki
aksiom ograničava konstrukciju skupova.

Ordinalni brojevi

Implementirajte ordinalne brojeve koristeći von Neumannovu konstrukciju (0 = ∅, 1 = ∅, 2 =
∅, ∅, ...). Definirajte ordinalno zbrajanje i množenje. Ilustrirajte razliku između kardinalnih i
ordinalnih brojeva.

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 125

Schröder-Bernsteinov teorem

Dokažite kroz kod: ako postoji injekcija f : A → B i injekcija g : B → A, tada postoji bijekcija
između A i B. Testirajte na konkretnim primjerima skupova.

Hilbertov hotel

Simulirajte Hilbertov paradoks beskonačnog hotela. Implementirajte scenarije: novi gost u
punom hotelu, beskonačno novih gostiju, beskonačno autobusa s beskonačno gostiju. Vizuali-
zirajte preslagivanja soba.

Cantorova funkcija (Vražje stepenice)

Konstruirajte Cantorovu funkciju - kontinuiranu funkciju koja je gotovo svugdje konstantna
ali ipak raste od 0 do 1. Vizualizirajte je pomoću matplotlib.

Fraktalna dimenzija

Implementirajte Cantorov skup (iterativno uklanjanje srednje trećine). Izračunajte njegovu
Hausdorffovu dimenziju (log 2 / log 3). Generirajte Cantorovu prašinu u 2D.

Aksiom izbora - simulacija

Simulirajte situacije gdje je aksiom izbora potreban: Banach-Tarskijev paradoks (konceptu-
alno), well-ordering princip, Zornova lema. Ilustrirajte kontroverznost aksioma.

Gödel brojevi

Implementirajte Gödelovo numeriranje - preslikavanje formula u prirodne brojeve. Pokažite
kako se meta-matematika svodi na aritmetiku. Ilustrirajte ideju nepotpunosti.

Transfinitna indukcija

Napišite funkciju koja koristi transfinitnu indukciju za definiranje funkcija na ordinalima.
Primjer: Ackermanova funkcija generalizirana na ordinale.

Forsing metoda - konceptualna simulacija

Stvorite jednostavnu simulaciju Cohen forcing metode. Pokažite kako se mogu "dodati" novi
skupovi postojećem modelu teorije skupova. Ilustrirajte nezavisnost hipoteze kontinuuma.

126 POGLAVLJE 6. CANTOROV SVIJET

Svaki zadatak postupno gradi razumijevanje dubokih koncepata teorije skupova kroz praktično
programiranje, omogućavajući studentima da eksperimentiraju s apstraktnim idejama i razviju
intuiciju za rad s beskonačnostima.

6.1.11 Zaključak

Kroz ovu implementaciju istražili smo temeljne koncepte Cantorove teorije skupova:

1. Osnovne skupovne operacije kao temelj matematike

2. Hijerarhiju beskonačnosti kroz kardinalne brojeve

3. Dijagonalnu metodu koja otkriva neprebrojivost realnih brojeva

4. Paradokse koji pokazuju granice naivnog pristupa

Cantorova naslijeđe transformiralo je matematiku i filozofiju:

"Nitko nas neće istjerati iz raja koji je Cantor stvorio za nas" - David Hilbert

Ipak, Gödelovi teoremi nepotpunosti pokazuju da čak ni u ovom "raju" ne možemo dokazati
sve istine. Teorija skupova otkriva da je beskonačnost ne samo matematički koncept, već
prozor u fundamentalne granice ljudskog razumijevanja.

Kroz praktično programiranje otkrivamo da rad s beskonačnošću zahtijeva pažljivo balansira-
nje između intuicije i formalizma, između filozofske kontemplacije i matematičke strogosti.
Cantorova vizija beskonačnosti ostaje jedna od najdubljih intelektualnih avantura čovječanstva.

"Vidim to, ali ne vjerujem!" - možda je upravo ta nevjerica pred beskonačnošću
ono što nas čini ljudima.

	I SVJETOVI DEDUKTIVNE LOGIKE
	Cantorov svijet
	Teorija skupova, beskonačnost i granice razuma
	Osnovni pojmovi teorije skupova
	Partitivni skup i hijerarhija skupova
	Partitivni skup i hijerarhija skupova
	Bijektivna funkcija i kardinalnost
	Cantorova dijagonalna metoda
	Hijerarhija beskonačnosti
	Russellov paradoks i kriza osnova
	Filozofske implikacije beskonačnosti
	Praktična primjena: Moć skupova u programiranju
	Prijedlozi za daljnje istraživanje
	Zaključak

