Poglavlje 9

Goodmanovi svijetovi: Problem in-
dukcije i strojno ucenje

9.1 Novi problem indukcije kroz prizmu racunalnih znanosti

Nelson Goodman je 1955. godine formulirao novi problem indukcije koji pokazuje temeljnu
poteskocu u razlikovanju valjanih od nevaljanih induktivnih zakljucaka. Ovaj problem ima
duboke implikacije za moderno strojno ucenje.

"Cinjenica da se smaragd moze jednako dobro opisati kao ’zelen’ ili kao ’gruen’
otkriva da svaki skup opazanja podrzava beskona¢no mnogo hipoteza." - Nelson
Goodman

U ovoj biljeznici istrazujemo kako se Goodmanova zagadka manifestira u kontekstu strojnog
ucenja kroz No-Free-Lunch teoreme.

Prije nego $to uronimo u Goodmanov novi problem, razmotrimo klasicni Humeov problem
indukcije:

Opazeni slucajevi AN Opéi zakljucak

Induktivno zakljuc¢ivanje pokusava iz konacnog broja opazanja izvesti opceniti zakon. To
je temelj znanosti, ali filozofski gledano - nema logicke nuznosti da ¢e se buduc¢a opazanja
ponasati kao prosla.

1 from dataclasses import dataclass

187

POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO
188 UCENJE

2 from datetime import datetime, timedelta

3 import random

5 @dataclass

6 class OpaZanje:

7 """Predstavlja jedno empirijsko opazZanje."""

8 objekt: str

9 svojstvo: str

10 vrijeme: datetime

11

12 def __repr__(self):

13 return f"{self.objekt}: {self.svojstvo} (vrijeme: {self.vrijeme.date()})"

14
15 # Generiraj opazZanja smaragda

16 def generiraj_opaZzanja(n=5, svojstvo="zelen"):

17 """Generira niz opaZanja smaragda."""

18 opazanja = []

19 pocetak = datetime(2020, 1, 1)

20

21 for i in range(n):

22 vrijeme = poletak + timedelta(days=random.randint(i*200, (i+1)*200))
23 opazanja.append(OpaZanje(f"Smaragd {i+1}", svojstvo, vrijeme))

24

25 return opaZanja

26
27 # Klasicéna indukcija

28 opazanja_zeleni = generiraj_opazanja(5, "zelen")

29

30 print("Klasiéna indukcija:")

31 print ("="*20)

32 print("OpaZanja smaragda:")

33 for op in opazanja_zeleni:

34 print(£" {op}")

35 print("\nInduktivni zakljucak: Svi smaragdi su zeleni")

Output

Klasic¢na indukcija:

OpaZanja smaragda:
Smaragd 1: zelen (vrijeme: 2020-03-17)
Smaragd 2: zelen (vrijeme: 2021-01-21)
Smaragd 3: zelen (vrijeme: 2021-06-04)
Smaragd 4: zelen (vrijeme: 2022-03-01)
Smaragd 5: zelen (vrijeme: 2022-07-22)

Induktivni zakljucak: Svi smaragdi su zeleni

1

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RACUNALNIH ZNANOSTI

189

Goodman uvodi novi predikat "grue" (kombinacija "green" i "blue"):

grue(z)

zelen(x) ako je z opazen prije tg

plav(z) ako je z opazen nakon tg

gdje je to neki bududéi trenutak (npr. 1. sijecnja 2100.).

Paradoks: Sva dosadasnja opazanja zelenih smaragda jednako dobro potvrduju hipotezu

"svi smaragdi su zeleni" kao i hipotezu "svi smaragdi su grueni"!

class GruePredikat:

"""Implementacija Goodmanovog 'grue' predikata."""

def __init__(self, kritiéni_trenutak):

self.t0 = kritic¢ni_trenutak

def je_grue(self, objekt, vrijeme_opaZanja):

HHHPT'O’UjeT'a,Ua je b Ob]ekt

if vrijeme_opaZanja < self.tO:

Prije t0: grue =

zelen

return objekt.svojstvo == "zelen"

else:

Nakon t0: grue = plav

return objekt.svojstvo == "plav"

def predvida(self, vrijeme):

S0 predvida grue hipoteza za dano vrijeme.

if vrijeme < self.tO:
return "zelen"
else:

return "plav"

Definiraj kritiéni trenutak
t0 = datetime(2100, 1, 1)

grue_predikat = GruePredikat (t0)

print ("Goodmanov problem indukcije:")

print ("="%29)

print(£"Kritiéni trenutak to: {t0.date()}")

print ("\nProvjera hipoteza za pro$la opaZanja:")

print ("-"%38)

Testiraj obje hipoteze na istim podacima

for op in opaZanja_zeleni[:3]:

PrikaZi prva 3

print (f"{op.objekt} ({op.vrijeme.date()}):")

print(f" OpaZeno: {op.svojstvol}")

'grue’ u danom trenutku."""

mwmn

POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

190 UCENJE
38
39 # Hipoteza 1: Svi smaragdi su zeleni
40 hl_istina = op.svojstvo == "zelen"
41 print(f" H1 (zeleni): {'T' if hl_istina else 'l'} (predvida: zelen)")
42
43 # Hipoteza 2: Svi smaragdi su gruent
44 h2_predvidanje = grue_predikat.predvida(op.vrijeme)
45 h2_istina = op.svojstvo == h2_predvidanje
46 print(£f" H2 (grueni): {'T' if h2_istina else 'l'} (predvida: {h2_predvidanje} -

— {'prije' if op.vrijeme < tO else 'nakon'} to)")
a7 print()
48
49 print("Rezultat: Obje hipoteze jednako dobro objaSnjavaju sva opazanja!")
50 print(f"\nPredvidanja za buduénost (nakon {tO.date()}):")
51 print ("-"*46)
52 print(" H1 (svi zeleni): smaragdi ¢e biti zeleni")

53 print(" H2 (svi grueni): smaragdi ¢e biti plavi")

Output

Goodmanov problem indukcije:

Kriti¢ni trenutak tg: 2100-01-01

Provjera hipoteza za prosSla opazanja:
Smaragd 1 (2020-03-17):
OpaZeno: zelen
H1 (zeleni): T (predvida: zelen)
H2 (grueni): T (predvida: zelen - prije tgp)

Smaragd 2 (2021-01-21):
OpazZeno: zelen
H1 (zeleni): T (predvida: zelen)
H2 (grueni): T (predvida: zelen - prije tg)

Smaragd 3 (2021-06-04):
OpaZeno: zelen
H1 (zeleni): T (predvida: zelen)
H2 (grueni): T (predvida: zelen - prije tg)

Rezultat: Obje hipoteze jednako dobro objasSnjavaju sva opazanja!

Predvidanja za budu¢nost (nakon 2100-01-01):

H1 (svi zeleni): smaragdi €e biti zeleni
H2 (svi grueni): smaragdi €e biti plavi

1

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

33

34

35

36

37

38

39

40

41

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RACUNALNIH ZNANOSTI 191

Goodmanov argument pokazuje da za svaki skup opazanja postoji beskona¢no mnogo

jednako dobro podrzanih hipoteza. Mozemo konstruirati "grue;", "grues", ...

kritiénim trenucima:

zelen(x) ako je z opazen prije ¢,
grue, (z) = : .
plav(z) ako je z opazen nakon t,

sa razli¢itim

def stvori_grue_hipotezu(kritiéni_trenutak, naziv):
"""Stvara grue hipotezu s danim kritiénim trenutkom."""
class GrueHipoteza:
def __init__(self):
self.t0 = kriticni_trenutak

self .naziv = naziv

def predvida(self, vrijeme):

return "zelen" if vrijeme < self.tO else "plav"

def provjeri(self, opaZanje):
predvidanje = self.predvida(opaZanje.vrijeme)

return opazZanje.svojstvo == predvidanje

return GrueHipoteza()

Stvort vide alternativnih hipoteza
hipoteze = {
"standard": type('StandardHipoteza', (), {
'naziv': 'standard',
'predvida': lambda self, t: "zelen",
'provjeri': lambda self, op: op.svojstvo == "zelen"
bHO,
"grue_2030": stvori_grue_hipotezu(datetime (2030, 1, 1), "grue_2030"),
, 1), "grue_2050"),
, 1), "grue_2100"),
, 1), "grue_2200"),

"grue_2050": stvori_grue_hipotezu(datetime (2050,
"grue_2100": stvori_grue_hipotezu(datetime (2100,
"grue_2200": stvori_grue_hipotezu(datetime (2200,

print ("Beskonaénost alternativnih hipoteza:")
print ("="%37)

print("\nZa iste podatke moZemo konstruirati mnostvo hipoteza:\n")

PrikaZti predvidanja svake hipoteze
test_vremena = [datetime(2050, 6, 15), datetime(2150, 6, 15)]

for naziv, hipoteza in hipoteze.items():
if naziv == "standard":
print(f"Hipoteza '{naziv}': Svi smaragdi su uvijek zeleni")
else:

t0_godina = int(naziv.split('_')[1])

POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

192 UCENJE
42 print (f"Hipoteza '{naziv}': grueni s prijelazom {tO_godina}-01-01")
43
44 for t in test_vremena:
45 print(f" Predvidanje za {t.year}: {hipoteza.predvida(t)l}")
46 print()

47

48 # Provjerti konzistentnost s postojeéim opazZanjima
49 print("Provjera konzistentnosti s opaZanjima:")
50 print("-"*40)

51

52 for naziv, hipoteza in hipoteze.items():

53 rezultati = [hipoteza.provjeri(op) for op in opaZanja_zeleni]
54 simboli = "".join(['T"' if r else 'l' for r in rezultatil)

55 tocnih = sum(rezultati)

56 print(f"{naziv}: {simboli} ({toénih}/{len(rezultati)} tocnih)")

57

58 print("\nSve hipoteze su jednako dobro podrZane postojeéim podacima!")

Output

Beskonacnost alternativnih hipoteza:

Za iste podatke mozZemo konstruirati mnoStvo hipoteza:

Hipoteza 'standard': Svi smaragdi su uvijek zeleni
Predvidanje za 2050: zelen
Predvidanje za 2150: zelen

Hipoteza 'grue_2030': grueni s prijelazom 2030-01-01
Predvidanje za 2050: plav
Predvidanje za 2150: plav

Hipoteza 'grue_2050': grueni s prijelazom 2050-01-01
Predvidanje za 2050: plav
Predvidanje za 2150: plav

Hipoteza 'grue_2100': grueni s prijelazom 2100-01-01
Predvidanje za 2050: zelen
Predvidanje za 2150: plav

Hipoteza 'grue_2200': grueni s prijelazom 2200-01-01
Predvidanje za 2050: zelen
Predvidanje za 2150: zelen

Provjera konzistentnosti s opaZanjima:
standard: TTTTT (56/5 to¢nih)
grue_2030: TTTTT (5/5 to&nih)
grue_2050: TTTTT (5/5 to¢nih)

1

2

3

4

5

6

10

11

12

13

14

15

16

17

18

19

20

21

22

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RACUNALNIH ZNANOSTI 193

grue_2100: TTTTT (5/5 to&nih)
grue_2200: TTTTT (5/5 to¢nih)

Sve hipoteze su jednako dobro podrZane postojeéim podacima!

No-Free-Lunch (NFL) teoremi pokazuju da je Goodmanov problem duboko ukorijenjen u
strojnom ucenju. Teorem kaze:

> GP(L,f)=05

fer
gdje je:
e L - bilo koji algoritam ucenja

e F - skup svih mogudih ciljnih funkcija

e GP - generalizacijska performansa

Znacenje: Prosjecna performansa bilo kojeg algoritma ucenja preko svih moguéih problema
jednaka je slu¢ajnom pogadanju!

import itertools

class BooleanConcept:

"""Predstavlja Booleovu funkciju kao koncept za ucenje."""

def __init__(self, truth_table, naziv=""):
self.tablica = truth_table

self .naziv = naziv

def evaluiraj(self, ulaz):
"""Evyaluira funkciju za dant ulaz."""

return self.tablica.get(ulaz, False)

def konzistentan_s(self, skup_ucenja):
"""Provjerava je li koncept konzistentan sa skupom za ucenje."""
for ulaz, izlaz in skup_uéenja.items():
if self.evaluiraj(ulaz) != izlaz:
return False

return True

Definiraj skup za ulenje (parcijalna tablica istinitosti)

skup_ucenja = {

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

75

POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO
194 UCENJE

(False, False): False,
(False, True): True,
(True, False): True,

(True, True) nije u skupu za ucenje!

Konstruiraj dva razlicita koncepta konzistenina s podacima
Koncept 1: XOR
xor_tablica = {

(False, False): False,

(False, True): True,

(True, False): True,

(True, True): False # XOR

Koncept 2: OR

or_tablica = {
(False, False): False,
(False, True): True,
(True, False): True,
(True, True): True # OR

koncepti = [
BooleanConcept (xor_tablica, "XOR funkcija"),

BooleanConcept (or_tablica, "OR funkcija")

print ("No-Free-Lunch demonstracija:")
print ("="*29)
print)

PrikaZi skup za ucenje
print("Skup za uéenje: ", end="")
print (n{u B end=" u)

for i, (ulaz, izlaz) in enumerate(skup_uéenja.items()):

if i > 0:

print(", ", end="")
ulaz_str = £"({'T' if ulaz[0] else 'L'}, {'T' if ulaz[1] else 'L'})"
izlaz_str = '[' if izlaz else 'l'

print (f"{ulaz_str}: {izlaz_str}", end="")
print (Il}ll)

testni = (True, True)
print (f"Testni primjer: ({'T' if testni[0] else 'L'}, {'T' if testni[l] else 'L'}) = ?")
print)

print("Moguéi koncepti konzistentni s podacima:")
print ("-"*42)

for i, koncept in enumerate(koncepti, 1):

print (£"Koncept {i}: {koncept.nazivl}")

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RACUNALNIH ZNANOSTI 195

76 # Predvidanje za testni primjer
77 pred = koncept.evaluiraj(testni)
78 print(f" Predvidanje za ({'T' if testni[0] else 'L'}, {'T' if testni[1] else 'L'}):

— {'T' if pred else 'Ll'}")

79

80 # Prikazi cijelu tablicu

81 print(" Tablica:")

82 for ulaz in [(False, False), (False, True), (True, False), (True, True)]:
83 izlaz = koncept.evaluiraj(ulaz)

84 ulaz_str = f"({'T' if ulaz[0] else 'L'}, {'T"' if ulaz[1] else 'L'})"
85 izlaz_str = '[' if izlaz else '|'

86 oznaka = " V" if ulaz in skup_uenja else ""

87 print (£" {ulaz_str} — {izlaz_str}{oznakal}")

88 print ()

89
90 print("Oba koncepta su jednako valjana za dane podatke!")

91 print("Ali daju razlicita predvidanja za nevidene primjere.")

Output

No-Free-Lunch demonstracija:

Skup za uéenje: {(L, L1): L, (L, T): T, (T, 1L): T}%
Testni primjer: (T, T) =7

Moguéi koncepti konzistentni s podacima:
Koncept 1: XOR funkcija
Predvidanje za (T, T): L

Tablica:
(L, b - 1L v
(L, ™ =TV
(T, LD - TV
(r, T)y —- 1L

Koncept 2: OR funkcija
Predvidanje za (T, T): T

Tablica:
(L, L) - LV
(L, T =TV
(T, L) - T Vv
(T, T) - T

Oba koncepta su jednako valjana za dane podatke!
Ali daju razlicdita predvidanja za nevidene primjere.

10

11

12

13

14

15

16

17

18

19

20

21

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO
196 UCENJE

NFL teoremi pokazuju da za svaki koncept C' koji algoritam ucenja dobro nauci, postoji
"savijeni" koncept C” koji ée biti loSe naucen:

C(z) ako z € SkupUcenja

C'(z) = o
-C(z) ako z ¢ SkupUcenja

Ovo je direktna analogija s Goodmanovim "grue" predikatom!

import numpy as np

def stvori_savijeni_koncept(originalni_koncept, skup_ulenja):

wmn

"""Stvara 'savijeni' koncept koji se slaZe na skupu ucenja ali ne gemeralizira.

class SavijeniKoncept:
def __init__(self):
self.originalni = originalni_koncept

self .memorija = skup_ucenja

def predvida(self, primjer):
Ako je primjer u skupu ucenja, koristi originalnu funkciju
for x_mem, _ in self.memorija:
if np.allclose(primjer, x_mem):

return self.originalni(primjer)

Inace, vrati suprotno od originalne funkcije

return not self.originalni(primjer)

return SavijeniKoncept ()

Definiraj jednostavan linearni koncept
def linearni_koncept(x):
"ihjednostavan linearnt klasifikator: z[0] + z[1] > 1"""

return x[0] + x[1] > 1

Generiraj skup za ucenje
np.random. seed (42)
skup_uéenja_ml = []
for _ in range(6):

x = np.random.rand(2)

y = linearni_koncept (x)

skup_uéenja_ml.append((x, y))

Stvori savijeni koncept

savijeni = stvori_savijeni_koncept(linearni_koncept, skup_uenja_ml)

print ("Konstrukcija 'savijenih' koncepata:")
print ("="%36)

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RACUNALNIH ZNANOSTI

197

print ("\nOriginalni koncept C: jednostavna linearna granica")
print (f"Skup za uéenje: {len(skup_ulenja_ml)} primjera")

print)

Testiraj na skupu za ulenje

print ("Performanse na skupu za ucenje:")
print ("-"x32)

toénih C = 0

toc¢nih_C_prime = 0

for x, y in skup_ucenja_ml:
pred_C = linearni_koncept (x)

pred_C_prime = savijeni.predvida(x)

print (f"Primjer ({x[0]:.1f}, {x[1]:.1f}) — ", end="")

print(f"OCekivano: {'T' if y else 'L'}, ", end="")

print(f"C: {'T"' if pred C else 'l'} {'v'' if pred C == y else 'X'}, ", end="")
print(f"C': {'T' if pred_C_prime else 'L'} {'V'' if pred_C_prime == y else 'X'}")

if pred_C == y:
to¢nih_C += 1
if pred_C_prime == y:

toénih_C_prime += 1

print (£"\nToénost na skupu za uenje:")
print(f" Koncept C: {100 * to&nih_C / len(skup_ulenja_ml):.1f}%")
print(f" Koncept C': {100 * toénih_C_prime / len(skup_uéenja_ml):.1£f}")

Testiraj ma movim primjerima
print ("\nPerformanse na testnom skupu:")
print ("-"x30)

testni_skup = [np.random.rand(2) for _ in range(5)]
to¢nih_test_C = 0

toc¢nih_test_C_prime = 0

for x_test in testni_skup:
y_pravi = linearni_koncept(x_test) # "Prava" oznaka
pred_C = linearni_koncept(x_test)

pred_C_prime = savijeni.predvida(x_test)

print(£"Test ({x_test[0]:.1f}, {x_test[1]:.1f}) — ", end="")
print(£"C: {'T' if pred_C else 'L'}, ", end="")
print(f"C': {'T' if pred_C_prime else 'L '}", end="")
if pred_C '= pred_C_prime:
print (" (razliéito!)")
else:

print)

if pred_C == y_pravi:
tocénih_test_C += 1
if pred_C_prime == y_pravi:

toc¢nih_test_C_prime += 1

POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

198

UCENJE

94 print(£"\nToénost na testnom skupu:")

95 print(f" Koncept C: {100 * tolnih_test_C / len(testni_skup):.1f}}, (dobar)")
96 print(f" Koncept C': {100 * tolnih_test_C_prime / len(testni_skup):.1f}} (los!)")

97 print("\nC' je 'savijen' - slaZe se s C na skupu za ulenje,")

98 print("ali se ponaSa suprotno na novim primjerima!")

Output

Konstrukcija 'savijenih' koncepata:
Originalni koncept C: jednostavna linearna granica
Skup za ucenje: 6 primjera
Performanse na skupu za uclenje:
Primjer (0.4, 1.0) — Oc&ekivano: T, C: T v/, C': T
Primjer (0.7, 0.6) — OC&ekivano: T, C: T v, C': T
Primjer (0.2, 0.2) — Oc&ekivano: L, C: L v/, C': L
Primjer (0.1, 0.9) — O0&ekivano: 1, C: L v/, C': L
Primjer (0.6, 0.7) — O0c&ekivano: T, C: T v/, C': T
Primjer (0.0, 1.0) — O¢ekivano: 1, C: L v/, C': L
Toénost na skupu za ucenje:

Koncept C: 100.0%

Koncept C': 100.0%
Performanse na testnom skupu:
Test (0.8, 0.2) — C: T, C': L (razli&ito!)
Test (0.2, 0.2) — C: 1, C': T (razlicito!)
Test (0.3, 0.5) — C: 1, C': T (razli&ito!)
Test (0.4, 0.3) — C: 1, C': T (razlicito!)
Test (0.6, 0.1) — C: L, C': T (razli&ito!)
Tocnost na testnom skupu:

Koncept C: 100.0% (dobar)

Koncept C': 0.0% (lo§!)
C' je 'savijen' - slaZe se s C na skupu za ucenje,
ali se ponaSa suprotno na novim primjerima!

SNENENENENEN

1

2

3

4

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

29

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RACUNALNIH ZNANOSTI 199

Induktivni bias kao nuZnost

NFL teoremi i Goodmanov problem pokazuju da induktivni bias nije nedostatak veé
nuznost svakog sustava ucenja. Bez pretpostavki o prirodi problema, ucenje je nemoguce.

Razlic¢iti algoritmi imaju razlic¢ite induktivne pristranosti:

o Linearna regresija: pretpostavlja linearnu vezu

Stabla odlucivanja: pretpostavljaju hijerarhijsku strukturu

o Neuronske mreze: pretpostavljaju kompozicionalnost

e k-NN: pretpostavlja lokalnu glatkoéu

def najblizi_susjed(toCka, skup_uéenja):
"""Jednostavan 1-NN klasifikator.”"""
min_udaljenost = float('inf')

najbliza_oznaka = None

for x, y in skup_ucenja:
udaljenost = np.sqrt((toékal0] - x[0])**2 + (tockall] - x[1])*%2)
if udaljenost < min_udaljenost:
min_udaljenost = udaljenost

najbliza_oznaka = y
return najbliZa_oznaka
def xor_funkcija(x):
"""XOR funkcija: istinito ako je tocno jedan ulaz > 0.5."""

return (x[0] > 0.5) != (x[1] > 0.5)

Generiraj XOR podatke

xor_podaci = [
(np.array([0.1, 0.1]), False),
(np.array([0.1, 0.9]), True),
(np.array([0.9, 0.1]), True),
(np.array([0.9, 0.9]), False),
(np.array([0.3, 0.3]), False),
(np.array([0.3, 0.7]), True),
(np.array([0.7, 0.3]), True),
7, O

(np.array([0. .71), False),

Definiraj razlicite algoritme s razlicitim biasima
algoritmi = [

("Linearna granica (bias: linearnost)",

lambda x: x[0] + x[1] > 1),

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO
200 UCENJE

("NajbliZi susjed (bias: lokalna glatkoca)",
lambda x: najbliZi_susjed(x, xor_podaci)),
("XOR funkcija (bias: toéno odgovara problemu)",
xor_funkcija),

("Uvijek T (bias: konstantnost)",

lambda x: True),

print("Utjecaj induktivnog biasa:")

print ("="*27)

print (f"\nPodatkovni skup: {len(xor_podaci)} tolaka koje Zine XOR uzorak")
print ("\nRazliciti algoritmi s razliéitim biasima:")

print ("-"x43)

test_tocke = [np.array([0.5, 0.5]), np.array([0.2, 0.8])]

for i, (naziv, algoritam) in enumerate(algoritmi, 1):
print(£"\n{i}. {nazivl}")

Testiraj na nekoliko tocaka
for tocka in test_tocke:
pred = algoritam(tocka)
print(f" Predvidanje za ({tockal[0]:.1f}, {to&ka[1]:.1f}): {'T' if pred else 'L'}")

Izracunaj tocnost
to¢nih = sum(l for x, y in xor_podaci if algoritam(x) == y)
toénost = 100 * tolnih / len(xor_podaci)

print(£" To¢nost na XOR podacima: {to&nost:.1f}J")

Komentar
if toCnost > 90:
print(" — SavrSen jer ima pravi bias")
elif tocnost > 60:
print(" — Bolji, ali jo8 uvijek ogranicen")
else:
if "linearnost" in mnaziv:
print(" — Los za XOR zbog krivog biasa")
else:

print(" — LoS zbog previSe jednostavnog biasa'")

print ("\nZakljucak: Uspjeh uéenja ovisi o podudaranju")

print("izmedu induktivnog biasa i stvarnog problema!")

Output

Utjecaj induktivnog biasa:

Podatkovni skup: 8 tolaka koje Cine XOR uzorak

Razlic¢iti algoritmi s razliditim biasima:

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RACUNALNIH ZNANOSTI 201

1. Linearna granica (bias: linearnost)
Predvidanje za (0.5, 0.5): L
Predvidanje za (0.2, 0.8): L
To¢nost na XOR podacima: 25.0%

— LoS za XOR zbog krivog biasa

2. Najblizi susjed (bias: lokalna glatkoca)
Predvidanje za (0.5, 0.5): L
Predvidanje za (0.2, 0.8): T
To¢nost na XOR podacima: 100.0%

— SavrSen jer ima pravi bias

3. XOR funkcija (bias: tolno odgovara problemu)
Predvidanje za (0.5, 0.5): L
Predvidanje za (0.2, 0.8): T
To¢nost na XOR podacima: 100.0%
— SavrSen jer ima pravi bias

4. Uvijek T (bias: konstantnost)
Predvidanje za (0.5, 0.5): T
Predvidanje za (0.2, 0.8): T
To¢nost na XOR podacima: 50.0%

— Lo8 zbog previSe jednostavnog biasa

Zakljucak: Uspjeh ucenja ovisi o podudaranju
izmedu induktivnog biasa i stvarnog problema!

Projektibilnost vs. neprojektibilnost

Goodman razlikuje projektibilne i neprojektibilne predikate:

e Projektibilni: "zelen', "okrugao", "tezi od 1lkg"

e Neprojektibilni: "grue’, "gruen s prijelazom 2100."

Ali sto ¢ini predikat projektibilnim? Goodman sugerira da je to stvar ukorijenjenosti
(entrenchment) u nasem jeziku i praksi.

Implikacije za AI i AGI

1. Nema univerzalnog algoritma ucenja - svaki mora imati bias

2. Prijelaz od podataka na znanje zahtijeva pretpostavke

1

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

37

38

40

41

42

44

45

46

47

48

POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

202

UCENJE

3. Ljudska inteligencija mozda uspijeva jer ima evolucijski oblikovane biase

4. AGI sustavi moraju rijesiti problem izbora pravog biasa

import random

class Agent:

"""Agent s odredenim induktivnim biasom."""

def __init__(self, bias_tip):
self.bias = bias_tip

self .fitness = 0

def predvida(self, x):
"""Predvidanje ovisno o biasu."""
if self.bias == "linearni":
return x[0] + x[1] > 1
elif self.bias == "kvadratni":
return x[0]**2 + x[1]*x2 > 0.5
elif self.bias == "neutralni":
return random.choice([True, False])

elif self.bias == "slozeni_1":

return (x[0] > 0.5) != (x[1] > 0.5) # PribliZno XOR

elif self.bias == "sloZeni_2":
return abs(x[0] - x[1]) > 0.3
elif self.bias == "kvadratni_modificiran":

return (x[0] - 0.5)**2 + (x[1] - 0.5)*%2 < 0.3

else:

return False

def evaluiraj(self, test_podaci):
"""Eyaluira agenta na test podacima."""
tocnih = 0
for x, y in test_podaci:
if self.predvida(x) ==
to¢nih += 1
self .fitness = toénih / len(test_podaci)

return self.fitness

def evolucija_biasa(generacije=20, veliéina_populacije=20):

""rSimulira evoluciju tnduktivnog biasa. """

Mogucét biast

biasi = ["linearni", "kvadratni", "neutralni',

"sloZeni_1", "sloZeni_2", "kvadratni_modificiran"]

Stvort pocletnu populaciju

populacija = [Agent(random.choice(biasi)) for

Test podact (XOR problem)
test_podaci = [
(np.array([0.2, 0.2]), False),

in range(veliéina_populacije)]

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RACUNALNIH ZNANOSTI

203

.81), True),
.21), True),
.8]), False),
.1]), False),
.5]), False),
.51), True),
.91), True),
.4]), False),
.6]), False),
.71), True),
.31), True),

(np.array([0.

-

(np.array ([0.

-

(np.array([0.

(np.array([0.

-

-

(np.array([0.
(np.array([0.
(np.array([0.

-

(np.array([0.

-

(np.array([0.

-

(np.array([0.

™

-

~N W O P OO =, U1 0 0 N
O O O O O O © © © O o

(np.array([0.

print("Simulacija evolucije induktivnog biasa:")
print ("="x41)

print(f"\nInicijalna populacija: {velilina_populacije} agenata s razliéitim biasima")

print ("Okolis: jednostavan XOR svijet")
print("\nEvolucija kroz generacije:")

print ("-"%27)

povijest = []

for gen in range(generacije):
Evaluiraj sve agente
for agent in populacija:

agent.evaluiraj(test_podaci)

Sortiraj po fitness-u

populacija.sort(key=lambda a: a.fitness, reverse=True)

Zapisivanje najboljih
if gen % 5 == 0 or gen == generacije - 1:
najbolji = populacijal[0]
print(f"Generacija {gen+1}: Najbolji bias = {najbolji.bias} "
f£"({najbolji.fitness*100:.1f}), tocnosti)")

Selekcija i reprodukcija (elitizam + turnir)

nova_populacija = populacijal:5] # ZadrzZi najboljih 5

while len(nova_populacija) < veliina_populacije:
Turnirska selekcija
turnir = random.sample(populacijal:10], 2)

pobjednik = max(turnir, key=lambda a: a.fitness)

Stvori novog agenta s moguéom mutacijom

if random.random() < 0.1: # 10/ Sanse za mutaciju
novi_bias = random.choice(biasi)

else:

novi_bias = pobjednik.bias

nova_populacija.append(Agent (novi_bias))

populacija = nova_populacija

POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

204 UCENJE
102
103 # Finalna statistika
104 print ("\nDistribucija biasa u finaliznoj populaciji:")
105 print ("-"x45)
106
107 bias_count = {}
108 for agent in populacija:
109 bias_count [agent.bias] = bias_count.get(agent.bias, 0) + 1
110
111 for bias, count in sorted(bias_count.items(), key=lambda x: x[1], reverse=True):
112 postotak = 100 * count / velifina_populacije
113 print (£"{bias}: {postotak:.1f}")
114
115 print("\nZakljulak: Evolucija prirodno selektira biase")
116 print("koji odgovaraju strukturi okolisa!")

117
118 # Pokrent simulaciju

119 evolucija_biasa()

Output

Simulacija evolucije induktivnog biasa:

Inicijalna populacija: 20 agenata s razlicitim biasima
OkoliS: jednostavan XOR svijet

Evolucija kroz generacije:

Generacija 1: Najbolji bias = kvadratni (83.3%, to&nosti)
Generacija 6: Najbolji bias = sloZeni_1 (100.0% tolnosti)
Generacija 11: Najbolji bias = sloZeni_1 (100.0% tocnosti)
Generacija 16: Najbolji bias = sloZeni_1 (100.0% to&nosti)
Generacija 20: Najbolji bias = sloZeni_1 (100.0% tocnosti)

Distribucija biasa u finaliznoj populaciji:
sloZeni_1: 95.0%
sloZeni 2: 5.0%

ZakljucCak: Evolucija prirodno selektira biase
koji odgovaraju strukturi okoliSa!

Kako se nositi s Goodmanovim problemom u praksi?

1. Regularizacija - ogranicava slozenost hipoteza

9.1

. NOVI PROBLEM INDUKCLJE KROZ PRIZMU RACUNALNIH ZNANOSTI

205

2. Krizna validacija - testira generalizaciju
3. Occamova ostrica - preferira jednostavnije hipoteze
4. Domensko znanje - koristi ljudsko znanje o problemu

5. Ansambl metode - kombinira razli¢ite biase

1 def occamova_oStrica(hipoteze):

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

def

def

"""Odabire najjednostavniju hipotezu."""
Definiraj sloZenost kao broj parametara/prijelaza
slozenosti = {}
for naziv, hip in hipoteze.items():
if naziv == "standard":
slozenosti[naziv]l = 1 # Najjednostavnija
else:
Grue hipoteze imaju dodatni parametar (vrijeme prijelaza)

sloZenosti[naziv] = 2

Odabert hipotezu s majmanjom sloZenoScéu
najjednostavnija = min(sloZenosti.items(), key=lambda x: x[1])

return najjednostavnijal[0], sloZenosti

bayesov_pristup(hipoteze, opaZanja, priori):
"""Koristi Bayesovo zakljucivanje s priorima."""

posteriori = {}

for naziv, hip in hipoteze.items():
Likelihood - sve hipoteze objasnjavaju podatke jednako dobro
likelihood = 1.0 # Pojednostavljeno

Posterior proporcionalan je prior * likelihood

posteriori[naziv] = priori[naziv] * likelihood

Normaliziraj
ukupno = sum(posteriori.values())
for naziv in posteriori:

posteriori[naziv] /= ukupno

Odaberi hipotezu s najveéim posteriorom
najbolja = max(posteriori.items(), key=lambda x: x[1])

return najbolja[0], posteriori

ansambl_metoda(hipoteze, teZine):
"""Kombinira predvidanja viSe hipoteza."""

test_vremena = [

datetime (2025, 1, 1),
datetime (2040, 1, 1),
datetime (2060, 1, 1),
datetime(2110, 1, 1)

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

206

UCENJE

predvidanja

= {r

for t in test_vremena:

glasovi

= {"zelen": 0, "plav": 0}

for naziv, hip in hipoteze.items():

pred = hip.predvida(t)

glasovi[pred] += teZine[naziv]

predvidanjalt.year] = glasovi

return predvidanja

Demonstractija

print("Praktiéna rjeSenja za Goodmanov problem:")

print ("="*41)

print ("\nTest razliitih pristupa na 'grue' problemu:")

Pripremt hipoteze

test_hipoteze =

"standard":

"grue_2030":
"grue_2050":
"grue_2100":

{

hipoteze["standard"],
hipoteze["grue_2030"],
hipoteze["grue_2050"],
hipoteze["grue_2100"]

1. Bez regularizacije

print("\nl. Bez

regularizacije (prihvacéa sve hipoteze):")

print(f" Razmatrane hipoteze: {', '.join(test_hipoteze.keys())}")
print(" Odabrana: standard (proizvoljan izbor)")
print (" Problem: Nema kriterija za izbor!")

2. Occamova oStrica

print("\n2. Occamova oStrica (preferira jednostavnije):")

najbolja_occam,

sloZzenosti = occamova_oStrica(test_hipoteze)

print(" SloZenost hipoteza:")

for naziv, sloz
komentar =

print(£"

in sorted(sloZenosti.items(), key=lambda x: x[1]):

" (najjednostavnija)" if sloz == 1 else ""

{naziv}: {sloz}{komentarl}")

print(f" Odabrana: {najbolja_occam}")

print(" Razlog: NajniZa sloZenost")

3. Bayesov pristup

print("\n3. Bayesov pristup (koristi priore):")

priori = {

"standard":

"grue_2030":
"grue_2050":
"grue_2100":

}
najbolja_bayes,

print(" Prior

for naziv, p in

0.7, # Visok prior za standardnu hipotezu
0.1,
0. il
0.1

posteriori = bayesov_pristup(test_hipoteze, opaZanja_zeleni, priori)

vjerojatnosti:")

priori.items():

98

99

100

101

102

103

104

106

107

108

110

111

112

113

114

115

116

117

118

119

120

121

122

123

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RACUNALNIH ZNANOSTI

207

print (£" {naziv}: {p:.3f}")
print(" Posterior (nakon opaZanja):")
for naziv, p in posteriori.items():

print(£" {naziv}: {p:.3f}")
print(f" Odabrana: {najbolja_bayesl}")

print(" Razlog: Najvisi posterior")

4. Ansambl metoda
print("\n4. Ansambl metoda (kombinira hipoteze):")
tezine = {
"standard": 0.7,
"grue_2030": 0.1,
"grue_2050": 0.1,
"grue_2100": 0.1
}
ansambl_pred = ansambl_metoda(test_hipoteze, tezine)
print(" TeZinski prosjek predvidanja:")
for godina, glasovi in ansambl_pred.items():
ukupno = sum(glasovi.values())
postotak_zelen = 100 * glasovi["zelen"] / ukupno
postotak_plav = 100 * glasovi["plav"] / ukupno
print(f" Za {godinal}: {postotak_zelen:.1f}) zeleno, {postotak_plav:.1f}} plavo")

print(" Predvidanje: Ponderirana kombinacija")

print("\nZakljucak: Prakticna rjeSenja koriste dodatne")

print ("kriterije izvan Eiste logike za izbor hipoteza.")

Output

Prakticna rjeSenja za Goodmanov problem:

Test razlicitih pristupa na 'grue' problemu:

1. Bez regularizacije (prihvaca sve hipoteze):
Razmatrane hipoteze: standard, grue_2030, grue_2050, grue_2100
Odabrana: standard (proizvoljan izbor)
Problem: Nema kriterija za izbor!

2. Occamova oStrica (preferira jednostavnije):
SloZenost hipoteza:
standard: 1 (najjednostavnija)

grue_2030: 2
grue_2050: 2
grue_2100: 2

Odabrana: standard
Razlog: NajniZa sloZenost

3. Bayesov pristup (koristi priore):
Prior vjerojatnosti:
standard: 0.700

208

POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UCENJE

grue_2030: 0.100
grue_2050: 0.100
grue_2100: 0.100

Posterior (nakon opaZanja):
standard: 0.700
grue_2030: 0.100
grue_2050: 0.100
grue_2100: 0.100

Odabrana: standard

Razlog: NajviSi posterior

. Ansambl metoda (kombinira hipoteze):

TeZinski prosjek predvidanja:

Za 2025: 100.0% zeleno, 0.0% plavo
Za 2040: 90.0% zeleno, 10.0% plavo
Za 2060: 80.0% zeleno, 20.0% plavo
Za 2110: 70.0% zeleno, 30.0% plavo
Predvidanje: Ponderirana kombinacija

Zakljucak: Prakticna rjeSenja koriste dodatne
kriterije izvan Ciste logike za izbor hipoteza.

Kroz ovu biljeznicu istrazili smo duboku vezu izmedu Goodmanovog novog problema

indukcije i No-Free-Lunch teorema u strojnom ucenju:

Kljuc¢ni uvidi:

dobro podrzanih hipoteza

. Beskonacnost hipoteza: Za svaki skup podataka postoji beskona¢no mnogo jednako

Nuznost biasa: Bez induktivnog biasa, ucenje je nemoguce - to nije bug veé feature!

NFL kao formalizacija: No-Free-Lunch teoremi su matematicka formalizacija Good-

manovog filozofskog argumenta

Evolucija i bias: Ljudska sposobnost ucenja mozda uspijeva zbog evolucijski oblikovanih

biasa

izbora medu hipotezama

Filozofske implikacije:

. Prakticna rjeSenja: Regularizacija, Occamova oStrica i Bayesov pristup nude nacine

Goodmanov problem pokazuje da ¢ista logika nije dovoljna za induktivno zakljuc¢ivanje.
Trebamo dodatne kriterije - jednostavnost, priore, domensko znanje - koji nisu ¢isto logicki.

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RACUNALNIH ZNANOSTI 209

Implikacije za AI:

Svaki sustav umjetne inteligencije mora rijesiti Goodmanov problem implicitnim ili eksplicitnim
izborom induktivnog biasa. Nema univerzalnog algoritma ucenja - uspjeh ovisi o
podudaranju izmedu biasa algoritma i strukture problema.

Kao $to Goodman zakljucuje:

"Valjanost induktivnog zakljucka nije stvar logike veé stvar povijesti uporabe
predikata."

Mozda je klju¢ uspjesnog strojnog ucenja u tome da naucimo kako odabrati prave biase za
prave probleme - lekcija koju evolucija uci ve¢ milijunima godina.

	II SVJETOVI INDUKTIVNIH LOGIKA
	Goodmanovi svijetovi: Problem indukcije i strojno učenje
	Novi problem indukcije kroz prizmu računalnih znanosti
	Klasični problem indukcije
	Goodmanov "grue" predikat
	Beskonačnost alternativnih hipoteza
	No-Free-Lunch teoremi u strojnom učenju
	Konstrukcija "savijenih" koncepata
	Implikacije za strojno učenje
	Filozofske implikacije
	Praktične implikacije i rješenja
	Zaključak

