
Poglavlje 9

Goodmanovi svijetovi: Problem in-
dukcije i strojno učenje

9.1 Novi problem indukcije kroz prizmu računalnih znanosti

Nelson Goodman je 1955. godine formulirao novi problem indukcije koji pokazuje temeljnu
poteškoću u razlikovanju valjanih od nevaljanih induktivnih zaključaka. Ovaj problem ima
duboke implikacije za moderno strojno učenje.

"Činjenica da se smaragd može jednako dobro opisati kao ’zelen’ ili kao ’gruen’
otkriva da svaki skup opažanja podržava beskonačno mnogo hipoteza." - Nelson
Goodman

U ovoj bilježnici istražujemo kako se Goodmanova zagadka manifestira u kontekstu strojnog
učenja kroz No-Free-Lunch teoreme.

9.1.1 Klasični problem indukcije

Prije nego što uronimo u Goodmanov novi problem, razmotrimo klasični Humeov problem
indukcije:

Opaženi slučajevi ?−→ Opći zaključak

Induktivno zaključivanje pokušava iz konačnog broja opažanja izvesti općeniti zakon. To
je temelj znanosti, ali filozofski gledano - nema logičke nužnosti da će se buduća opažanja
ponašati kao prošla.

1 from dataclasses import dataclass

187



188
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

2 from datetime import datetime, timedelta
3 import random
4

5 @dataclass
6 class Opažanje:
7 """Predstavlja jedno empirijsko opažanje."""
8 objekt: str
9 svojstvo: str

10 vrijeme: datetime
11

12 def __repr__(self):
13 return f"{self.objekt}: {self.svojstvo} (vrijeme: {self.vrijeme.date()})"
14

15 # Generiraj opažanja smaragda
16 def generiraj_opažanja(n=5, svojstvo="zelen"):
17 """Generira niz opažanja smaragda."""
18 opažanja = []
19 početak = datetime(2020, 1, 1)
20

21 for i in range(n):
22 vrijeme = početak + timedelta(days=random.randint(i*200, (i+1)*200))
23 opažanja.append(Opažanje(f"Smaragd {i+1}", svojstvo, vrijeme))
24

25 return opažanja
26

27 # Klasična indukcija
28 opažanja_zeleni = generiraj_opažanja(5, "zelen")
29

30 print("Klasična indukcija:")
31 print("="*20)
32 print("Opažanja smaragda:")
33 for op in opažanja_zeleni:
34 print(f" {op}")
35 print("\nInduktivni zaključak: Svi smaragdi su zeleni")

Output

Klasična indukcija:
====================
Opažanja smaragda:

Smaragd 1: zelen (vrijeme: 2020-03-17)
Smaragd 2: zelen (vrijeme: 2021-01-21)
Smaragd 3: zelen (vrijeme: 2021-06-04)
Smaragd 4: zelen (vrijeme: 2022-03-01)
Smaragd 5: zelen (vrijeme: 2022-07-22)

Induktivni zaključak: Svi smaragdi su zeleni



9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 189

9.1.2 Goodmanov "grue" predikat

Goodman uvodi novi predikat "grue" (kombinacija "green" i "blue"):

grue(x) =
{

zelen(x) ako je x opažen prije t0
plav(x) ako je x opažen nakon t0

gdje je t0 neki budući trenutak (npr. 1. siječnja 2100.).

Paradoks: Sva dosadašnja opažanja zelenih smaragda jednako dobro potvrđuju hipotezu
"svi smaragdi su zeleni" kao i hipotezu "svi smaragdi su grueni"!

1 class GruePredikat:
2

3 """Implementacija Goodmanovog 'grue' predikata."""
4

5 def __init__(self, kritični_trenutak):
6 self.t0 = kritični_trenutak
7

8 def je_grue(self, objekt, vrijeme_opažanja):
9 """Provjerava je li objekt 'grue' u danom trenutku."""

10 if vrijeme_opažanja < self.t0:
11 # Prije t0: grue = zelen
12 return objekt.svojstvo == "zelen"
13 else:
14 # Nakon t0: grue = plav
15 return objekt.svojstvo == "plav"
16

17 def predviđa(self, vrijeme):
18 """Što predviđa grue hipoteza za dano vrijeme."""
19 if vrijeme < self.t0:
20 return "zelen"
21 else:
22 return "plav"
23

24 # Definiraj kritični trenutak
25 t0 = datetime(2100, 1, 1)
26 grue_predikat = GruePredikat(t0)
27

28 print("Goodmanov problem indukcije:")
29 print("="*29)
30 print(f"Kritični trenutak t0: {t0.date()}")
31 print("\nProvjera hipoteza za prošla opažanja:")
32 print("-"*38)
33

34 # Testiraj obje hipoteze na istim podacima
35 for op in opažanja_zeleni[:3]: # Prikaži prva 3
36 print(f"{op.objekt} ({op.vrijeme.date()}):")
37 print(f" Opaženo: {op.svojstvo}")



190
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

38

39 # Hipoteza 1: Svi smaragdi su zeleni
40 h1_istina = op.svojstvo == "zelen"
41 print(f" H1 (zeleni): {'⊤' if h1_istina else '⊥'} (predviđa: zelen)")
42

43 # Hipoteza 2: Svi smaragdi su grueni
44 h2_predviđanje = grue_predikat.predviđa(op.vrijeme)
45 h2_istina = op.svojstvo == h2_predviđanje
46 print(f" H2 (grueni): {'⊤' if h2_istina else '⊥'} (predviđa: {h2_predviđanje} -

{'prije' if op.vrijeme < t0 else 'nakon'} t0)")↪→

47 print()
48

49 print("Rezultat: Obje hipoteze jednako dobro objašnjavaju sva opažanja!")
50 print(f"\nPredviđanja za budućnost (nakon {t0.date()}):")
51 print("-"*46)
52 print(" H1 (svi zeleni): smaragdi će biti zeleni")
53 print(" H2 (svi grueni): smaragdi će biti plavi")

Output

Goodmanov problem indukcije:
=============================
Kritični trenutak t0: 2100-01-01

Provjera hipoteza za prošla opažanja:
--------------------------------------
Smaragd 1 (2020-03-17):

Opaženo: zelen
H1 (zeleni): ⊤ (predviđa: zelen)
H2 (grueni): ⊤ (predviđa: zelen - prije t0)

Smaragd 2 (2021-01-21):
Opaženo: zelen
H1 (zeleni): ⊤ (predviđa: zelen)
H2 (grueni): ⊤ (predviđa: zelen - prije t0)

Smaragd 3 (2021-06-04):
Opaženo: zelen
H1 (zeleni): ⊤ (predviđa: zelen)
H2 (grueni): ⊤ (predviđa: zelen - prije t0)

Rezultat: Obje hipoteze jednako dobro objašnjavaju sva opažanja!

Predviđanja za budućnost (nakon 2100-01-01):
----------------------------------------------

H1 (svi zeleni): smaragdi će biti zeleni
H2 (svi grueni): smaragdi će biti plavi



9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 191

9.1.3 Beskonačnost alternativnih hipoteza

Goodmanov argument pokazuje da za svaki skup opažanja postoji beskonačno mnogo
jednako dobro podržanih hipoteza. Možemo konstruirati "grue1", "grue2", ... sa različitim
kritičnim trenucima:

gruen(x) =
{

zelen(x) ako je x opažen prije tn
plav(x) ako je x opažen nakon tn

1 def stvori_grue_hipotezu(kritični_trenutak, naziv):
2 """Stvara grue hipotezu s danim kritičnim trenutkom."""
3 class GrueHipoteza:
4 def __init__(self):
5 self.t0 = kritični_trenutak
6 self.naziv = naziv
7

8 def predviđa(self, vrijeme):
9 return "zelen" if vrijeme < self.t0 else "plav"

10

11 def provjeri(self, opažanje):
12 predviđanje = self.predviđa(opažanje.vrijeme)
13 return opažanje.svojstvo == predviđanje
14

15 return GrueHipoteza()
16

17 # Stvori više alternativnih hipoteza
18 hipoteze = {
19 "standard": type('StandardHipoteza', (), {
20 'naziv': 'standard',
21 'predviđa': lambda self, t: "zelen",
22 'provjeri': lambda self, op: op.svojstvo == "zelen"
23 })(),
24 "grue_2030": stvori_grue_hipotezu(datetime(2030, 1, 1), "grue_2030"),
25 "grue_2050": stvori_grue_hipotezu(datetime(2050, 1, 1), "grue_2050"),
26 "grue_2100": stvori_grue_hipotezu(datetime(2100, 1, 1), "grue_2100"),
27 "grue_2200": stvori_grue_hipotezu(datetime(2200, 1, 1), "grue_2200"),
28 }
29

30 print("Beskonačnost alternativnih hipoteza:")
31 print("="*37)
32 print("\nZa iste podatke možemo konstruirati mnoštvo hipoteza:\n")
33

34 # Prikaži predviđanja svake hipoteze
35 test_vremena = [datetime(2050, 6, 15), datetime(2150, 6, 15)]
36

37 for naziv, hipoteza in hipoteze.items():
38 if naziv == "standard":
39 print(f"Hipoteza '{naziv}': Svi smaragdi su uvijek zeleni")
40 else:
41 t0_godina = int(naziv.split('_')[1])



192
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

42 print(f"Hipoteza '{naziv}': grueni s prijelazom {t0_godina}-01-01")
43

44 for t in test_vremena:
45 print(f" Predviđanje za {t.year}: {hipoteza.predviđa(t)}")
46 print()
47

48 # Provjeri konzistentnost s postojećim opažanjima
49 print("Provjera konzistentnosti s opažanjima:")
50 print("-"*40)
51

52 for naziv, hipoteza in hipoteze.items():
53 rezultati = [hipoteza.provjeri(op) for op in opažanja_zeleni]
54 simboli = "".join(['⊤' if r else '⊥' for r in rezultati])
55 točnih = sum(rezultati)
56 print(f"{naziv}: {simboli} ({točnih}/{len(rezultati)} točnih)")
57

58 print("\nSve hipoteze su jednako dobro podržane postojećim podacima!")

Output

Beskonačnost alternativnih hipoteza:
=====================================

Za iste podatke možemo konstruirati mnoštvo hipoteza:

Hipoteza 'standard': Svi smaragdi su uvijek zeleni
Predviđanje za 2050: zelen
Predviđanje za 2150: zelen

Hipoteza 'grue_2030': grueni s prijelazom 2030-01-01
Predviđanje za 2050: plav
Predviđanje za 2150: plav

Hipoteza 'grue_2050': grueni s prijelazom 2050-01-01
Predviđanje za 2050: plav
Predviđanje za 2150: plav

Hipoteza 'grue_2100': grueni s prijelazom 2100-01-01
Predviđanje za 2050: zelen
Predviđanje za 2150: plav

Hipoteza 'grue_2200': grueni s prijelazom 2200-01-01
Predviđanje za 2050: zelen
Predviđanje za 2150: zelen

Provjera konzistentnosti s opažanjima:
----------------------------------------
standard: ⊤⊤⊤⊤⊤ (5/5 točnih)
grue_2030: ⊤⊤⊤⊤⊤ (5/5 točnih)
grue_2050: ⊤⊤⊤⊤⊤ (5/5 točnih)



9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 193

grue_2100: ⊤⊤⊤⊤⊤ (5/5 točnih)
grue_2200: ⊤⊤⊤⊤⊤ (5/5 točnih)

Sve hipoteze su jednako dobro podržane postojećim podacima!

9.1.4 No-Free-Lunch teoremi u strojnom učenju

No-Free-Lunch (NFL) teoremi pokazuju da je Goodmanov problem duboko ukorijenjen u
strojnom učenju. Teorem kaže:

∑
f∈F

GP(L, f) = 0.5

gdje je:

• L - bilo koji algoritam učenja

• F - skup svih mogućih ciljnih funkcija

• GP - generalizacijska performansa

Značenje: Prosječna performansa bilo kojeg algoritma učenja preko svih mogućih problema
jednaka je slučajnom pogađanju!

1 import itertools
2

3 class BooleanConcept:
4 """Predstavlja Booleovu funkciju kao koncept za učenje."""
5

6 def __init__(self, truth_table, naziv=""):
7 self.tablica = truth_table
8 self.naziv = naziv
9

10 def evaluiraj(self, ulaz):
11 """Evaluira funkciju za dani ulaz."""
12 return self.tablica.get(ulaz, False)
13

14 def konzistentan_s(self, skup_učenja):
15 """Provjerava je li koncept konzistentan sa skupom za učenje."""
16 for ulaz, izlaz in skup_učenja.items():
17 if self.evaluiraj(ulaz) != izlaz:
18 return False
19 return True
20

21 # Definiraj skup za učenje (parcijalna tablica istinitosti)
22 skup_učenja = {



194
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

23 (False, False): False,
24 (False, True): True,
25 (True, False): True,
26 # (True, True) nije u skupu za učenje!
27 }
28

29 # Konstruiraj dva različita koncepta konzistentna s podacima
30 # Koncept 1: XOR
31 xor_tablica = {
32 (False, False): False,
33 (False, True): True,
34 (True, False): True,
35 (True, True): False # XOR
36 }
37

38 # Koncept 2: OR
39 or_tablica = {
40 (False, False): False,
41 (False, True): True,
42 (True, False): True,
43 (True, True): True # OR
44 }
45

46 koncepti = [
47 BooleanConcept(xor_tablica, "XOR funkcija"),
48 BooleanConcept(or_tablica, "OR funkcija")
49 ]
50

51 print("No-Free-Lunch demonstracija:")
52 print("="*29)
53 print()
54

55 # Prikaži skup za učenje
56 print("Skup za učenje: ", end="")
57 print("{", end="")
58 for i, (ulaz, izlaz) in enumerate(skup_učenja.items()):
59 if i > 0:
60 print(", ", end="")
61 ulaz_str = f"({'⊤' if ulaz[0] else '⊥'}, {'⊤' if ulaz[1] else '⊥'})"
62 izlaz_str = '⊤' if izlaz else '⊥'
63 print(f"{ulaz_str}: {izlaz_str}", end="")
64 print("}")
65

66 testni = (True, True)
67 print(f"Testni primjer: ({'⊤' if testni[0] else '⊥'}, {'⊤' if testni[1] else '⊥'}) = ?")
68 print()
69

70 print("Mogući koncepti konzistentni s podacima:")
71 print("-"*42)
72

73 for i, koncept in enumerate(koncepti, 1):
74 print(f"Koncept {i}: {koncept.naziv}")
75



9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 195

76 # Predviđanje za testni primjer
77 pred = koncept.evaluiraj(testni)
78 print(f" Predviđanje za ({'⊤' if testni[0] else '⊥'}, {'⊤' if testni[1] else '⊥'}):

{'⊤' if pred else '⊥'}")↪→

79

80 # Prikaži cijelu tablicu
81 print(" Tablica:")
82 for ulaz in [(False, False), (False, True), (True, False), (True, True)]:
83 izlaz = koncept.evaluiraj(ulaz)
84 ulaz_str = f"({'⊤' if ulaz[0] else '⊥'}, {'⊤' if ulaz[1] else '⊥'})"
85 izlaz_str = '⊤' if izlaz else '⊥'
86 oznaka = " ✓" if ulaz in skup_učenja else ""
87 print(f" {ulaz_str} → {izlaz_str}{oznaka}")
88 print()
89

90 print("Oba koncepta su jednako valjana za dane podatke!")
91 print("Ali daju različita predviđanja za neviđene primjere.")

Output

No-Free-Lunch demonstracija:
=============================

Skup za učenje: {(⊥, ⊥): ⊥, (⊥, ⊤): ⊤, (⊤, ⊥): ⊤}
Testni primjer: (⊤, ⊤) = ?

Mogući koncepti konzistentni s podacima:
------------------------------------------
Koncept 1: XOR funkcija

Predviđanje za (⊤, ⊤): ⊥
Tablica:

(⊥, ⊥) → ⊥ ✓
(⊥, ⊤) → ⊤ ✓
(⊤, ⊥) → ⊤ ✓
(⊤, ⊤) → ⊥

Koncept 2: OR funkcija
Predviđanje za (⊤, ⊤): ⊤
Tablica:

(⊥, ⊥) → ⊥ ✓
(⊥, ⊤) → ⊤ ✓
(⊤, ⊥) → ⊤ ✓
(⊤, ⊤) → ⊤

Oba koncepta su jednako valjana za dane podatke!
Ali daju različita predviđanja za neviđene primjere.



196
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

9.1.5 Konstrukcija "savijenih" koncepata

NFL teoremi pokazuju da za svaki koncept C koji algoritam učenja dobro nauči, postoji
"savijeni" koncept C ′ koji će biti loše naučen:

C ′(x) =
{
C(x) ako x ∈ SkupUčenja
¬C(x) ako x /∈ SkupUčenja

Ovo je direktna analogija s Goodmanovim "grue" predikatom!

1 import numpy as np
2

3 def stvori_savijeni_koncept(originalni_koncept, skup_učenja):
4 """Stvara 'savijeni' koncept koji se slaže na skupu učenja ali ne generalizira."""
5

6 class SavijeniKoncept:
7 def __init__(self):
8 self.originalni = originalni_koncept
9 self.memorija = skup_učenja

10

11 def predviđa(self, primjer):
12 # Ako je primjer u skupu učenja, koristi originalnu funkciju
13 for x_mem, _ in self.memorija:
14 if np.allclose(primjer, x_mem):
15 return self.originalni(primjer)
16

17 # Inače, vrati suprotno od originalne funkcije
18 return not self.originalni(primjer)
19

20 return SavijeniKoncept()
21

22 # Definiraj jednostavan linearni koncept
23 def linearni_koncept(x):
24 """Jednostavan linearni klasifikator: x[0] + x[1] > 1"""
25 return x[0] + x[1] > 1
26

27 # Generiraj skup za učenje
28 np.random.seed(42)
29 skup_učenja_ml = []
30 for _ in range(6):
31 x = np.random.rand(2)
32 y = linearni_koncept(x)
33 skup_učenja_ml.append((x, y))
34

35 # Stvori savijeni koncept
36 savijeni = stvori_savijeni_koncept(linearni_koncept, skup_učenja_ml)
37

38 print("Konstrukcija 'savijenih' koncepata:")
39 print("="*36)



9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 197

40 print("\nOriginalni koncept C: jednostavna linearna granica")
41 print(f"Skup za učenje: {len(skup_učenja_ml)} primjera")
42 print()
43

44 # Testiraj na skupu za učenje
45 print("Performanse na skupu za učenje:")
46 print("-"*32)
47 točnih_C = 0
48 točnih_C_prime = 0
49

50 for x, y in skup_učenja_ml:
51 pred_C = linearni_koncept(x)
52 pred_C_prime = savijeni.predviđa(x)
53

54 print(f"Primjer ({x[0]:.1f}, {x[1]:.1f}) → ", end="")
55 print(f"Očekivano: {'⊤' if y else '⊥'}, ", end="")
56 print(f"C: {'⊤' if pred_C else '⊥'} {'✓' if pred_C == y else '×'}, ", end="")
57 print(f"C': {'⊤' if pred_C_prime else '⊥'} {'✓' if pred_C_prime == y else '×'}")
58

59 if pred_C == y:
60 točnih_C += 1
61 if pred_C_prime == y:
62 točnih_C_prime += 1
63

64 print(f"\nTočnost na skupu za učenje:")
65 print(f" Koncept C: {100 * točnih_C / len(skup_učenja_ml):.1f}%")
66 print(f" Koncept C': {100 * točnih_C_prime / len(skup_učenja_ml):.1f}%")
67

68 # Testiraj na novim primjerima
69 print("\nPerformanse na testnom skupu:")
70 print("-"*30)
71

72 testni_skup = [np.random.rand(2) for _ in range(5)]
73 točnih_test_C = 0
74 točnih_test_C_prime = 0
75

76 for x_test in testni_skup:
77 y_pravi = linearni_koncept(x_test) # "Prava" oznaka
78 pred_C = linearni_koncept(x_test)
79 pred_C_prime = savijeni.predviđa(x_test)
80

81 print(f"Test ({x_test[0]:.1f}, {x_test[1]:.1f}) → ", end="")
82 print(f"C: {'⊤' if pred_C else '⊥'}, ", end="")
83 print(f"C': {'⊤' if pred_C_prime else '⊥'}", end="")
84 if pred_C != pred_C_prime:
85 print(" (različito!)")
86 else:
87 print()
88

89 if pred_C == y_pravi:
90 točnih_test_C += 1
91 if pred_C_prime == y_pravi:
92 točnih_test_C_prime += 1



198
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

93

94 print(f"\nTočnost na testnom skupu:")
95 print(f" Koncept C: {100 * točnih_test_C / len(testni_skup):.1f}% (dobar)")
96 print(f" Koncept C': {100 * točnih_test_C_prime / len(testni_skup):.1f}% (loš!)")
97 print("\nC' je 'savijen' - slaže se s C na skupu za učenje,")
98 print("ali se ponaša suprotno na novim primjerima!")

Output

Konstrukcija 'savijenih' koncepata:
====================================

Originalni koncept C: jednostavna linearna granica
Skup za učenje: 6 primjera

Performanse na skupu za učenje:
--------------------------------
Primjer (0.4, 1.0) → Očekivano: ⊤, C: ⊤ ✓, C': ⊤ ✓
Primjer (0.7, 0.6) → Očekivano: ⊤, C: ⊤ ✓, C': ⊤ ✓
Primjer (0.2, 0.2) → Očekivano: ⊥, C: ⊥ ✓, C': ⊥ ✓
Primjer (0.1, 0.9) → Očekivano: ⊥, C: ⊥ ✓, C': ⊥ ✓
Primjer (0.6, 0.7) → Očekivano: ⊤, C: ⊤ ✓, C': ⊤ ✓
Primjer (0.0, 1.0) → Očekivano: ⊥, C: ⊥ ✓, C': ⊥ ✓

Točnost na skupu za učenje:
Koncept C: 100.0%
Koncept C': 100.0%

Performanse na testnom skupu:
------------------------------
Test (0.8, 0.2) → C: ⊤, C': ⊥ (različito!)
Test (0.2, 0.2) → C: ⊥, C': ⊤ (različito!)
Test (0.3, 0.5) → C: ⊥, C': ⊤ (različito!)
Test (0.4, 0.3) → C: ⊥, C': ⊤ (različito!)
Test (0.6, 0.1) → C: ⊥, C': ⊤ (različito!)

Točnost na testnom skupu:
Koncept C: 100.0% (dobar)
Koncept C': 0.0% (loš!)

C' je 'savijen' - slaže se s C na skupu za učenje,
ali se ponaša suprotno na novim primjerima!



9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 199

9.1.6 Implikacije za strojno učenje

Induktivni bias kao nužnost

NFL teoremi i Goodmanov problem pokazuju da induktivni bias nije nedostatak već
nužnost svakog sustava učenja. Bez pretpostavki o prirodi problema, učenje je nemoguće.

Različiti algoritmi imaju različite induktivne pristranosti:

• Linearna regresija: pretpostavlja linearnu vezu

• Stabla odlučivanja: pretpostavljaju hijerarhijsku strukturu

• Neuronske mreže: pretpostavljaju kompozicionalnost

• k-NN: pretpostavlja lokalnu glatkoću

1 def najbliži_susjed(točka, skup_učenja):
2 """Jednostavan 1-NN klasifikator."""
3 min_udaljenost = float('inf')
4 najbliža_oznaka = None
5

6 for x, y in skup_učenja:
7 udaljenost = np.sqrt((točka[0] - x[0])**2 + (točka[1] - x[1])**2)
8 if udaljenost < min_udaljenost:
9 min_udaljenost = udaljenost

10 najbliža_oznaka = y
11

12 return najbliža_oznaka
13

14 def xor_funkcija(x):
15 """XOR funkcija: istinito ako je točno jedan ulaz > 0.5."""
16 return (x[0] > 0.5) != (x[1] > 0.5)
17

18 # Generiraj XOR podatke
19 xor_podaci = [
20 (np.array([0.1, 0.1]), False),
21 (np.array([0.1, 0.9]), True),
22 (np.array([0.9, 0.1]), True),
23 (np.array([0.9, 0.9]), False),
24 (np.array([0.3, 0.3]), False),
25 (np.array([0.3, 0.7]), True),
26 (np.array([0.7, 0.3]), True),
27 (np.array([0.7, 0.7]), False),
28 ]
29

30 # Definiraj različite algoritme s različitim biasima
31 algoritmi = [
32 ("Linearna granica (bias: linearnost)",
33 lambda x: x[0] + x[1] > 1),



200
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

34 ("Najbliži susjed (bias: lokalna glatkoća)",
35 lambda x: najbliži_susjed(x, xor_podaci)),
36 ("XOR funkcija (bias: točno odgovara problemu)",
37 xor_funkcija),
38 ("Uvijek ⊤ (bias: konstantnost)",
39 lambda x: True),
40 ]
41

42 print("Utjecaj induktivnog biasa:")
43 print("="*27)
44 print(f"\nPodatkovni skup: {len(xor_podaci)} točaka koje čine XOR uzorak")
45 print("\nRazličiti algoritmi s različitim biasima:")
46 print("-"*43)
47

48 test_točke = [np.array([0.5, 0.5]), np.array([0.2, 0.8])]
49

50 for i, (naziv, algoritam) in enumerate(algoritmi, 1):
51 print(f"\n{i}. {naziv}")
52

53 # Testiraj na nekoliko točaka
54 for točka in test_točke:
55 pred = algoritam(točka)
56 print(f" Predviđanje za ({točka[0]:.1f}, {točka[1]:.1f}): {'⊤' if pred else '⊥'}")
57

58 # Izračunaj točnost
59 točnih = sum(1 for x, y in xor_podaci if algoritam(x) == y)
60 točnost = 100 * točnih / len(xor_podaci)
61 print(f" Točnost na XOR podacima: {točnost:.1f}%")
62

63 # Komentar
64 if točnost > 90:
65 print(" → Savršen jer ima pravi bias")
66 elif točnost > 60:
67 print(" → Bolji, ali još uvijek ograničen")
68 else:
69 if "linearnost" in naziv:
70 print(" → Loš za XOR zbog krivog biasa")
71 else:
72 print(" → Loš zbog previše jednostavnog biasa")
73

74 print("\nZaključak: Uspjeh učenja ovisi o podudaranju")
75 print("između induktivnog biasa i stvarnog problema!")

Output

Utjecaj induktivnog biasa:
===========================

Podatkovni skup: 8 točaka koje čine XOR uzorak

Različiti algoritmi s različitim biasima:



9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 201

-------------------------------------------

1. Linearna granica (bias: linearnost)
Predviđanje za (0.5, 0.5): ⊥
Predviđanje za (0.2, 0.8): ⊥
Točnost na XOR podacima: 25.0%
→ Loš za XOR zbog krivog biasa

2. Najbliži susjed (bias: lokalna glatkoća)
Predviđanje za (0.5, 0.5): ⊥
Predviđanje za (0.2, 0.8): ⊤
Točnost na XOR podacima: 100.0%
→ Savršen jer ima pravi bias

3. XOR funkcija (bias: točno odgovara problemu)
Predviđanje za (0.5, 0.5): ⊥
Predviđanje za (0.2, 0.8): ⊤
Točnost na XOR podacima: 100.0%
→ Savršen jer ima pravi bias

4. Uvijek ⊤ (bias: konstantnost)
Predviđanje za (0.5, 0.5): ⊤
Predviđanje za (0.2, 0.8): ⊤
Točnost na XOR podacima: 50.0%
→ Loš zbog previše jednostavnog biasa

Zaključak: Uspjeh učenja ovisi o podudaranju
između induktivnog biasa i stvarnog problema!

9.1.7 Filozofske implikacije

Projektibilnost vs. neprojektibilnost

Goodman razlikuje projektibilne i neprojektibilne predikate:

• Projektibilni: "zelen", "okrugao", "teži od 1kg"

• Neprojektibilni: "grue", "gruen s prijelazom 2100."

Ali što čini predikat projektibilnim? Goodman sugerira da je to stvar ukorijenjenosti
(entrenchment) u našem jeziku i praksi.

Implikacije za AI i AGI

1. Nema univerzalnog algoritma učenja - svaki mora imati bias

2. Prijelaz od podataka na znanje zahtijeva pretpostavke



202
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

3. Ljudska inteligencija možda uspijeva jer ima evolucijski oblikovane biase

4. AGI sustavi moraju riješiti problem izbora pravog biasa

1 import random
2

3 class Agent:
4 """Agent s određenim induktivnim biasom."""
5

6 def __init__(self, bias_tip):
7 self.bias = bias_tip
8 self.fitness = 0
9

10 def predviđa(self, x):
11 """Predviđanje ovisno o biasu."""
12 if self.bias == "linearni":
13 return x[0] + x[1] > 1
14 elif self.bias == "kvadratni":
15 return x[0]**2 + x[1]**2 > 0.5
16 elif self.bias == "neutralni":
17 return random.choice([True, False])
18 elif self.bias == "složeni_1":
19 return (x[0] > 0.5) != (x[1] > 0.5) # Približno XOR
20 elif self.bias == "složeni_2":
21 return abs(x[0] - x[1]) > 0.3
22 elif self.bias == "kvadratni_modificiran":
23 return (x[0] - 0.5)**2 + (x[1] - 0.5)**2 < 0.3
24 else:
25 return False
26

27 def evaluiraj(self, test_podaci):
28 """Evaluira agenta na test podacima."""
29 točnih = 0
30 for x, y in test_podaci:
31 if self.predviđa(x) == y:
32 točnih += 1
33 self.fitness = točnih / len(test_podaci)
34 return self.fitness
35

36 def evolucija_biasa(generacije=20, veličina_populacije=20):
37 """Simulira evoluciju induktivnog biasa."""
38

39 # Mogući biasi
40 biasi = ["linearni", "kvadratni", "neutralni",
41 "složeni_1", "složeni_2", "kvadratni_modificiran"]
42

43 # Stvori početnu populaciju
44 populacija = [Agent(random.choice(biasi)) for _ in range(veličina_populacije)]
45

46 # Test podaci (XOR problem)
47 test_podaci = [
48 (np.array([0.2, 0.2]), False),



9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 203

49 (np.array([0.2, 0.8]), True),
50 (np.array([0.8, 0.2]), True),
51 (np.array([0.8, 0.8]), False),
52 (np.array([0.5, 0.1]), False),
53 (np.array([0.1, 0.5]), False),
54 (np.array([0.9, 0.5]), True),
55 (np.array([0.5, 0.9]), True),
56 (np.array([0.4, 0.4]), False),
57 (np.array([0.6, 0.6]), False),
58 (np.array([0.3, 0.7]), True),
59 (np.array([0.7, 0.3]), True),
60 ]
61

62 print("Simulacija evolucije induktivnog biasa:")
63 print("="*41)
64 print(f"\nInicijalna populacija: {veličina_populacije} agenata s različitim biasima")
65 print("Okoliš: jednostavan XOR svijet")
66 print("\nEvolucija kroz generacije:")
67 print("-"*27)
68

69 povijest = []
70

71 for gen in range(generacije):
72 # Evaluiraj sve agente
73 for agent in populacija:
74 agent.evaluiraj(test_podaci)
75

76 # Sortiraj po fitness-u
77 populacija.sort(key=lambda a: a.fitness, reverse=True)
78

79 # Zapisivanje najboljih
80 if gen % 5 == 0 or gen == generacije - 1:
81 najbolji = populacija[0]
82 print(f"Generacija {gen+1}: Najbolji bias = {najbolji.bias} "
83 f"({najbolji.fitness*100:.1f}% točnosti)")
84

85 # Selekcija i reprodukcija (elitizam + turnir)
86 nova_populacija = populacija[:5] # Zadrži najboljih 5
87

88 while len(nova_populacija) < veličina_populacije:
89 # Turnirska selekcija
90 turnir = random.sample(populacija[:10], 2)
91 pobjednik = max(turnir, key=lambda a: a.fitness)
92

93 # Stvori novog agenta s mogućom mutacijom
94 if random.random() < 0.1: # 10% šanse za mutaciju
95 novi_bias = random.choice(biasi)
96 else:
97 novi_bias = pobjednik.bias
98

99 nova_populacija.append(Agent(novi_bias))
100

101 populacija = nova_populacija



204
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

102

103 # Finalna statistika
104 print("\nDistribucija biasa u finaliznoj populaciji:")
105 print("-"*45)
106

107 bias_count = {}
108 for agent in populacija:
109 bias_count[agent.bias] = bias_count.get(agent.bias, 0) + 1
110

111 for bias, count in sorted(bias_count.items(), key=lambda x: x[1], reverse=True):
112 postotak = 100 * count / veličina_populacije
113 print(f"{bias}: {postotak:.1f}%")
114

115 print("\nZaključak: Evolucija prirodno selektira biase")
116 print("koji odgovaraju strukturi okoliša!")
117

118 # Pokreni simulaciju
119 evolucija_biasa()

Output

Simulacija evolucije induktivnog biasa:
=========================================

Inicijalna populacija: 20 agenata s različitim biasima
Okoliš: jednostavan XOR svijet

Evolucija kroz generacije:
---------------------------
Generacija 1: Najbolji bias = kvadratni (83.3% točnosti)
Generacija 6: Najbolji bias = složeni_1 (100.0% točnosti)
Generacija 11: Najbolji bias = složeni_1 (100.0% točnosti)
Generacija 16: Najbolji bias = složeni_1 (100.0% točnosti)
Generacija 20: Najbolji bias = složeni_1 (100.0% točnosti)

Distribucija biasa u finaliznoj populaciji:
---------------------------------------------
složeni_1: 95.0%
složeni_2: 5.0%

Zaključak: Evolucija prirodno selektira biase
koji odgovaraju strukturi okoliša!

9.1.8 Praktične implikacije i rješenja

Kako se nositi s Goodmanovim problemom u praksi?

1. Regularizacija - ograničava složenost hipoteza



9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 205

2. Križna validacija - testira generalizaciju

3. Occamova oštrica - preferira jednostavnije hipoteze

4. Domensko znanje - koristi ljudsko znanje o problemu

5. Ansambl metode - kombinira različite biase

1 def occamova_oštrica(hipoteze):
2 """Odabire najjednostavniju hipotezu."""
3 # Definiraj složenost kao broj parametara/prijelaza
4 složenosti = {}
5 for naziv, hip in hipoteze.items():
6 if naziv == "standard":
7 složenosti[naziv] = 1 # Najjednostavnija
8 else:
9 # Grue hipoteze imaju dodatni parametar (vrijeme prijelaza)

10 složenosti[naziv] = 2
11

12 # Odaberi hipotezu s najmanjom složenošću
13 najjednostavnija = min(složenosti.items(), key=lambda x: x[1])
14 return najjednostavnija[0], složenosti
15

16 def bayesov_pristup(hipoteze, opažanja, priori):
17 """Koristi Bayesovo zaključivanje s priorima."""
18 posteriori = {}
19

20 for naziv, hip in hipoteze.items():
21 # Likelihood - sve hipoteze objašnjavaju podatke jednako dobro
22 likelihood = 1.0 # Pojednostavljeno
23

24 # Posterior proporcionalan je prior * likelihood
25 posteriori[naziv] = priori[naziv] * likelihood
26

27 # Normaliziraj
28 ukupno = sum(posteriori.values())
29 for naziv in posteriori:
30 posteriori[naziv] /= ukupno
31

32 # Odaberi hipotezu s najvećim posteriorom
33 najbolja = max(posteriori.items(), key=lambda x: x[1])
34 return najbolja[0], posteriori
35

36 def ansambl_metoda(hipoteze, težine):
37 """Kombinira predviđanja više hipoteza."""
38 test_vremena = [
39 datetime(2025, 1, 1),
40 datetime(2040, 1, 1),
41 datetime(2060, 1, 1),
42 datetime(2110, 1, 1)
43 ]
44



206
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

45 predviđanja = {}
46 for t in test_vremena:
47 glasovi = {"zelen": 0, "plav": 0}
48

49 for naziv, hip in hipoteze.items():
50 pred = hip.predviđa(t)
51 glasovi[pred] += težine[naziv]
52

53 predviđanja[t.year] = glasovi
54

55 return predviđanja
56

57 # Demonstracija
58 print("Praktična rješenja za Goodmanov problem:")
59 print("="*41)
60 print("\nTest različitih pristupa na 'grue' problemu:")
61

62 # Pripremi hipoteze
63 test_hipoteze = {
64 "standard": hipoteze["standard"],
65 "grue_2030": hipoteze["grue_2030"],
66 "grue_2050": hipoteze["grue_2050"],
67 "grue_2100": hipoteze["grue_2100"]
68 }
69

70 # 1. Bez regularizacije
71 print("\n1. Bez regularizacije (prihvaća sve hipoteze):")
72 print(f" Razmatrane hipoteze: {', '.join(test_hipoteze.keys())}")
73 print(" Odabrana: standard (proizvoljan izbor)")
74 print(" Problem: Nema kriterija za izbor!")
75

76 # 2. Occamova oštrica
77 print("\n2. Occamova oštrica (preferira jednostavnije):")
78 najbolja_occam, složenosti = occamova_oštrica(test_hipoteze)
79 print(" Složenost hipoteza:")
80 for naziv, slož in sorted(složenosti.items(), key=lambda x: x[1]):
81 komentar = " (najjednostavnija)" if slož == 1 else ""
82 print(f" {naziv}: {slož}{komentar}")
83 print(f" Odabrana: {najbolja_occam}")
84 print(" Razlog: Najniža složenost")
85

86 # 3. Bayesov pristup
87 print("\n3. Bayesov pristup (koristi priore):")
88 priori = {
89 "standard": 0.7, # Visok prior za standardnu hipotezu
90 "grue_2030": 0.1,
91 "grue_2050": 0.1,
92 "grue_2100": 0.1
93 }
94 najbolja_bayes, posteriori = bayesov_pristup(test_hipoteze, opažanja_zeleni, priori)
95

96 print(" Prior vjerojatnosti:")
97 for naziv, p in priori.items():



9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 207

98 print(f" {naziv}: {p:.3f}")
99 print(" Posterior (nakon opažanja):")

100 for naziv, p in posteriori.items():
101 print(f" {naziv}: {p:.3f}")
102 print(f" Odabrana: {najbolja_bayes}")
103 print(" Razlog: Najviši posterior")
104

105 # 4. Ansambl metoda
106 print("\n4. Ansambl metoda (kombinira hipoteze):")
107 težine = {
108 "standard": 0.7,
109 "grue_2030": 0.1,
110 "grue_2050": 0.1,
111 "grue_2100": 0.1
112 }
113 ansambl_pred = ansambl_metoda(test_hipoteze, težine)
114 print(" Težinski prosjek predviđanja:")
115 for godina, glasovi in ansambl_pred.items():
116 ukupno = sum(glasovi.values())
117 postotak_zelen = 100 * glasovi["zelen"] / ukupno
118 postotak_plav = 100 * glasovi["plav"] / ukupno
119 print(f" Za {godina}: {postotak_zelen:.1f}% zeleno, {postotak_plav:.1f}% plavo")
120 print(" Predviđanje: Ponderirana kombinacija")
121

122 print("\nZaključak: Praktična rješenja koriste dodatne")
123 print("kriterije izvan čiste logike za izbor hipoteza.")

Output

Praktična rješenja za Goodmanov problem:
=========================================

Test različitih pristupa na 'grue' problemu:

1. Bez regularizacije (prihvaća sve hipoteze):
Razmatrane hipoteze: standard, grue_2030, grue_2050, grue_2100
Odabrana: standard (proizvoljan izbor)
Problem: Nema kriterija za izbor!

2. Occamova oštrica (preferira jednostavnije):
Složenost hipoteza:

standard: 1 (najjednostavnija)
grue_2030: 2
grue_2050: 2
grue_2100: 2

Odabrana: standard
Razlog: Najniža složenost

3. Bayesov pristup (koristi priore):
Prior vjerojatnosti:

standard: 0.700



208
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

grue_2030: 0.100
grue_2050: 0.100
grue_2100: 0.100

Posterior (nakon opažanja):
standard: 0.700
grue_2030: 0.100
grue_2050: 0.100
grue_2100: 0.100

Odabrana: standard
Razlog: Najviši posterior

4. Ansambl metoda (kombinira hipoteze):
Težinski prosjek predviđanja:
Za 2025: 100.0% zeleno, 0.0% plavo
Za 2040: 90.0% zeleno, 10.0% plavo
Za 2060: 80.0% zeleno, 20.0% plavo
Za 2110: 70.0% zeleno, 30.0% plavo
Predviđanje: Ponderirana kombinacija

Zaključak: Praktična rješenja koriste dodatne
kriterije izvan čiste logike za izbor hipoteza.

9.1.9 Zaključak

Kroz ovu bilježnicu istražili smo duboku vezu između Goodmanovog novog problema
indukcije i No-Free-Lunch teorema u strojnom učenju:

Ključni uvidi:

1. Beskonačnost hipoteza: Za svaki skup podataka postoji beskonačno mnogo jednako
dobro podržanih hipoteza

2. Nužnost biasa: Bez induktivnog biasa, učenje je nemoguće - to nije bug već feature!

3. NFL kao formalizacija: No-Free-Lunch teoremi su matematička formalizacija Good-
manovog filozofskog argumenta

4. Evolucija i bias: Ljudska sposobnost učenja možda uspijeva zbog evolucijski oblikovanih
biasa

5. Praktična rješenja: Regularizacija, Occamova oštrica i Bayesov pristup nude načine
izbora među hipotezama

Filozofske implikacije:

Goodmanov problem pokazuje da čista logika nije dovoljna za induktivno zaključivanje.
Trebamo dodatne kriterije - jednostavnost, priore, domensko znanje - koji nisu čisto logički.



9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 209

Implikacije za AI:

Svaki sustav umjetne inteligencije mora riješiti Goodmanov problem implicitnim ili eksplicitnim
izborom induktivnog biasa. Nema univerzalnog algoritma učenja - uspjeh ovisi o
podudaranju između biasa algoritma i strukture problema.

Kao što Goodman zaključuje:

"Valjanost induktivnog zaključka nije stvar logike već stvar povijesti uporabe
predikata."

Možda je ključ uspješnog strojnog učenja u tome da naučimo kako odabrati prave biase za
prave probleme - lekcija koju evolucija uči već milijunima godina.


	II SVJETOVI INDUKTIVNIH LOGIKA
	Goodmanovi svijetovi: Problem indukcije i strojno učenje
	Novi problem indukcije kroz prizmu računalnih znanosti
	Klasični problem indukcije
	Goodmanov "grue" predikat
	Beskonačnost alternativnih hipoteza
	No-Free-Lunch teoremi u strojnom učenju
	Konstrukcija "savijenih" koncepata
	Implikacije za strojno učenje
	Filozofske implikacije
	Praktične implikacije i rješenja
	Zaključak




