Dodatak A

Uvod u Python za studente filozofije
i ostalih ne-tehnickih grupa

A.1 Zasto bi se filozof zanimao za programiranje?

Na prvi pogled, svijet filozofije i svijet programiranja mogu se ¢initi kao dva potpuno odvojena
svemira. Jedan se bavi vjeénim pitanjima o smislu, postojanju i vrijednostima, dok se drugi
bavi preciznim uputama za strojeve. Medutim, ispod povrsine, ova dva svijeta dijele duboke i
iznenadujuce veze. Logika, temeljni alat filozofske analize, ujedno je i srce svakog racunalnog
programa. Nacin na koji strukturiramo argumente, definiramo pojmove i izvodimo zakljucke
u filozofiji ima svoj odraz u nacinu na koji pisemo kod.

Ucenje programskog jezika Python, stoga, za studenta filozofije nije samo stjecanje tehnicke
vjestine, vec¢ i prilika za istrazivanje poznatih koncepata iz nove perspektive. Kroz Python,
apstraktni pojmovi poput varijabli, uvjeta i petlji postaju konkretni alati s kojima mozete
raditi, eksperimentirati i stvarati.

Ovo poglavlje je osmisljeno kao blagi uvod u Python, posebno prilagoden studentima huma-
nistickih i drustvenih znanosti. Neé¢emo se baviti slozenim matematickim problemima niti
dubokim tehnickim detaljima. Umjesto toga, fokusirat ¢emo se na osnove jezika, koristeéi
primjere koji su vam bliski: analizu teksta, rad s rije¢ima i recenicama, te istrazivanje ideja
kroz kod. Koristit ¢emo se Jupyter biljeznicama, interaktivnim okruzenjem koje omoguéuje
pisanje koda, teksta i vizualizacija na jednom mjestu, ¢ineé¢i ucenje intuitivnim i zabavnim.

Dok budete prolazili kroz ovo poglavlje, poticem vas da ne gledate na kod samo kao na niz
naredbi, ve¢ kao na novi nacin izrazavanja i strukturiranja misli. Mozda cete otkriti da vam
ucenje programiranja moze pomod¢i da postanete precizniji u svom filozofskom promisljanju,
jasniji u svom izrazavanju i kreativniji u svom pristupu problemima. Dobrodosli u svijet
Pythonal

A.2 Osnovni pojmovi: Varijable, tipovi podataka i izrazi

213

DODATAK A. UVOD U PYTHON ZA STUDENTE FILOZOFIJE I OSTALIH
214 NE-TEHNICKIH GRUPA

U filozofiji, ¢esto koristimo simbole ili nazive kako bismo predstavili slozene ideje. Na primjer,
u logici, slovo P moze predstavljati propoziciju "Svi ljudi su smrtni". Na slican nacin, u
Pythonu koristimo varijable kao imenovane spremnike za pohranu podataka.

Definicija A.1. Varijabla je imenovani prostor u memoriji koji sluzi za pohranu
vrijednosti. Ime varijable (identifikator) koristimo kako bismo pristupili pohranjenoj
vrijednosti.

Varijablu mozete zamisliti kao oznaku koju pridruzujete nekoj vrijednosti. Operator dodjele,
znak jednakosti (=), koristi se za dodjeljivanje vrijednosti varijabli.

Dodjeljivanje vrijednosti varijablama.

1 pozdrav = "Zdravo, svijete!"
2 godinarodenjakanta = 1724
3 pipriblizno = 3.14159

U ovom primjeru, pozdrav, godinarodenjakanta i pipriblizno su nazivi varijabli. Jednom
kada definiramo varijablu, mozemo je koristiti u daljnjem kodu, na primjer za ispis njezine
vrijednosti pomocéu ugradene funkcije print ().

1 print (pozdrav)
2 print(godinarodenjakanta)

Zdravo, svijete! 1724

U filozofiji, razlikujemo razli¢ite vrste pojmova: konkretne, apstraktne, pojedinacne, opce.

Sli¢no tome, u Pythonu, svaka vrijednost pripada odredenom tipu podataka. Osnovni tipovi
podataka koje ¢emo za pocetak koristiti su:

String (str): Niz znakova, odnosno tekstualni podaci. Stringovi se uvijek piSu unutar
navodnika (jednostrukih " ili dvostrukih ""). Primjeri: "Sokrat", ’Platonova Drzava’.

Integer (int): Cijeli brojevi, bez decimalnog dijela. Primjeri: 42, -399, 2025.

Float (float): Brojevi s pomi¢nim zarezom (decimalni brojevi). Primjeri: 3.14, 9.81,
-0.5.

e Boolean (bool): Logicka ili istinitosna vrijednost. Moze imati samo dvije vrijednosti:
True (istina) ili False (laz).

Python je dinamicki tipiziran jezik, Sto znaéi da ne moramo unaprijed deklarirati tip varijable.
Interpretator automatski prepoznaje tip podatka kada dodijelimo vrijednost. Tip varijable
mozemo provjeriti pomoéu ugradene funkcije type ().

A.3. STRUKTURE PODATAKA: ORGANIZIRANJE MISLI 215

Provjera tipova podataka.

filozof = "Aristotel"
godinarodenja = -384
visinaumetrima = 1.7
jeliziv = False

print (type(filozof))
print (type(godinarodenja))
print (type(visinaumetrima))

1
2
3
4
5
6
7
8
9 print (type(jeliziv))

<class ’str’> <class ’int’> <class ’float’> <class ’bool’>

U logici, kombiniramo propozicije pomocu veznika (A, V,—) kako bismo stvorili slozenije
izraze. U Pythonu, izrazi su kombinacije vrijednosti, varijabli i operatora koje se izracunavaju
(evaluiraju) kako bi proizvele novu vrijednost.

o Aritmeticki izrazi: Koriste standardne matematicke operatore (+, -, *, /).

1a=10

2b =25

3 zbroj =a+b
4 print(zbroj)

15
o String izrazi: Operator + se moze koristiti za spajanje (konkatenaciju) stringova.

1 ime = "Immanuel"

2 prezime = "Kant"

3 punoime = ime + " " + prezime
4 print(punoime)

Immanuel Kant

A.3 Strukture podataka: Organiziranje misli

Dok osnovni tipovi podataka predstavljaju pojedinacne vrijednosti, strukture podataka
sluze za organiziranje i pohranu vise vrijednosti u jednoj varijabli.

DODATAK A. UVOD U PYTHON ZA STUDENTE FILOZOFIJE I OSTALIH
216 NE-TEHNICKIH GRUPA

U filozofskim tekstovima, ¢esto nailazimo na nabrajanja ili nizove ideja, poput Aristotelovih
cetiriju uzroka. U Pythonu, liste su strukture podataka koje nam omogucuju pohranu
uredenog niza elemenata. Elementi liste se navode unutar uglatih zagrada [], odvojeni
zarezima.

Definicija A.2. Lista (1ist) je promjenjiva, uredena kolekcija elemenata. "Uredena'
znaci da elementi zadrzavaju redoslijed kojim su dodani. "Promjenjiva" znac¢i da mozemo
dodavati, uklanjati ili mijenjati elemente nakon sto je lista stvorena.

Kreiranje i pristupanje elementima liste.

1 aristoteloviuzroci = ["materijalni", "formalni", "djelatni", "svrsni"] #
— Popiy Aristotelovih uzroka

2

3 # Pristupanje elementima pomocéu indeksa
4 # Indeksiranje pocinje od 0!

5 prviuzrok = aristoteloviuzrocil[0]

6 treciuzrok = aristoteloviuzroci[2]
7
8
9

print ("Prvi uzrok je:", prviuzrok)
print ("Treéi uzrok je:", treciuzrok)

Prvi uzrok je: materijalni Treci uzrok je: djelatni

Liste su promjenjive. MoZemo im dodavati nove elemente metodom append() ili uklanjati
postoje¢e metodom remove ().

1 aristoteloviuzroci.append("imaginarni") # Dodavanje petog, "imaginarnog"
— uzroka
print(aristoteloviuzroci)

Uklanjanje "imaginarnog" uzroka
aristoteloviuzroci.remove("imaginarni")
print(aristoteloviuzroci)

(<IN B VU)

[’materijalni’, ’formalni’, ’djelatni’, ’svrdni’, ’imaginarni’] [’materijalni’,
’formalni’, ’djelatni’, ’svrsni’]

U filozofiji, ¢esto definiramo pojmove tako da im pridruzujemo njihove definicije. U Pythonu,
rjecnici (dict) omoguéuju pohranu podataka u obliku parova kljué-vrijednost. Kljucevi
su jedinstveni i koriste se za pristup pripadajué¢im vrijednostima.

A.4. KONTROLA TOKA: USMJERAVANJE ARGUMENTACIJE 217

Definicija A.3. Rjecnik (dict) je promjenjiva, neuredena kolekcija parova kljuc-
vrijednost. Svaki klju¢ mora biti jedinstven unutar rjecnika.

Rjecnici se definiraju unutar viticastih zagrada , a parovi kljué-vrijednost odvojeni su dvotoc-
kom.

Kreiranje i koristenje rjecnika.

1 filozofskirjecnik = {

"epistemologija": "grana filozofije koja se bavi znanjem",

"metafizika": "grana filozofije koja se bavi prvim uzrocima i principima
— bica",

"etika": "grana filozofije koja se bavi moralom"

w N

4

8 +

6

7 # Pristupanje vrijednosti pomoéu kljuca

s definicijaetike = filozofskirjecnik["etika"]

9 print(definicijaetike)

10

11 # Dodavanje movog para

12 filozofskirjecnik["logika"] = "znanost o metodama i principima ispravnog
— zakljucivanja"

3 print(filozofskirjecnik["logika"])

=

grana filozofije koja se bavi moralom znanost o metodama i principima ispravnog
zakljuCivanja

A.4 Kontrola toka: Usmjeravanje argumentacije

Programi se ne izvrsavaju uvijek linearno, od prve do zadnje naredbe. Kontrola toka odnosi
se na naredbe koje nam omogucuju da usmjeravamo tijek izvrSavanja programa, donosimo
odluke i ponavljamo operacije.

if, elif., else

U filozofskoj argumentaciji, ¢esto koristimo uvjetne recenice oblika "Ako P, onda @Q". U
Pythonu, uvjetne naredbe nam omoguc¢uju da izvrsimo odredeni dio koda samo ako je
zadovoljen neki uvjet. Uvjet je izraz koji se evaluira kao True ili False.

Koristenje if-else strukture.

tvrdnja = "Sokrat je smrtan"

print("Tvrdnja se odnosi na Sokrata.")

1
2
3 if "Sokrat" in tvrdnja:
4
5| else:

DODATAK A. UVOD U PYTHON ZA STUDENTE FILOZOFIJE I OSTALIH
218 NE-TEHNICKIH GRUPA

6 print("Tvrdnja se ne odnosi na Sokrata.")

Tvrdnja se odnosi na Sokrata.
Mozemo koristiti i elif (skradeno od else if) za provjeru vise uzastopnih uvjeta.

godina = 1804

1
2
3 if godina < 476:

4 print ("Anticka filozofija")

5 elif 476 <= godina < 1500:

6 print("Srednjovjekovna filozofija")

i else:

8 print("Moderna i suvremena filozofija")

Moderna i suvremena filozofija

for

Cesto je potrebno ponoviti istu radnju vise puta. Na primjer, analizirati svaku rije¢ u recenici.
U Pythonu, for petlja nam omogucéuje da iteriramo (prolazimo) kroz elemente sekvence
(poput liste ili stringa) i za svaki element izvrsimo odredeni blok koda.

Iteriranje kroz listu pomoc¢u for petlje.

stoickevrline = ["mudrost", "pravednost", "hrabrost", "umjerenost"]

1
2
3 print("Prema stoicima, temeljne vrline su:")
4 for vrlina in stoickevrline:

5

print("- " + vrlina)
Prema stoicima, temeljne vrline su: - mudrost - pravednost - hrabrost -
umjerenost

U ovom primjeru, varijabla vrlina se naziva varijabla petije. U svakom prolasku (iteraciji)
kroz petlju, ona poprima vrijednost sljedeéeg elementa iz liste stoickevrline.

A.5 Funkcije: Modularizacija i ponovna upotreba misli

U filozofiji, kompleksne ideje Cesto razlazemo na manje, razumljivije dijelove. U Pythonu,
funkcije nam omogucéuju da grupiramo niz naredbi u logicku cjelinu koju mozemo pozvati
vise puta. Time se izbjegava ponavljanje koda i programi postaju organiziraniji i laksi za
¢itanje.

A.6. PRIMJER IZ PRAKSE: ANALIZA FILOZOFSKOG TEKSTA 219

Definicija A.4. F‘unkcija je imenovani blok koda koji izvrsava odredeni zadatak. Moze
primiti ulazne podatke (argumente) i vratiti izlaznu vrijednost.

Funkcije definiramo pomocu kljucne rijeci def.
Definiranje i pozivanje jednostavne funkcije.

def pozdravifilozofa(ime):

mmnn

1
2
3 Ova funkcija ispisuje pozdrav filozofu Cije je ime
4 prolijedeno kao argument.

5 mimn

6

print("Pozdrav, " + ime + "!")
7
8 # Pozivanje funkcije
9 pozdravifilozofa("Platon")
10 pozdravifilozofa("Nietzsche")

Pozdrav, Platon! Pozdrav, Nietzsche!

Tekst unutar trostrukih navodnika odmah nakon definicije funkcije naziva se docstring i sluzi
kao dokumentacija funkcije.

Funkcije mogu vracati vrijednost pomoc¢u naredbe return. Vraéena vrijednost se tada moze
pohraniti u varijablu ili koristiti u daljnjim izrazima.

Funkcija koja vraca vrijednost.

1 def sastaviime(ime, prezime):

2 """Sastavlja puno ime iz dva dijela."""
3 return ime + " " + prezime
4

5 punoimefilozofa = sastaviime("Simone", "de Beauvoir")
6 print(punoimefilozofa)

Simone de Beauvoir

A.6 Primjer iz prakse: Analiza filozofskog teksta

Sada ¢emo primijeniti sve §to smo naucili na konkretnom primjeru: analizi kratkog filozofskog
teksta. Cilj nam je prebrojati koliko se puta svaka rije¢ pojavljuje u poznatoj Descartesovoj
izreci.

Brojanje rijeci u tekstu.

DODATAK A. UVOD U PYTHON ZA STUDENTE FILOZOFIJE I OSTALIH
220 NE-TEHNICKIH GRUPA

1 tekst = "Mislim, dakle jesam. Jesam, dakle postojim." # Korak 1: Definiramo
— tekst za analizu
print ("Originalni tekst:", tekst)

Korak 2: Priprema teksta

Pretvaramo sva slova u mala slova kako 'Mislim' % 'mislim' me b%i bili
— razlicdite riject

tekstmali = tekst.lower()

Uklanjamo interpunkcijske znakove

tekstbeztocke = tekstmali.replace('.', '')

tekstcisti = tekstbeztocke.replace(',', '')

10 print("0¢isceni tekst:", tekstcisti)

11

12 # Korak 3: Tokenizactija - razdvajanje teksta u listu rijels
13 rijeci = tekstcisti.split()

14 print("Lista rijeci:", rijeci)

15

16 # Korak 4: Brojanje rijeli pomoclu rjeiénika

17 brojacrijeci = {}

18 for rijec in rijeci:

(SIS VI V]

© w0 N O

19 if rijec in brojacrijeci:

20 # Ako rijec wel postoji u rjecniku, poveéaj brojac za 1

21 brojacrijecilrijec] = brojacrijecilrijec] + 1

22 else:

23 # Ako je ovo prvo pojavljivanje rijeci, dodaj je u rjelnik s
— vrtjednoSéu 1

24 brojacrijecilrijec] = 1

25

26 # Korak 5: Ispis rezultata

27 print ("\nFrekvencija rijeci:")

28 for rijec, broj in brojacrijeci.items():
29 print(f"'{rijec}': {broj}")

Originalni tekst: Mislim, dakle jesam. Jesam, dakle postojim. 0ZCiSc€eni tekst:
mislim dakle jesam jesam dakle postojim Lista rijeci: [’mislim’, ’dakle’,
’jesam’, ’jesam’, ’dakle’, ’postojim’]

Frekvencija rijecCi: ’mislim’: 1 ’dakle’: 2 ’jesam’: 2 ’postojim’: 1

Ovaj primjer integrira varijable, stringove i njihove metode (. lower (), .replace(), .split()),
liste, rje¢nike, for petlju i if-else uvjetnu logiku kako bi se rijesio konkretan problem iz
domene analize teksta.

Vjezbe za poglavlje 1

Vijezba A.1. Kreirajte rjecnik koji sadrzi pet vasih omiljenih filozofa kao kljuceve, a njihove
glavne filozofske ideje ili djela kao vrijednosti. Zatim, koriste¢i for petlju, ispisite svakog
filozofa i njegovu ideju u formatu: Ime Filozofa: Glavna ideja.

Vjezba A.2. Napisite funkciju pod nazivom brojrijeci koja prima jedan argument (string) i
vraca broj rije¢i u tom stringu. (Savjet: metoda split () bi mogla biti korisna). Testirajte
funkciju s nekoliko recenica.

Vjezba A.3. Napisite program koji provjerava pripada li godina odredenom filozofskom raz-

A.7. ZAKLJUCAK: SLJEDECI KORACI 221

doblju.

1. Definirajte listu koja sadrzi nekoliko filozofa egzistencijalizma, npr. egzistencijalisti
= ["Sartre", "Camus", "Kierkegaard"].

2. Pitajte korisnika da unese ime filozofa pomocu funkcije input Q).
3. Koristed¢i if naredbu i operator in, provjerite nalazi li se uneseno ime u vasoj listi.

4. Ispisite odgovaraju¢u poruku, npr. Sartre je egzistencijalist. ili Platon nije
egzistencijalist..

A.7 Zakljucak: Sljedeci koraci

Ovo poglavlje pruzilo je kratak pregled osnovnih elemenata programskog jezika Python.
Vidjeli smo kako varijable i tipovi podataka predstavljaju osnovne gradivne blokove, kako
strukture podataka poput lista i rje¢nika organiziraju informacije, kako kontrola toka usmjerava
izvrsavanje programa i kako funkcije omogué¢uju modularnost i ponovnu upotrebu koda.

Kao studenti filozofije, sada imate temelj za daljnje istrazivanje. Sljedeéi koraci mogli bi
ukljucivati:

e Rad s tekstom: Python je izuzetno mocan za analizu teksta. Mozete istraziti kako
brojati rijeci, analizirati sentiment, traziti odredene pojmove u velikim tekstualnim
korpusima (npr. djelima pojedinih filozofa) i jos mnogo toga. Biblioteke poput NLTK
(Natural Language Toolkit) i spaCy otvaraju vrata svijeta racunalne lingvistike.

e Vizualizacija podataka: Pomocu biblioteka kao sto su Matplotlib i Seaborn, mozete
vizualizirati odnose izmedu pojmova, ucestalost rijeci ili druge uvide koje dobijete
analizom teksta, pretvarajuéi apstraktne podatke u jasne grafove.

e Web scraping: Mozete nauciti kako automatski prikupljati tekstualne podatke s web
stranica, na primjer, s filozofskih enciklopedija ili online arhiva.

Najvaznije je da se ne bojite eksperimentirati. Jupyter biljeznice su idealno okruzenje za
to. Pokusajte mijenjati primjere, postavljati si vlastite male probleme i traziti rjesenja.
Programiranje, kao i filozofija, je vjestina koja se razvija kroz praksu, znatizelju i upornost.
Sretno s kodiranjem!

	III DODACI
	Uvod u Python za studente filozofije i ostalih ne-tehničkih grupa
	Zašto bi se filozof zanimao za programiranje?
	Osnovni pojmovi: Varijable, tipovi podataka i izrazi
	Varijable: Imenovanje ideja
	Tipovi podataka: Različite vrste informacija
	Izrazi: Kombiniranje vrijednosti

	Strukture podataka: Organiziranje misli
	Liste: Uređeni nizovi argumenata
	Rječnici: Asocijativni parovi pojmova i definicija

	Kontrola toka: Usmjeravanje argumentacije
	Uvjetno izvršavanje: if, elif, else
	Ponavljanje: for petlja

	Funkcije: Modularizacija i ponovna upotreba misli
	Primjer iz prakse: Analiza filozofskog teksta
	Zaključak: Sljedeći koraci

