
Dodatak A

Uvod u Python za studente filozofije
i ostalih ne-tehničkih grupa

A.1 Zašto bi se filozof zanimao za programiranje?

Na prvi pogled, svijet filozofije i svijet programiranja mogu se činiti kao dva potpuno odvojena
svemira. Jedan se bavi vječnim pitanjima o smislu, postojanju i vrijednostima, dok se drugi
bavi preciznim uputama za strojeve. Međutim, ispod površine, ova dva svijeta dijele duboke i
iznenađujuće veze. Logika, temeljni alat filozofske analize, ujedno je i srce svakog računalnog
programa. Način na koji strukturiramo argumente, definiramo pojmove i izvodimo zaključke
u filozofiji ima svoj odraz u načinu na koji pišemo kod.

Učenje programskog jezika Python, stoga, za studenta filozofije nije samo stjecanje tehničke
vještine, već i prilika za istraživanje poznatih koncepata iz nove perspektive. Kroz Python,
apstraktni pojmovi poput varijabli, uvjeta i petlji postaju konkretni alati s kojima možete
raditi, eksperimentirati i stvarati.

Ovo poglavlje je osmišljeno kao blagi uvod u Python, posebno prilagođen studentima huma-
nističkih i društvenih znanosti. Nećemo se baviti složenim matematičkim problemima niti
dubokim tehničkim detaljima. Umjesto toga, fokusirat ćemo se na osnove jezika, koristeći
primjere koji su vam bliski: analizu teksta, rad s riječima i rečenicama, te istraživanje ideja
kroz kod. Koristit ćemo se Jupyter bilježnicama, interaktivnim okruženjem koje omogućuje
pisanje koda, teksta i vizualizacija na jednom mjestu, čineći učenje intuitivnim i zabavnim.

Dok budete prolazili kroz ovo poglavlje, potičem vas da ne gledate na kod samo kao na niz
naredbi, već kao na novi način izražavanja i strukturiranja misli. Možda ćete otkriti da vam
učenje programiranja može pomoći da postanete precizniji u svom filozofskom promišljanju,
jasniji u svom izražavanju i kreativniji u svom pristupu problemima. Dobrodošli u svijet
Pythona!

A.2 Osnovni pojmovi: Varijable, tipovi podataka i izrazi

213



214
DODATAK A. UVOD U PYTHON ZA STUDENTE FILOZOFIJE I OSTALIH

NE-TEHNIČKIH GRUPA

A.2.1 Varijable: Imenovanje ideja

U filozofiji, često koristimo simbole ili nazive kako bismo predstavili složene ideje. Na primjer,
u logici, slovo P može predstavljati propoziciju "Svi ljudi su smrtni". Na sličan način, u
Pythonu koristimo varijable kao imenovane spremnike za pohranu podataka.

Definicija A.1. Varijabla je imenovani prostor u memoriji koji služi za pohranu
vrijednosti. Ime varijable (identifikator) koristimo kako bismo pristupili pohranjenoj
vrijednosti.

Varijablu možete zamisliti kao oznaku koju pridružujete nekoj vrijednosti. Operator dodjele,
znak jednakosti (=), koristi se za dodjeljivanje vrijednosti varijabli.

Dodjeljivanje vrijednosti varijablama.

1 pozdrav = "Zdravo, svijete!"
2 godinarodenjakanta = 1724
3 pipriblizno = 3.14159

U ovom primjeru, pozdrav, godinarodenjakanta i pipriblizno su nazivi varijabli. Jednom
kada definiramo varijablu, možemo je koristiti u daljnjem kodu, na primjer za ispis njezine
vrijednosti pomoću ugrađene funkcije print().

1 print(pozdrav)
2 print(godinarodenjakanta)

Izlaz:
Zdravo, svijete! 1724

A.2.2 Tipovi podataka: Različite vrste informacija

U filozofiji, razlikujemo različite vrste pojmova: konkretne, apstraktne, pojedinačne, opće.
Slično tome, u Pythonu, svaka vrijednost pripada određenom tipu podataka. Osnovni tipovi
podataka koje ćemo za početak koristiti su:

• String (str): Niz znakova, odnosno tekstualni podaci. Stringovi se uvijek pišu unutar
navodnika (jednostrukih ” ili dvostrukih ""). Primjeri: "Sokrat", ’Platonova Država’.

• Integer (int): Cijeli brojevi, bez decimalnog dijela. Primjeri: 42, -399, 2025.

• Float (float): Brojevi s pomičnim zarezom (decimalni brojevi). Primjeri: 3.14, 9.81,
-0.5.

• Boolean (bool): Logička ili istinitosna vrijednost. Može imati samo dvije vrijednosti:
True (istina) ili False (laž).

Python je dinamički tipiziran jezik, što znači da ne moramo unaprijed deklarirati tip varijable.
Interpretator automatski prepoznaje tip podatka kada dodijelimo vrijednost. Tip varijable
možemo provjeriti pomoću ugrađene funkcije type().



A.3. STRUKTURE PODATAKA: ORGANIZIRANJE MISLI 215

Provjera tipova podataka.

1 filozof = "Aristotel"
2 godinarodenja = -384
3 visinaumetrima = 1.7
4 jeliziv = False
5

6 print(type(filozof))
7 print(type(godinarodenja))
8 print(type(visinaumetrima))
9 print(type(jeliziv))

Izlaz:
<class ’str’> <class ’int’> <class ’float’> <class ’bool’>

A.2.3 Izrazi: Kombiniranje vrijednosti

U logici, kombiniramo propozicije pomoću veznika (∧,∨,→) kako bismo stvorili složenije
izraze. U Pythonu, izrazi su kombinacije vrijednosti, varijabli i operatora koje se izračunavaju
(evaluiraju) kako bi proizvele novu vrijednost.

• Aritmetički izrazi: Koriste standardne matematičke operatore (+, -, *, /).

1 a = 10
2 b = 5
3 zbroj = a + b
4 print(zbroj)

Izlaz:
15

• String izrazi: Operator + se može koristiti za spajanje (konkatenaciju) stringova.

1 ime = "Immanuel"
2 prezime = "Kant"
3 punoime = ime + " " + prezime
4 print(punoime)

Izlaz:
Immanuel Kant

A.3 Strukture podataka: Organiziranje misli

Dok osnovni tipovi podataka predstavljaju pojedinačne vrijednosti, strukture podataka
služe za organiziranje i pohranu više vrijednosti u jednoj varijabli.



216
DODATAK A. UVOD U PYTHON ZA STUDENTE FILOZOFIJE I OSTALIH

NE-TEHNIČKIH GRUPA

A.3.1 Liste: Uređeni nizovi argumenata

U filozofskim tekstovima, često nailazimo na nabrajanja ili nizove ideja, poput Aristotelovih
četiriju uzroka. U Pythonu, liste su strukture podataka koje nam omogućuju pohranu
uređenog niza elemenata. Elementi liste se navode unutar uglatih zagrada [], odvojeni
zarezima.

Definicija A.2. Lista (list) je promjenjiva, uređena kolekcija elemenata. "Uređena"
znači da elementi zadržavaju redoslijed kojim su dodani. "Promjenjiva" znači da možemo
dodavati, uklanjati ili mijenjati elemente nakon što je lista stvorena.

Kreiranje i pristupanje elementima liste.

1 aristoteloviuzroci = ["materijalni", "formalni", "djelatni", "svršni"] #
Popiy Aristotelovih uzroka↪→

2

3 # Pristupanje elementima pomoću indeksa
4 # Indeksiranje počinje od 0!
5 prviuzrok = aristoteloviuzroci[0]
6 treciuzrok = aristoteloviuzroci[2]
7

8 print("Prvi uzrok je:", prviuzrok)
9 print("Treći uzrok je:", treciuzrok)

Izlaz:
Prvi uzrok je: materijalni Treći uzrok je: djelatni

Liste su promjenjive. Možemo im dodavati nove elemente metodom append() ili uklanjati
postojeće metodom remove().

1 aristoteloviuzroci.append("imaginarni") # Dodavanje petog, "imaginarnog"
uzroka↪→

2 print(aristoteloviuzroci)
3

4 # Uklanjanje "imaginarnog" uzroka
5 aristoteloviuzroci.remove("imaginarni")
6 print(aristoteloviuzroci)

Izlaz:
[’materijalni’, ’formalni’, ’djelatni’, ’svršni’, ’imaginarni’] [’materijalni’,
’formalni’, ’djelatni’, ’svršni’]

A.3.2 Rječnici: Asocijativni parovi pojmova i definicija

U filozofiji, često definiramo pojmove tako da im pridružujemo njihove definicije. U Pythonu,
rječnici (dict) omogućuju pohranu podataka u obliku parova ključ-vrijednost. Ključevi
su jedinstveni i koriste se za pristup pripadajućim vrijednostima.



A.4. KONTROLA TOKA: USMJERAVANJE ARGUMENTACIJE 217

Definicija A.3. Rječnik (dict) je promjenjiva, neuređena kolekcija parova ključ-
vrijednost. Svaki ključ mora biti jedinstven unutar rječnika.

Rječnici se definiraju unutar vitičastih zagrada , a parovi ključ-vrijednost odvojeni su dvotoč-
kom.

Kreiranje i korištenje rječnika.

1 filozofskirjecnik = {
2 "epistemologija": "grana filozofije koja se bavi znanjem",
3 "metafizika": "grana filozofije koja se bavi prvim uzrocima i principima

bića",↪→

4 "etika": "grana filozofije koja se bavi moralom"
5 }
6

7 # Pristupanje vrijednosti pomoću ključa
8 definicijaetike = filozofskirjecnik["etika"]
9 print(definicijaetike)

10

11 # Dodavanje novog para
12 filozofskirjecnik["logika"] = "znanost o metodama i principima ispravnog

zaključivanja"↪→

13 print(filozofskirjecnik["logika"])

Izlaz:
grana filozofije koja se bavi moralom znanost o metodama i principima ispravnog
zaključivanja

A.4 Kontrola toka: Usmjeravanje argumentacije

Programi se ne izvršavaju uvijek linearno, od prve do zadnje naredbe. Kontrola toka odnosi
se na naredbe koje nam omogućuju da usmjeravamo tijek izvršavanja programa, donosimo
odluke i ponavljamo operacije.

A.4.1 Uvjetno izvršavanje: if, elif, else

U filozofskoj argumentaciji, često koristimo uvjetne rečenice oblika "Ako P, onda Q". U
Pythonu, uvjetne naredbe nam omogućuju da izvršimo određeni dio koda samo ako je
zadovoljen neki uvjet. Uvjet je izraz koji se evaluira kao True ili False.

Korištenje if-else strukture.

1 tvrdnja = "Sokrat je smrtan"
2

3 if "Sokrat" in tvrdnja:
4 print("Tvrdnja se odnosi na Sokrata.")
5 else:



218
DODATAK A. UVOD U PYTHON ZA STUDENTE FILOZOFIJE I OSTALIH

NE-TEHNIČKIH GRUPA

6 print("Tvrdnja se ne odnosi na Sokrata.")

Izlaz:
Tvrdnja se odnosi na Sokrata.

Možemo koristiti i elif (skraćeno od else if ) za provjeru više uzastopnih uvjeta.

1 godina = 1804
2

3 if godina < 476:
4 print("Antička filozofija")
5 elif 476 <= godina < 1500:
6 print("Srednjovjekovna filozofija")
7 else:
8 print("Moderna i suvremena filozofija")

Izlaz:
Moderna i suvremena filozofija

A.4.2 Ponavljanje: for petlja

Često je potrebno ponoviti istu radnju više puta. Na primjer, analizirati svaku riječ u rečenici.
U Pythonu, for petlja nam omogućuje da iteriramo (prolazimo) kroz elemente sekvence
(poput liste ili stringa) i za svaki element izvršimo određeni blok koda.

Iteriranje kroz listu pomoću for petlje.

1 stoickevrline = ["mudrost", "pravednost", "hrabrost", "umjerenost"]
2

3 print("Prema stoicima, temeljne vrline su:")
4 for vrlina in stoickevrline:
5 print("- " + vrlina)

Izlaz:
Prema stoicima, temeljne vrline su: - mudrost - pravednost - hrabrost -
umjerenost

U ovom primjeru, varijabla vrlina se naziva varijabla petlje. U svakom prolasku (iteraciji)
kroz petlju, ona poprima vrijednost sljedećeg elementa iz liste stoickevrline.

A.5 Funkcije: Modularizacija i ponovna upotreba misli

U filozofiji, kompleksne ideje često razlažemo na manje, razumljivije dijelove. U Pythonu,
funkcije nam omogućuju da grupiramo niz naredbi u logičku cjelinu koju možemo pozvati
više puta. Time se izbjegava ponavljanje koda i programi postaju organiziraniji i lakši za
čitanje.



A.6. PRIMJER IZ PRAKSE: ANALIZA FILOZOFSKOG TEKSTA 219

Definicija A.4. Funkcija je imenovani blok koda koji izvršava određeni zadatak. Može
primiti ulazne podatke (argumente) i vratiti izlaznu vrijednost.

Funkcije definiramo pomoću ključne riječi def.

Definiranje i pozivanje jednostavne funkcije.

1 def pozdravifilozofa(ime):
2 """
3 Ova funkcija ispisuje pozdrav filozofu čije je ime
4 prolijeđeno kao argument.
5 """
6 print("Pozdrav, " + ime + "!")
7

8 # Pozivanje funkcije
9 pozdravifilozofa("Platon")

10 pozdravifilozofa("Nietzsche")

Izlaz:
Pozdrav, Platon! Pozdrav, Nietzsche!

Tekst unutar trostrukih navodnika odmah nakon definicije funkcije naziva se docstring i služi
kao dokumentacija funkcije.

Funkcije mogu vraćati vrijednost pomoću naredbe return. Vraćena vrijednost se tada može
pohraniti u varijablu ili koristiti u daljnjim izrazima.

Funkcija koja vraća vrijednost.

1 def sastaviime(ime, prezime):
2 """Sastavlja puno ime iz dva dijela."""
3 return ime + " " + prezime
4

5 punoimefilozofa = sastaviime("Simone", "de Beauvoir")
6 print(punoimefilozofa)

Izlaz:
Simone de Beauvoir

A.6 Primjer iz prakse: Analiza filozofskog teksta

Sada ćemo primijeniti sve što smo naučili na konkretnom primjeru: analizi kratkog filozofskog
teksta. Cilj nam je prebrojati koliko se puta svaka riječ pojavljuje u poznatoj Descartesovoj
izreci.

Brojanje riječi u tekstu.



220
DODATAK A. UVOD U PYTHON ZA STUDENTE FILOZOFIJE I OSTALIH

NE-TEHNIČKIH GRUPA

1 tekst = "Mislim, dakle jesam. Jesam, dakle postojim." # Korak 1: Definiramo
tekst za analizu↪→

2 print("Originalni tekst:", tekst)
3

4 # Korak 2: Priprema teksta
5 # Pretvaramo sva slova u mala slova kako 'Mislim' i 'mislim' ne bi bili

različite riječi↪→

6 tekstmali = tekst.lower()
7 # Uklanjamo interpunkcijske znakove
8 tekstbeztocke = tekstmali.replace('.', '')
9 tekstcisti = tekstbeztocke.replace(',', '')

10 print("Očišćeni tekst:", tekstcisti)
11

12 # Korak 3: Tokenizacija - razdvajanje teksta u listu riječi
13 rijeci = tekstcisti.split()
14 print("Lista riječi:", rijeci)
15

16 # Korak 4: Brojanje riječi pomoću rječnika
17 brojacrijeci = {}
18 for rijec in rijeci:
19 if rijec in brojacrijeci:
20 # Ako riječ već postoji u rječniku, povećaj brojač za 1
21 brojacrijeci[rijec] = brojacrijeci[rijec] + 1
22 else:
23 # Ako je ovo prvo pojavljivanje riječi, dodaj je u rječnik s

vrijednošću 1↪→

24 brojacrijeci[rijec] = 1
25

26 # Korak 5: Ispis rezultata
27 print("\nFrekvencija riječi:")
28 for rijec, broj in brojacrijeci.items():
29 print(f"'{rijec}': {broj}")

Izlaz:
Originalni tekst: Mislim, dakle jesam. Jesam, dakle postojim. Očišćeni tekst:
mislim dakle jesam jesam dakle postojim Lista riječi: [’mislim’, ’dakle’,
’jesam’, ’jesam’, ’dakle’, ’postojim’]
Frekvencija riječi: ’mislim’: 1 ’dakle’: 2 ’jesam’: 2 ’postojim’: 1

Ovaj primjer integrira varijable, stringove i njihove metode (.lower(), .replace(), .split()),
liste, rječnike, for petlju i if-else uvjetnu logiku kako bi se riješio konkretan problem iz
domene analize teksta.

Vježbe za poglavlje 1

Vježba A.1. Kreirajte rječnik koji sadrži pet vaših omiljenih filozofa kao ključeve, a njihove
glavne filozofske ideje ili djela kao vrijednosti. Zatim, koristeći for petlju, ispišite svakog
filozofa i njegovu ideju u formatu: Ime Filozofa: Glavna ideja.
Vježba A.2. Napišite funkciju pod nazivom brojrijeci koja prima jedan argument (string) i
vraća broj riječi u tom stringu. (Savjet: metoda split() bi mogla biti korisna). Testirajte
funkciju s nekoliko rečenica.
Vježba A.3. Napišite program koji provjerava pripada li godina određenom filozofskom raz-



A.7. ZAKLJUČAK: SLJEDEĆI KORACI 221

doblju.

1. Definirajte listu koja sadrži nekoliko filozofa egzistencijalizma, npr. egzistencijalisti
= ["Sartre", "Camus", "Kierkegaard"].

2. Pitajte korisnika da unese ime filozofa pomoću funkcije input().

3. Koristeći if naredbu i operator in, provjerite nalazi li se uneseno ime u vašoj listi.

4. Ispišite odgovarajuću poruku, npr. Sartre je egzistencijalist. ili Platon nije
egzistencijalist..

A.7 Zaključak: Sljedeći koraci

Ovo poglavlje pružilo je kratak pregled osnovnih elemenata programskog jezika Python.
Vidjeli smo kako varijable i tipovi podataka predstavljaju osnovne gradivne blokove, kako
strukture podataka poput lista i rječnika organiziraju informacije, kako kontrola toka usmjerava
izvršavanje programa i kako funkcije omogućuju modularnost i ponovnu upotrebu koda.

Kao studenti filozofije, sada imate temelj za daljnje istraživanje. Sljedeći koraci mogli bi
uključivati:

• Rad s tekstom: Python je izuzetno moćan za analizu teksta. Možete istražiti kako
brojati riječi, analizirati sentiment, tražiti određene pojmove u velikim tekstualnim
korpusima (npr. djelima pojedinih filozofa) i još mnogo toga. Biblioteke poput NLTK
(Natural Language Toolkit) i spaCy otvaraju vrata svijeta računalne lingvistike.

• Vizualizacija podataka: Pomoću biblioteka kao što su Matplotlib i Seaborn, možete
vizualizirati odnose između pojmova, učestalost riječi ili druge uvide koje dobijete
analizom teksta, pretvarajući apstraktne podatke u jasne grafove.

• Web scraping: Možete naučiti kako automatski prikupljati tekstualne podatke s web
stranica, na primjer, s filozofskih enciklopedija ili online arhiva.

Najvažnije je da se ne bojite eksperimentirati. Jupyter bilježnice su idealno okruženje za
to. Pokušajte mijenjati primjere, postavljati si vlastite male probleme i tražiti rješenja.
Programiranje, kao i filozofija, je vještina koja se razvija kroz praksu, znatiželju i upornost.
Sretno s kodiranjem!


	III DODACI
	Uvod u Python za studente filozofije i ostalih ne-tehničkih grupa
	Zašto bi se filozof zanimao za programiranje?
	Osnovni pojmovi: Varijable, tipovi podataka i izrazi
	Varijable: Imenovanje ideja
	Tipovi podataka: Različite vrste informacija
	Izrazi: Kombiniranje vrijednosti

	Strukture podataka: Organiziranje misli
	Liste: Uređeni nizovi argumenata
	Rječnici: Asocijativni parovi pojmova i definicija

	Kontrola toka: Usmjeravanje argumentacije
	Uvjetno izvršavanje: if, elif, else
	Ponavljanje: for petlja

	Funkcije: Modularizacija i ponovna upotreba misli
	Primjer iz prakse: Analiza filozofskog teksta
	Zaključak: Sljedeći koraci



