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Predgovor

Ovaj udzbenik nastao je na temelju visegodisnjih predavanja na kolegiju ,,Logika i programira-
nje" na Filozofskom fakultetu Sveucilista u Zagrebu. Kroz godine rada sa studentima filozofije
koji su po prvi put pisali kod, kao i sa studentima informatike koji su otkrivali filozofske
temelje svojih programa, oblikovao se pristup koji spaja apstraktno i konkretno, teoriju i
praksu.

Pocetna ideja bila je jednostavna: uciniti formalnu logiku pristupacnijom i zanimljivijom,
omoguéiti transfer vjestina izmedu formalne logike i programskih vjestina, te pruziti studentima
filozofije dodatne ,,zaposljive” vjestine. Umjesto da studenti samo vjezbaju izvode prirodne
dedukcije, zasto ih ne bi implementirali i tako bolje razumjeli? Umjesto da crtaju istinosne
tablice na papiru, zasto ih ne bi generirali programski? Ono S$to je pocelo kao istrazivanje,
pretvorilo se u potpuno novi nacin poducavanja logike.

Knjiga je organizirana u dva komplementarna dijela:

Prvi dio — Svjetovi deduktivne logike pokriva klasicne sustave gdje zakljucci nuzno slijede
iz premisa. Poc¢injemo s Wittgensteinovom slikom svijeta kao skupa ¢injenica, prelazimo na
Gentzenove sustave prirodne dedukcije, istrazujemo Tarskijevu semantiku, te zavrsavamo s
racunalnim aspektima kroz Turingove strojeve.

Drugi dio — Svjetovi induktivnih logika istrazuje sustave gdje zakljucéci imaju samo
odredeni stupanj vjerojatnosti: od Pascalove oklade preko Bayesova teorema do suvremenih
pristupa u strojnom uéenju.

Svako poglavlje slijedi konzistentnu strukturu: motivacija, formalizacija, implementacija,
istrazivanje. Ova cCetverodijelna struktura omogucava razli¢ite razine angazmana — od prvotnog
upoznavanja do dubinskog istrazivanja. Neki djelovi se djelomi¢no preklapaju radi odrzavanja
cjeline studenskih izlaganja.

Kao pedagoski pristup, kroz godine predavanja, razvijeno je nekoliko klju¢nih principa:

Greske su pedagoski momenti. Kada studentov kod ne radi, to nije neuspjeh veé prilika
za razumijevanje zasto logicka pravila funkcioniraju kako funkcioniraju.

Apstrakcija kroz konkretno. Svaki apstraktni koncept ima konkretnu implementaciju koju
je mogucée pokrenuti, modificirati i igrati se s njom.

Spiralno ucenje. Isti koncepti vra¢aju se na razli¢itim razinama slozenosti. Implikacija se
prvo pojavljuje kao Python if-then, zatim kao materijalna implikacija, pa kao pravilo u
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prirodnoj dedukciji, i konac¢no kao tip funkcije, i metalogicki odnos.

Na pitanje za koga je ova knjiga, odgovor je da je primarno nastala za studente filozofije koji
zele razumjeti formalnu logiku kroz prakti¢nu primjenu. Ali kroz godine, publika se prosirila:

Studenti racunarstva pronalaze filozofske temelje svoje discipline

Nastavnici srednji skola koriste materijale za modernizaciju nastave

Istrazivac¢i u Al-ju pronalaze korisne implementacije klasi¢nih sustava

Entuzijasti koji uzivaju u samostalnom istrazivanju

Ne pretpostavlja se prethodno znanje programiranja — dodatak A pruza sve potrebne osnove
Pythona. Takoder ne pretpostavlja se formalno obrazovanje iz logike — pocinje se od osnova.

Kako koristiti materijale: sav kod dostupan je na https://github.com/dlauc/logikaukodu.
Biljeznice mozete:

Pokretati lokalno s Jupyter instalacijom

Koristiti kroz Google Colab bez instalacije

Modificirati za vlastite potrebe

Integrirati u vlastite kolegije

Licenca Creative Commons omogucéava slobodno dijeljenje i adaptaciju uz navodenje izvora.

Konac¢no, ovaj udzbenik nije zavrsen proizvod. Svaki semestar donosi nove uvide, nove nacine
objasnjavanja, nove veze izmedu koncepata. Pozivam citatelje da se prikljuce koristenjem
dijeljenog koda — prijavite greske, predlozite poboljSanja, podijelite svoje implementacije.
Logika i programiranje nisu samo akademske discipline — oni su nacini misljenja koji oblikuju
nasu digitalnu stvarnost. Nadam se da ¢e ova knjiga pomoc¢i novim generacijama da ovladaju
oboma.

Davor Lauc
Zagreb, rujan 2025



Poglavlje 1

Uvod: Sto je logika i zasto kod?

Ne prili¢i izvrsnim ljudima da kao robovi
gube sate na racunanje, u poslu koji se
moze s punim povjerenjem prepustiti
bilo kome drugome uporabom strojeva.

Gottfried Wilhelm Leibniz!

1.1 Logika kao znanost o valjanom zakljucivanju

Logika proucava oblike valjanog zakljucivanja i relacije logickog slijeda. Kada kazemo da je
zakljucak valjan, mislimo da konkluzija nuzno slijedi iz premisa. Ova nuznost proizlazi iz
same strukture naseg misljenja, neovisno o sadrzaju.

Razmotrimo klasi¢an primjer:

1. Svi ljudi su smrtni.
2. Sokrat je covjek.

3. Dakle, Sokrat je smrtan.

Valjanost ovog zakljucka ne ovisi o tome tko je Sokrat ili Sto znaci ¢ovjek” i smrtan”. Ona
proizlazi iz logicke forme koja ostaje valjana cak i kad zamijenimo termine:

1. Svi P su Q.
2. aje P.

3. Dakle, a je Q.

! Machina Arithmetica in qua non Aditio tantum Subtractio 1685, slobodni prijevod s engleskog prijevoda,
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Moderna simbolicka logika omoguéava nam precizno zapisivanje ovakvih formi. U logici
sudova bavimo se veznicima:

2

Konjunkcija (A): i

Disjunkcija (V): ,ili”

Implikacija (—): ,ako...onda”

Negacija (—): ,nije”
Logika predikata ide dalje omoguéavajuci kvantifikaciju:

o Univerzalni kvantifikator (V): ,svi”, ,svaki”

o Egristencijalni kvantifikator (3): ,neki”, ,postoji”

1.2 Formalni jezik misli

Gottlob Frege, utemeljitelj moderne logike, nastojao je stvoriti ..pojmovno pismo” (Begriffssc-
hrift) — formalni jezik za izrazavanje ¢istog misljenja, oslobodenog dvosmislenosti prirodnog
jezika. Njegova vizija danas zivi u programskim jezicima.

Kada pisemo Python kod:

def je_smrtan(x):
return je_Covjek(x)

assert je_smrtan("Sokrat") == True

formaliziramo logicku strukturu. Funkcija je_smrtan enkodira univerzalnu tvrdnju, a assert
provjerava konkretnu instancu.

1.3 Struktura stvarnosti: Wittgensteinova slika

Ludwig Wittgenstein u Tractatus Logico-Philosophicus nudi radikalnu tezu: granice naseg
jezika su granice naseg svijeta. Za njega, svijet je totalitet ¢injenica, ne stvari. Cinjenice
postoje u ..logickom prostoru” — prostoru svih mogué¢ih kombinacija.

Ova ideja ima izravnu programsku interpretaciju. Kada definiramo Booleove varijable:

kiSa = True
sunce = False
vjetar = True

definiramo toc¢ku u logickom prostoru. S tri varijable, imamo 22 = 8 moguéih svjetova. Svaki
program implicitno definira takav prostor mogucnosti i pravila kretanja kroz njega.
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1.4 Istina i znacenje: Tarskijeva semantika

Alfred Tarski rijesio je drevni problem istine kroz svoju semanticku teoriju. Njegova ¢uvena
T-shema:

..Snijeg je bijel” je istinito ako i samo ako snijeg je bijel.

Moze se €initi trivijalnom, ali razlikuje jezik od metajezika. U Pythonu:

def je_istinito(izjava, model):
return eval(izjava, model)

model = {"snijeg_je_bijel": True}
assert je_istinito("snijeg_je_bijel", model) == True

funkcija je_istinito je metajezicna — ona govori o izjavama, ne u njima.

1.5 Dokazi kao programi: Curry-Howard izomorfizam

Jedan od najdubljih uvida 20. stoljeca je otkri¢e strukturne ekvivalencije izmedu logickih
dokaza i programa. Curry-Howard izomorfizam pokazuje:

Logika Programiranje
Formula A — B Tip funkcije A -> B
Dokaz formule Program tog tipa
Modus ponens Aplikacija funkcije
Konjunkcija A A B | Tuple (A, B)
Disjunkcija AV B | Union type A | B

Svaki put kad pisete funkciju, vi zapravo konstruirate dokaz. Svaki put kad je pozivate,
primjenjujete logicko pravilo. Tipovi su teoremi, programi su dokazi!

1.6 Granice formalizma: Godelova nepotpunost

Kurt Godel je 1931. dokazao da svaki dovoljno bogat formalni sustav ili je nekonzistentan ili
nepotpun. Postoje istinite tvrdnje koje se ne mogu dokazati unutar sustava.

Njegov dokaz koristi samoreferenciranje — konstruira recenicu koja kaze ..Ja nisam dokaziva”.
Ako je dokaziva, sustav je nekonzistentan. Ako nije, sustav je nepotpun.

U Pythonu mozemo ilustrirati Gédelov trik:

def godel_reenica(n):
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"""ReCenica koja tvrdi da nije dokaziva"""
return f"Re€enica broj {n} nije dokaziva"

\textbf{Paradoks: ako je dokaziva, onda je laZna}

\textbf{Ako nije dokaziva, onda je istinita, ali nedokaziva}

1.7 Turingovi strojevi

Alan Turing definirao je precizni model ra¢unanja — Turingov stroj. Pokazao je da postoje
problemi koje nijedan stroj ne moze rijesiti, poput problema zaustavljanja.

Python interpreter je zapravo Turingov stroj (tehnicki Turing potpun jezik). Svaki program
koji napiSete je opis kona¢nog automata koji manipulira simbolima na ..traci” (memoriji):

def turingov_stroj(traka, program, stanje=0):

while stanje != "STOP":
simbol = traka.pro&itaj()
novo_stanje, novi_simbol, smjer = program[stanje] [simbol]
traka.zapi$i(novi_simbol)
traka.pomakni(smjer)
stanje = novo_stanje

return traka

1.8 Od dedukcije k indukciji

Klasi¢na logika bavi se nuznim zaklju¢cima. Ali veéina naseg zakljucivanja je probabilisticka.
David Hume primijetio je ,problem indukcije” — iz ¢injenice da je sunce izaslo svaki dan do
sada, ne slijedi nuzno da ée izaéi sutra.

Bayesov teorem daje nam formalni okvir za induktivno zakljucivanje:

P(E|H) - P(H)
P(E)

P(H|E) =

Gdje je P(H|E) posteriorna vjerojatnost hipoteze nakon evidencije.

U Pythonu:

def bayes(prior, likelihood, evidence):
return (likelihood * prior) / evidence
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\textbf{Medicinska dijagnoza}
p_bolest = 0.01 # 17 populacije ima bolest

p_pozitivan_test_ako_bolest = 0.99 # 997 osjetljivost
p_pozitivan_test = 0.05 # 5% ukupno pozitivnih

p_bolest_ako_pozitivan = bayes(
p_bolest,
p_pozitivan_test_ako_bolest,
p_pozitivan_test

)

\textbf{Rezultat: 0.198 ili 19.8%}

1.9 Paradoksi i granice

Logika je puna paradoksa koji testiraju nase razumijevanje:
Russellov paradoks: Skup svih skupova koji ne sadrze sebe. Sadrzi li sebe?
Paradoks lazljivca: ..Ova recenica je neistinita.” Istinita ili neistinita?

Sorites paradoks: Jedna zrna pijeska nije hrpa. Dodavanje jednog zrna ne ¢ini hrpu. Dakle,
nikad nema hrpe?

Ovi paradoksi nisu samo zagonetke — oni otkrivaju fundamentalne limite formalnih sustava i
potic¢u razvoj novih logika (parakontistentne, fuzzy, relevantne).

1.10 Primjena u stvarnom svijetu

Logika kroz kod nije samo akademska vjezba. Primjene su svugdje:

Baze podataka koriste logiku predikata (SQL je zapravo logicki jezik):

SELECT * FROM studenti
WHERE godina > 2 AND prosjek >= 4.0

Verifikacija softvera dokazuje korektnost kriti¢nih sustava:

Q@requires(x >= 0)
@ensures(rezultat >= 0)
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def korijen(x):
return sqrt(x)

Umjetna inteligencija koristi logi¢ko zakljucivanje za planiranje i donosenje odluka.

1.11 Putovanje koje slijedi

Ovaj udzbenik vodi vas kroz postupno otkrivanje veze izmedu logike i programiranja. Svaki
koncept gradit ¢emo od temelja:

—_

. Intuicija: Zasto je koncept vazan?
2. Formalizacija: Precizna matematicka definicija
3. Implementacija: Radni Python kod

4. Eksploracija: Eksperimenti i varijacije

Ne ucite samo o logici — prakticirajte logiku kroz kod. Svaka Jupyter biljeznica je laborato-
rij. Mijenjajte parametre, testirajte grani¢ne slucajeve, pokusajte pokvariti kod. Kroz ove
eksperimente razvit ¢ete dublju intuiciju od pukog Citanja.

Zapamtite: u logici, kao i u programiranju, jedini nac¢in ucenja je cinjenjem. Greske su
dragocjene — one otkrivaju skrivene pretpostavke i suptilne istine.

Zapoc¢nimo ovo putovanje kroz svjetove logike, gdje svaki novi koncept otvara vrata dubljeg
razumijevanja nacina na koji mislimo, zaklju¢ujemo i stvaramo.



Dio 1

SVJETOVI DEDUKTIVNE
LOGIKE






Poglavlje 2

Wittgensteinova logicka slika svijeta

2.1 Semanticka logicka posljedica kroz prizmu Tractatusa

U ovom poglavlju istrazujemo koncept semanticke logicke posljedice kroz prakti¢nu
Python implementaciju, inspirirani Wittgensteinovim pristupom logici i ontologiji iz Tractatus
Logico-Philosophicus.

"Svijet je sve Sto je slucaj" (Die Welt ist alles, was der Fall ist) - Tractatus, 1

Ova slavna prva recenica Tractatusa postavlja temelje za razumijevanje odnosa izmedu jezika,
logike i stvarnosti.

Za Wittgensteina, svijet se sastoji od ¢injenica (Tatsachen), ne stvari:
"Svijet je totalitet Cinjenica, ne stvari' - Tractatus, 1.1

Atomarne ¢injenice (Sachverhalte) su najjednostavnije ¢injenice koje mogu postojati ili ne
postojati. U logici ih predstavljamo elementarnim sudovima.

1 class ElementarniSud:

2 """Predstavlja atomarnu cinjenicu u Wittgensteinovom smislu."""
3

4 def __init__(self, simbol, opis=""):

5 self.simbol = simbol

6 self.opis = opis

7 self.vrijednost = None
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def __repr__(self):
return f"{self.simbol}: {self.opis}"

def __bool__(self):

return bool(self.vrijednost)

Stvorimo elementarne sudove kojt odgovaraju atomarnim Cinjentcama

ElementarniSud("p", "Pada kisa")

ElementarniSud("q", "Ulice su mokre")

R Q T #
[

ElementarniSud("r", "Nosim kiSobran")

print ("Elementarni sudovi (atomarne &injenice):")
print(f" {p}")
print(£" {q}")
print(f" {r}")

Elementarni sudovi (atomarne ¢injenice):
p: Pada kisa
q: Ulice su mokre
r: Nosim kiSobran

2.1.2 Logicki prostor i mogudi svjetovi

Wittgenstein uvodi pojam logickog prostora kao totaliteta svih moguéih konfiguracija
atomarnih ¢injenica:

"Cinjenice u logickom prostoru jesu svijet" - Tractatus, 1.13

Svaki mogudi svijet je jedna odredena kombinacija postojanja i nepostojanja atomarnih
¢injenica.

import itertools

def generiraj_moguce_svjetove(elementarni_sudovi):
"""Generira sve mogucCe svjetove kao kombinacije istinitosnih vrijednosti."""
svjetovi = []

n = len(elementarni_sudovi)

for vrijednosti in itertools.product([False, True], repeat=n):
svijet = {3
for sud, vrijednost in zip(elementarni_sudovi, vrijednosti):
svijet[sud.simbol] = vrijednost

svjetovi.append(svijet)
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return svjetovi

# Generiraj logicki prostor
sudovi = [p, q, r]

svi_svjetovi = generiraj_moguce_svjetove(sudovi)

print (f"Logicki prostor sadrzi {len(svi_svjetovi)} mogucih svjetova:\n")
for i, svijet in enumerate(svi_svjetovil[:4], 1): # PrikazZi prve 4
# Koristi simbole T 4 L wumjesto True/False
svijet_prikaz = {k: 'T' if v else 'l' for k, v in svijet.items()}
print(f"Svijet {i}: {svijet_prikazl}")
print("...")

Output

Logicki prostor sadrZzi 8 mogucih svjetova:

Svijet 1: {'p': 'L', 'q': 'L"', 'r': '1'}
Svijet 2: {'p': 'Ll', 'q': 'Ll', 'r': 'T'}
Svijet 3: {'p': 'L', 'q': 'T", 'r': '1'}
Svijet 4: {'p': 'L', 'q': 'T', 'r': 'T'}

2.1.3 Logicki veznici i slozeni sudovi

Wittgenstein pokazuje kako se slozeni sudovi grade iz elementarnih pomoc¢u istinosno-

funkcionalnih veznika:

"Sud je istinosna funkcija elementarnih sudova" - Tractatus, 5

Implementirajmo osnovne logicke veznike koriste¢i Python operatore:

class Sud:

"""Predstavlja sud kojt moZe biti elementaran ili sloZen."""

def __init__(self, formula, opis=""):
self.formula = formula
self.opis = opis

self.evaluacija = None

def evaluiraj(self, svijet):
"""Eyaluira sud u danom mogucem svijetu."""
# Ovdje bt trebala biti logika evaluacije
# Za sada vracamo jednostavnu vrijednost

return self.evaluacija if self.evaluacija is not None else False



14

15

16

17

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

41

42

43

44

45

46

47

12 POGLAVLJE 2. WITTGENSTEINOVA LOGICKA SLIKA SVIJETA
def __repr__(self):
return self.formula

# Definiraj funkcije za logicke veznike

def

def

def

def

negacija(sud) :
””"Neg(lcija.’ “p mmn

return Sud(f"—{sud.formulal}", f"nije slucaj da {sud.opis}")

konjunkcija(sudl, sud2):

"""Konjunkcija: p A q"""

return Sud(f"({sudil.formula} A {sud2.formula})",
f"{sudl.opis} i {sud2.opis}")

disjunkcija(sudl, sud2):

"""Disjunkcija: p V q"""

return Sud(f"({sudl.formula} V {sud2.formula})",
f"{sudl.opis} ili {sud2.opis}")

implikacija(sudl, sud2):

"""Materijalna implikacija: p — q"""

return Sud(f"({sudil.formula} — {sud2.formulal})",
f"ako {sudl.opis}, onda {sud2.opisl}")

# Primjeri sloZenih sudova

p_sud = Sud("p", "pada kisa")
q_sud = Sud("q", "ulice su mokre")
slozenil = implikacija(p_sud, g_sud)

slozeni2 = konjunkcija(p_sud, negacija(qg_sud))

print("SloZeni sudovi:")

print(f" {slozenil}: {sloZenil.opisl}")

print(f" {slozeni2}: {sloZeni2.opis}")

Slozeni sudovi:
(p — q): ako pada kiSa, onda ulice su mokre
(p A 7q): pada kiSa i nije sluéaj da ulice su mokre

2.1.4 Semanticka logicka posljedica

Kljuéni koncept u logici je logicka posljedica (semanticka implikacija). Kazemo da je sud ¢
logicka posljedica skupa sudova I', §to zapisujemo:

'y
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ako i samo ako u svakom moguéem svijetu gdje su svi sudovi iz I istiniti, ¢ je takoder
istinit.

Za Wittgensteina, logicka posljedica pokazuje strukturalni odnos izmedu sudova:

"Kada istinitost jednog suda slijedi iz istinitosti drugih, to vidimo iz strukture
samih sudova" - Tractatus, 5.13

def je_logicka_posljedica(premisa, zakljucak, elementarni):

mwin

Provjerava je li zakljucak logicka posljedica premise.

Args:
premisa: funkctija koja evaluira premisu
zakljucak: funkcija koja evaluira zakljucak

elementarnt: lista elementarnih sudova

Returns:
(bool, protuprimjer ili Nome)

for vrijednosti in itertools.product([False, True], repeat=len(elementarni)):
# Postavi vrtijednostt elementarnih sudova

svijet = dict(zip(elementarni, vrijednosti))

# Evaluiraj premisu 7 zakljulak
p_istina = premisa(svijet)

z_istina = zakljucak(svijet)

# Ako premisa tstinita a zakljucak laZan - nije logicka posljedica
if p_istina and not z_istina:

return False, svijet

return True, None

# Definiraj jednostavne evaluacijske funkcije
def p_eval(svijet):

return svijet.get('p', False)

def p_imp_q(svijet):
p = svijet.get('p', False)
q = svijet.get('q', False)
return not por q #p — g < —p V g

def q_eval(svijet):

return svijet.get('q', False)

# Test: Je li q logicka posljedica od (p — gq) A p? (Modus Ponens)
def modus_ponens_premisa(svijet):

return p_imp_q(svijet) and p_eval(svijet)
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rezultat, protuprimjer = je_logicka_posljedica(
modus_ponens_premisa,

q_eval,

[|p|’ Iql]

print("Test Modus Ponens: ((p — q) A p) E q")
if rezultat:

print(" v JEST logicka posljedica")
else:

print(f" X NIJE logicka posljedica. Protuprimjer: {protuprimjer}")

Test Modus Ponens: ((p — @) A p) E q
v/ JEST logicka posljedica

2.1.5 Tautologije i kontradikcije

Wittgenstein istice poseban status tautologija i kontradikcija:

"Tautologija i kontradikcija nisu slike stvarnosti. One ne predstavljaju nikakvu
mogucu situaciju" - Tractatus, 4.462

o Tautologija: istinita u svim moguéim svjetovima (npr. p V —p)

o Kontradikcija: lazna u svim moguéim svjetovima (npr. p A —p)

One pokazuju granice logickog prostora:

def provjeri_status(formula_eval, elementarni):
"""Provyjerava je lt formula tautologtija, kontradikcija ili kontingentna."""
istiniti = 0

ukupno = 0

for vrijednosti in itertools.product([False, True], repeat=len(elementarni)):
svijet = dict(zip(elementarni, vrijednosti))
if formula_eval(svijet):
istiniti += 1

ukupno += 1

if istiniti == ukupno:
return "TAUTOLOGIJA"
elif istiniti ==
return "KONTRADIKCIJA"
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else:
return f"KONTINGENTNA ({istiniti}/{ukupno} svjetova)"

# Testiraj razlicite formule
def tautologija(svijet):
p = svijet.get('p', False)
return p or not p # p V —p

def kontradikcija(svijet):
p = svijet.get('p', False)
return p and not p # p A —p

def kontingentna(svijet):

return svijet.get('p', False) # samo p

print("Status formula u logickom prostoru:\n")

print(f"p V —p: {provjeri_status(tautologija, ['p'1)}")
print(f"p A —p: {provjeri_status(kontradikcija, ['p'1)}")
print(f"p: {provjeri_status(kontingentna, ['p'])}")

Output

Status formula u logickom prostoru:

p V —p: TAUTOLOGIJA
p A —p: KONTRADIKCIJA
p: KONTINGENTNA (1/2 svjetova)

2.1.6 Tabli¢ni prikaz logickih posljedica

Vizualizirajmo logicke posljedice pomoc¢u tablica istinitosti, Sto odgovara Wittgensteinovoj

metodi iz Tractatusa:

def tablica_istinitosti(premise, zakljucak, varijable):
"""Generira tablicu istinitosti za provjeru logiclke posljedice.""""
print ("\nTablica istinitosti:")
print("=" * 60)

# Zaglavlje

header = " | ".join(varijable) + " | Premisa | Zakljucak | Status"
print (header)
print("-" * len(header))

je_posljedica = True

for vrijednosti in itertools.product([" L ", " T "], repeat=len(varijable)):

svijet = {var: (val.strip() == "T") for var, val in zip(varijable, vrijednosti)}
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16 p_val = premise(svijet)

17 z_val = zakljucak(svijet)

18

19 # Provjert je lt maruSena logicCka posljedica

20 status = ""

21 if p_val and not z_val:

22 status = "<-- PROTUPRIMJER"

23 je_posljedica = False

24

25 # Ispis reda

26 row = " | ".join(vrijednosti)

27 row += f" | {'T" if p_val else 'l'} {'T" if z_val else 'l'}
— {status}"

28 print (row)

29

30 print("=" * 60)

31 if je_posljedica:

32 print ("\nv' Zakljucak JEST logicka posljedica premise")

33 else:

34 print ("\nx Zakljuéak NIJE logicka posljedica premise")

35

36 return je_posljedica

37

38 # Test klasiénih logilkih zakona

39 print("\nMODUS PONENS: ((p — @) A p) = q")

40 tablica_istinitosti(modus_ponens_premisa, q_eval, ['p', 'q'l)
41

42 # Test disjunktivnog silogizma

43 def disj_silogizam_premisa(svijet):

44 p = svijet.get('p', False)
45 q = svijet.get('q', False)
46 return (p or q) and not p
47

48 print ("\nDISJUNKTIVNI SILOGIZAM: ((p V @) A —p) = q")

49 tablica_istinitosti(disj_silogizam_premisa, q_eval, ['p', 'q'])

Output

MODUS PONENS: ((p — @) A p) FE q

Tablica istinitosti:

o)

Q
o
H
0]
8
-
n
[\
N
)
=3
'_l

.
e
X
o
=3
n
ct
o
ot
e
n

v/ Zakljuak JEST logicka posljedica premise
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DISJUNKTIVNI SILOGIZAM: ((p V @) A —p) E g

Tablica istinitosti:

p | g9 | Premisa | Zakljugak | Status

v/ Zakljuak JEST logicCka posljedica premise
True

Granice jezika i logike

Wittgenstein pokazuje da logika ima svoje granice:

"Logika ispunjava svijet; granice svijeta su takoder njezine granice" - Tractatus,
5.61

Nasa implementacija demonstrira ove granice:

« Tautologije ne govore nista o svijetu (istinite su uvijek)
o Kontradikcije opisuju nemoguénosti

e Samo kontingentne formule zapravo opisuju mogucéa stanja svijeta

Slikovna teorija znacenja

Prema Wittgensteinu, sudovi su slike moguéih stanja stvari:

"Logicka slika ¢injenica jest misao" - Tractatus, 3

Nas kod modelira ovu ideju:

e Elementarni sudovi = atomarne ¢injenice
e Slozeni sudovi = kombinacije atomarnih ¢injenica

e Moguci svjetovi = sve moguce konfiguracije
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Implementirajmo jednostavan sustav za automatsko logicko zakljucivanje:

1 class LogickiSustav:

2 """ Jednostavan sustav za logicko zakljucivanje."""

3

4 def __init__(self):

5 self.baza_znanja = []

6 self.elementarni = set()

7

8 def dodaj_premisu(self, formula, varijable):

9 """Dodaje premisu u bazu znanja."""

10 self.baza_znanja.append(formula)

11 self.elementarni.update(varijable)

12

13 def moze_zakljuciti(self, zakljucak):

14 """Provjerava slijedi li zakljucak <z baze znanja."""
15

16 def premise_eval(svijet):

17 # Sve premise moraju biti istinite

18 for premisa in self.baza_znanja:

19 if not premisa(svijet):

20 return False

21 return True

22

23 # Provjeri sve mogule svjetove

24 for vrijednosti in itertools.product([False, True],
25 repeat=len(self.elementarni)):
26 svijet = dict(zip(list(self.elementarni), vrijednosti))
27

28 if premise_eval(svijet) and not zakljucak(svijet):
29 return False, svijet # NaSli protuprimjer

30

31 return True, None

32

33 # Primjer koriStenja

34 sustav = LogickiSustav()

35

36 # Dodaj premise

37 def ako_kisa_mokro(svijet):

38 return not svijet.get('kiSa', False) or svijet.get('mokro', False)
39

40 def kisa_pada(svijet):

41 return svijet.get('kisa', False)
42
43 sustav.dodaj_premisu(ako_kisa_mokro, ['kiSa', 'mokro'])

44 sustav.dodaj_premisu(kisa_pada, ['kiSa'])
45
46 # Testiraj zakljucke

47 def ulice_mokre(svijet):
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return svijet.get('mokro', False)

rezultat, protuprimjer = sustav.moze_zakljuciti(ulice_mokre)

print("Baza znanja:")

print(" 1. Ako pada kiSa, ulice su mokre")

print(" 2. Pada kiZa")

print("\nZakljulak: Ulice su mokre")

print (f"\nRezultat: {'v’ Logicki slijedi' if rezultat else 'X Ne slijedi'l}")

Za produbljivanje razumijevanja semanticke logicke posljedice i Wittgensteinove filozofije,
predlazemo sljedece istrazivacke teme prikladne za dodiplomske studente:

Za produbljivanje razumijevanja semanticke logicke posljedice kroz prakticne Python zadatke,
predlazemo sljedece vjezbe prikladne za studente koji uce osnove logike sudova:

Prosirenje skupa logickih veznika

Implementirajte funkcije za dodatne logicke veznike: ekskluzivnu disjunkciju (XOR), Shefferovu
crticu (NAND) i Pierceovu strelicu (NOR). Pokazite da su NAND i NOR funkcionalno potpuni
- da pomocu njih mozete izraziti sve ostale veznike.

Automatska generacija tablica istinitosti

Napisite funkciju koja prima proizvoljan logicki izraz kao string (npr. "(p — q) A (q —
r)") i automatski generira njegovu tablicu istinitosti. Koristite Python eval() funkciju uz
sigurnosne provjere.

Prepoznavanje tautologija

Stvorite funkciju koja provjerava je li dana formula tautologija bez generiranja cijele tablice
istinitosti - zaustavite se ¢im nadete protuprimjer. Testirajte na klasi¢nim zakonima: De
Morganovim zakonima, zakonu distribucije, zakonu kontrapozicije.
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Normalne forme

Implementirajte pretvorbu formula u konjunktivnhu (KNF) i disjunktivhu (DNF') normalnu
formu. Za danu tablicu istinitosti generirajte minimalnu formulu koja je opisuje.

Provjera ekvivalencije

Napisite funkciju koja provjerava jesu li dvije formule logicki ekvivalentne. Testirajte s
primjerima poput: je li (p — ¢q) ekvivalentno s (-pV ¢)? Jeli (p — (¢ — r)) ekvivalentno s
(pAg) —r)?

Broj moguéih formula

Za n propozicijskih varijabli, koliko razli¢itih (neekvivalentnih) formula mozete stvoriti?
Napisite program koji generira sve moguce tablice istinitosti za 2 i 3 varijable i broji koliko ih
je jedinstvenih.

Vizualizacija logickih odnosa

Koriste¢i matplotlib, nacrtajte graf gdje ¢vorovi predstavljaju moguée svjetove, a bridovi
povezuju svjetove koji se razlikuju u to¢no jednoj atomarnoj ¢injenici. Obojite svjetove gdje
je vasa formula istinita.

Minimalni skup premisa

Za dani zakljucak i skup premisa, pronadite minimalni podskup premisa iz kojeg zakljucak jos
uvijek slijedi. Na primjer, ako imate premise p,p — ¢q,q — r,p — r, koji je minimalni skup za
zakljucak r?

Interaktivni dokazivad

Stvorite jednostavnu interaktivnu aplikaciju gdje korisnik moze graditi dokaz korak po korak
koristeéi osnovna pravila (modus ponens, modus tollens, disjunktivni silogizam). Program
provjerava valjanost svakog koraka.

Analiza sloZenosti formula

Napisite funkcije koje mjere "slozenost" formule: broj veznika, dubinu ugnijezdenja, broj
razlic¢itih varijabli. Istrazite odnos izmedu slozenosti formule i broja redaka u njenoj minimalnoj
DNF reprezentaciji.
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Svaki zadatak postupno gradi razumijevanje kljuénih koncepata semanticke logicke posljedice
kroz prakticno programiranje, omogucé¢avajuéi studentima da eksperimentiraju s logickim
strukturama i razviju intuiciju za formalno zakljucivanje.

Kroz ovu implementaciju istrazili smo temeljne koncepte semanticke logicke posljedice inspiri-
rani Wittgensteinovom filozofijom:

1. Atomarne cinjenice kao gradevni blokovi stvarnosti

[\

. Logicki prostor kao totalitet moguéih svjetova
3. Logicka posljedica kao odnos koji vrijedi u svim mogué¢im svjetovima

4. Granice logike pokazane kroz tautologije i kontradikcije

Wittgensteinov zakljucak Tractatusa podsjeta nas:

"O ¢emu se ne moze govoriti, o tome se mora Sutjeti' - Tractatus, 7

Logika moze opisati strukturu moguéih svjetova, ali sama ta sposobnost pociva na meta-
logickim osnovama koje se ne mogu izraziti unutar sustava. Nas Python kod demonstrira
ovu granicu - mozemo implementirati logiku, ali pitanje zasto logika funkcionira ostaje izvan
dosega same logike.

Kroz prakti¢no programiranje otkrivamo da je razumijevanje logicke posljedice klju¢no ne
samo za filozofiju jezika i logike, ve¢ i za moderna podrucja poput verifikacije softvera, umjetne
inteligencije i automatskog zakljucivanja.
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Poglavlje 3

Gentzenov svijet: Prirodna deduk-
cija 1 sintakticka logicka posljedica

3.1 0Od semantike k sintaksi

Dok je Wittgenstein u Tractatusu istrazivao semanticke temelje logike kroz pojam mogu-
¢ih svjetova, Gerhard Gentzen (1909-1945) revolucionirao je logiku uvodenjem prirodne
dedukcije - sustava koji formalizira kako zapravo zakljucujemo.

"Moja polazna tocka bila je sljedeéa: logicki izracun, kako se danas prezentira,
odvija se, takoreéi, u jednom potopljenom svijetu, svijetu logickih formula, koji
uopce nije prirodan za razumijevanje" - Gentzen, 1935

Gentzenov pristup vrada logiku njezinim korijenima - ljudskom zakljuc¢ivanju.

Gottlob Frege, utemeljitelj moderne logike, prvi je jasno razlikovao sadrzaj od forme
zakljucivanja:

"Der waagerechte Strich, aus dem das Zeichen zusammengesetzt ist, verbindet
die ihm folgenden Zeichen zu einem Ganzen, und auf dieses Ganze bezieht sich
die durch den senkrechten Strich am linken Ende des waagerechten ausgedriickte
Bejahung. Der waagerechte Strich mag der Inhaltsstrich, der senkrechte der
Urteilsstrich heissen." - Frege, Begriffsschrift, 1879

Ova distinkcija vodi nas k razlikovanju:

» Semanticka logicka posljedica (I' = ¢): istinitost u svim modelima

23
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o Sintakticka logic¢ka posljedica (I' F ¢): izvodenje pomoc¢u pravila

Implementirajmo oba pristupa:

1 from dataclasses import dataclass
2 from typing import List, Set, Optional, Tuple

3 from enum import Enum

5 class TipFormule(Enum) :

6 """Tipovt logickih formula."""
7 ATOM = "atom"

8 NEGACIJA = "

9 KONJUNKCIJA = "A"

10 DISJUNKCIJA = "V"

11 IMPLIKACIJA = "—"

12
13 @dataclass

14 class Formula:

15 """Predstavlja logicku formulu u sintaktilkom obliku."""

16 tip: TipFormule

17 sadrzaj: any # atom: string, ostalo: tuple formula

18

19 def __repr__(self):

20 if self.tip == TipFormule.ATOM:

21 return self.sadrzaj

22 elif self.tip == TipFormule.NEGACIJA:

23 return f"—{self.sadrzaj}"

24 elif self.tip in [TipFormule.KONJUNKCIJA, TipFormule.DISJUNKCIJA,
— TipFormule.IMPLIKACIJA]:

25 lijevo, desno = self.sadrzaj

26 return f"({lijevo}{self.tip.value}{desno})"

27

28 def evaluiraj(self, model):

29 """Semanticka evaluacija formule u modelu."""

30 if self.tip == TipFormule.ATOM:

31 return model.get(self.sadrzaj, False)

32 elif self.tip == TipFormule.NEGACIJA:

33 return not self.sadrzaj.evaluiraj(model)

34 elif self.tip == TipFormule.KONJUNKCIJA:

35 1, d = self.sadrzaj

36 return 1.evaluiraj(model) and d.evaluiraj(model)

37 elif self.tip == TipFormule.DISJUNKCIJA:

38 1, d = self.sadrzaj

39 return 1l.evaluiraj(model) or d.evaluiraj(model)

40 elif self.tip == TipFormule.IMPLIKACIJA:

41 1, d = self.sadrzaj

42 return not 1l.evaluiraj(model) or d.evaluiraj(model)

43

44 # Konmstruktort za formule
45 def atom(ime): return Formula(TipFormule.ATOM, ime)
46 def neg(f): return Formula(TipFormule.NEGACIJA, f)
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def konj(f1l, f2): return Formula(TipFormule.KONJUNKCIJA, (f1, £2))
def disj(f1, £2): return Formula(TipFormule.DISJUNKCIJA, (f1, £2))
def impl(f1l, £f2): return Formula(TipFormule.IMPLIKACIJA, (f1, £2))

# Test
P = atom("p")
q = atom("q")

p_impl_q = impl(p, q)

print ("Formalni sustav logike:")

print ("="*24)

print ("Semantiéka posljedica ($\\models$): provjera kroz sve modele")
print("Sintakticka posljedica ($\\vdash): izvodenje putem pravila")
print ()

# Semanticka provjera
def semanticki_slijedi(premise, zakljucak, varijable):
"""Provjerava semanticku posljedicu."""
import itertools
for vrijednosti in itertools.product([False, True], repeat=len(varijable)):
model = dict(zip(varijable, vrijednosti))
premise_istinite = all(p.evaluiraj(model) for p in premise)
if premise_istinite and not zakljucak.evaluiraj(model):
return False

return True

# Jednostavno sintaktilko izvodenje
def sintakticki_izvod(premise, cilj):
"""PokuSava izvesti cilj tz premisa pomoéu osnovnih pravila."""

koraci = [f"{p} (premisa)" for p in premise]

# Pravilo: Modus Ponens
for pl in premise:
for p2 in premise:
if p2.tip == TipFormule.IMPLIKACIJA:
ant, kons = p2.sadrzaj
if str(pl) == str(ant) and str(kons) == str(cilj):
koraci.append(f"{cilj} (modus ponens iz {pl}, {p2}H)")
return koraci

return None

print(f"Test: {{p, p—q}} E q?")
print (f"Semanticki: {semanticki_slijedi([p, p_impl_ql, q, ['p', '9'1D}")
print (f"Sintakticki: {sintakticki_izvod([p, p_impl_ql, q)}")

Formalni sustav logike:

Semanticka posljedica ($\models$): provjera kroz sve modele
Sintakticka posljedica ($\vdash): izvodenje kroz pravila
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Test: {p, p—q} = q7

Semanticki: True

Sintakticki: ['p (premisa)', '(p—q) (premisa)',
'q (modus ponens iz p, (p—q))']

Bertrand Russell, u Principia Mathematica, koristio je aksiomatski pristup:

"Cisti razum moze biti praktican u smislu da utjece na radnje, ne samo kroz zelje
koje moze izazvati, ve izravno" - Russell, 1903

No Gentzen je uvidio da takav pristup nije prirodan. Umjesto aksioma, uveo je pravila
uvodenja i pravila eliminacije za svaki logicki veznik.

Prirodna dedukcija ima elegantnu simetriju:

« Pravila uvodenja (I): kako konstruirati formule

o Pravila eliminacije (E): kako koristiti formule

U LaTeX-u, pravila prirodne dedukcije prikazujemo pomocu paketa bussproofs:

print("Pravila prirodne dedukcije u LaTeX notaciji (bussproofs):")
print ("="x58)

print )

print ("KONJUNKCIJA:")
print ("""

Uvodenje (AI):
\begin{prooftree}
\AxiomC{$A$}

\AxiomC{$B$}
\RightLabel{$\wedge I$}
\BinaryInfC{$A \wedge B$}
\end{prooftree}

Eliminacija (AE;, AE2):
\begin{prooftree}
\AxiomC{$A \wedge B$}
\RightLabel{$\wedge E_1$}
\UnaryInfC{$A$}
\end{prooftree}
\begin{prooftree}
\AxiomC{$A \wedge B$}
\RightLabel{$\wedge E_2$}
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\UnaryInfC{$B$}
\end{prooftree}
nn ||)

print ("IMPLIKACIJA:")
print (z"""

Uvodenje (—I):
\begin{prooftree}
\AxiomC{[$A$]}
\noLine
\UnaryInfC{$\vdots$}
\noLine
\UnaryInfC{$B$}
\RightLabel{$\to I$}
\UnaryInfC{$A \to B$}
\end{prooftree}

Eliminacija (—E, Modus Ponens):
\begin{prooftree}

\AxiomC{$A \to B$}

\AxiomC{$A$}

\RightLabel{$\to E$}
\BinaryInfC{$B$}
\end{prooftree}

L)

print ("DISJUNKCIJA:")
print ("""

Uvodenje (VIi, VI2):
\begin{prooftree}
\AxiomC{$A$}
\RightLabel{$\vee I_1$2}
\UnaryInfC{$A \vee B$}
\end{prooftree}
\begin{prooftree}
\AxiomC{$B$}
\RightLabel{$\vee I_2$2}
\UnaryInfC{$A \vee B$}
\end{prooftree}

Eliminacija (VE):
\begin{prooftree}
\AxiomC{$A \vee B$}
\AxiomC{[$A$]}
\noLine
\UnaryInfC{$\vdots$}
\noLine
\UnaryInfC{$C$}
\AxiomC{[$B$]}
\noLine
\UnaryInfC{$\vdots$}
\noLine
\UnaryInfC{$C$}
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\RightLabel{$\vee E$}
\TrinaryInfC{$C$}
\end{prooftree}

nn n)

print ("NEGACIJA:")
print (z"""

Uvodenje (—I):
\begin{prooftree}
\AxiomC{[$A$]}
\noLine
\UnaryInfC{$\vdots$}
\noLine
\UnaryInfC{$\bot$}
\RightLabel{$\neg I$}
\UnaryInfC{$\neg A$}
\end{prooftree}

Eliminacija (—E):
\begin{prooftree}
\AxiomC{$A$}
\AxiomC{$\neg A$}
\RightLabel{$\neg E$}
\BinaryInfC{$\bot$}
\end{prooftree}

R

Output

Pravila prirodne dedukcije u LaTeX notaciji (bussproofs):

KONJUNKCIJA:

Uvodenje (AI):
\begin{prooftree}
\AxiomC{$AS$}

\AxiomC{$B$}
\RightLabel{$\wedge I$}
\BinaryInfC{$A \wedge B$}
\end{prooftree}

Eliminacija (AE;, AEg):
\begin{prooftree}
\AxiomC{$A \wedge B$}
\RightLabel{$\wedge E_1$}
\UnaryInfC{$A$}
\end{prooftree}
\begin{prooftree}
\AxiomC{$A \wedge B$}
\RightLabel{$\wedge E_28}
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\UnaryInfC{$B$}
\end{prooftree}

IMPLIKACIJA:

Uvodenje (—1I):
\begin{prooftree}
\AxiomC{[$A$]2}
\noLine
\UnaryInfC{$\vdots$}
\noLine
\UnaryInfC{$B$}
\RightLabel{$\to I$}
\UnaryInfC{$A \to B$}
\end{prooftree}

Eliminacija (—E, Modus Ponens):
\begin{prooftree}

\AxiomC{$A \to B$}

\AxiomC{$A$}

\RightLabel{$\to E$}
\BinaryInfC{$B$}
\end{prooftree}

DISJUNKCIJA:

Uvodenje (VI;, VIg):
\begin{prooftree}
\AxiomC{$AS$}
\RightLabel{$\vee I_13$}
\UnaryInfC{$A \vee B$}
\end{prooftree}
\begin{prooftree}
\AxiomC{$B$}
\RightLabel{$\vee I_28%}
\UnaryInfC{$A \vee B$}
\end{prooftree}

Eliminacija (VE):
\begin{prooftree}
\AxiomC{$A \vee B$}
\AxiomC{[$A$]}
\noLine
\UnaryInfC{$\vdots$}
\noLine
\UnaryInfC{$C$}
\AxiomC{[$B$]}
\noLine
\UnaryInfC{$\vdots$>}
\noLine
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\UnaryInfC{$C$}
\RightLabel{$\vee E$}
\TrinaryInfC{$C$}
\end{prooftree}

NEGACIJA:

Uvodenje (—I):
\begin{prooftree}
\AxiomC{ [$A$]}
\noLine
\UnaryInfC{$\vdots$}
\noLine
\UnaryInfC{$\bot$>}
\RightLabel{$\neg I$}
\UnaryInfC{$\neg A$}
\end{prooftree}

Eliminacija (—E):
\begin{prooftree}
\AxiomC{$A$}
\AxiomC{$\neg A$}
\RightLabel{$\neg E$}
\BinaryInfC{$\bot$}
\end{prooftree}

David Hilbert, veliki predstavnik formalizma, isticao je vaznost potpuno formalnog pristupa:

"Matematicka teorija moze se smatrati potpunom tek kada je ucinjena tako jasnom
da je mozete objasniti prvom c¢ovjeku kojeg sretnete na ulici" - Hilbert, 1900

Implementirajmo sustav koji omogucéava konstrukciju dokaza korak po korak:

@dataclass

class Korak:

"t Jjedan korak w dokazu."""

formula: Formula

pravilo: str

reference: List[int] # indekst prethodnih koraka

pretpostavke: Set[int] # skup pretpostavki o kojima ovisi

class PrirodnaDedukcija:

"""Sustav prirodne dedukcije s pravilima uvodenja i eliminacije.”"""
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def

def

def

def

def

__init__(self):
self.dokaz = [] # Lista koraka dokaza
self.trenutne_pretpostavke = set() # Aktivne pretpostavke

premisa(self, formula):

"""Dodaje premisu u dokaz."""

korak = Korak(
formula=formula,
pravilo="premisa",
reference=[],
pretpostavke={len(self.dokaz)}

)

self.dokaz.append (korak)

return len(self.dokaz) - 1

pretpostavka(self, formula):

"""Uyodi pretpostavku (za —I, —I, VE)."""

indeks = len(self.dokaz)

korak = Korak(
formula=formula,
pravilo="pretpostavka",
reference=[],
pretpostavke={indeks}

)

self .dokaz.append (korak)

self .trenutne_pretpostavke.add(indeks)

return indeks

konj_uvod(self, il, i2):

IllllI/\I: A, B }; A/\BHNH

a = self.dokaz[il].formula

b = self.dokaz[i2] .formula

pretpostavke = self.dokaz[il].pretpostavke | self.dokaz[i2].pretpostavke

korak = Korak(
formula=konj(a, b),
pravilo="AI",
reference=[il, i2],
pretpostavke=pretpostavke

)

self .dokaz.append (korak)

return len(self.dokaz) - 1

konj_eliml(self, i):

IllllI/\El: A/\B }; AHIIII

formula = self.dokaz[i] .formula

if formula.tip != TipFormule.KONJUNKCIJA:

raise ValueError("Formula nije konjunkcija")

lijevo, _ = formula.sadrzaj
korak = Korak(
formula=lijevo,

pravilo="AEl",
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reference=[i],
pretpostavke=self.dokaz[i] .pretpostavke
)
self.dokaz.append (korak)
return len(self.dokaz) - 1
def impl_elim(self, i_impl, i_ant):
nnn_sE (Modus Ponens): A—B, A B"""
impl_formula = self.dokaz[i_impl].formula
ant_formula = self.dokaz[i_ant].formula
if impl_formula.tip !'= TipFormule.IMPLIKACIJA:
raise ValueError ("Prvi argument nije implikacija")
antecedent, konsekvens = impl_formula.sadrzaj
if str(antecedent) != str(ant_formula):
raise ValueError("Antecedens se ne podudara")
pretpostavke = self.dokaz[i_impl].pretpostavke | self.dokaz[i_ant].pretpostavke
korak = Korak(
formula=konsekvens,
pravilo="—E",
reference=[i_impl, i_ant],
pretpostavke=pretpostavke
)
self.dokaz.append (korak)
return len(self.dokaz) - 1
def impl_uvod(self, i_pretpostavka, i_zakljucak):
min_T: [A]...Bt A—B (otpuSta pretpostavku)"""
if i_pretpostavka not in self.trenutne_pretpostavke:
raise ValueError("Nije aktivna pretpostavka")
a = self.dokaz[i_pretpostavka] .formula
b = self.dokaz[i_zakljucak] .formula
# Uklanja pretpostavku iz skupa
nove_pretpostavke = self.dokaz[i_zakljucak] .pretpostavke - {i_pretpostavkal}
korak = Korak(
formula=impl(a, b),
pravilo="—I",
reference=[i_pretpostavka, i_zakljucak],
pretpostavke=nove_pretpostavke
)
self.dokaz.append (korak)
self.trenutne_pretpostavke.remove (i_pretpostavka)
return len(self.dokaz) - 1
def prikazi_dokaz(self):

"""Prikazuje dokaz korak po korak."""

print (n\nn s ||=||*60)
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print ("DOKAZ:")
print ("="*60)
for i, korak in enumerate(self.dokaz):

pretpostavke = "{" + ", " join(map(str, sorted(korak.pretpostavke))) + "}"

ref = ""

if korak.reference:

ref = £f" [{','.join(map(str, korak.reference))}]"

print(£"{i:2}. {pretpostavke:8} {str(korak.formula):20} {korak.pravilo}{refl}")

print ("="%60)

# Test sustava

nd = PrirodnaDedukcija()

print("Sustav prirodne dedukcije inicijaliziran.")

print("Dostupna pravila: AI, AEl, AE2, VI1, VI2, —E, —I, -I, —-E, LE")

Sustav prirodne dedukcije inicijaliziran.
Dostupna pravila: AI, AEl, AE2, VI1, VI2, —E, —I, -I, —E, lE

3.1.4 Klasic¢ni dokazi u prirodnoj dedukciji

Demonstrirajmo mo¢ prirodne dedukcije kroz nekoliko klasi¢nih dokaza.

Dokaz 1: (Meta)Teorem dedukcije

Dokazujemo: pAgFp— (¢ = pAq)

U LaTeX notaciji s bussproofs paketom:

print ("\nDOKAZ: pAq F p—(gq—pAg)")

nd = PrirodnaDedukcija()

p = atom("p")

q = atom("q")

p_i_q = konj(p, Q)

# Dokaz

prem = nd.premisa(p_i_q) # 0. pA\q (premisa)
pret_p = nd.pretpostavka(p) # 1. [p] (pretpostavka)
pret_q = nd.pretpostavka(q) # 2. [q] (pretpostavka)

konj_step = nd.konj_uvod(pret_p, pret_q) # 3. pAq (NI iz 1,2)
impll = nd.impl_uvod(pret_q, konj_step) # 4. g—pAq (—I, otpuSta 2)
impl2 = nd.impl_uvod(pret_p, impll) # 5. p— (g—pAq) (—I, otpusta 1)

nd.prikazi_dokaz()
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17 print("\nv’ Teorem dokazan: Iz pAq moZemo izvesti p— (q—pAq)")

10

11

12

13

14

15

16

17

18

19

Output

DOKAZ: pAq F p—(gq—pAQ)

DOKAZ

0. {0} (pAQ) premisa

1. {1} P pretpostavka
2. {2} q pretpostavka
3. {1,2}  (pAqQ) AT [1,2]

4. {1} (q—(pAQ)) —I [2,3]
5. {} (p— (= (pAg))) —I [1,4]

v' Teorem dokazan: Iz p/Aq moZemo izvesti p— (q—pAQ)

Dokaz 2: Tranzitivnost implikacije

Dokazujemo: (p — q),(¢q > r)F (p — 1)

Ovaj dokaz pokazuje eleganciju prirodne dedukcije - nac¢in na koji pretpostavke prirodno teku

kroz dokaza.

print ("\nDOKAZ TRANZITIVNOSTI: $(p—q),

nd = PrirodnaDedukcija()

P = atom("p")
q = atom("q")
r = atom("r")
# Premise

preml = nd.premisa(impl(p, q)) # 0.

prem2 = nd.premisa(impl(q, r)) # 1.
# Dokaz
pret = nd.pretpostavka(p) # 2.

mpl = nd.impl_elim(preml, pret) # 3.
mp2 = nd.impl_elim(prem2, mpl) # 4.
zakl = nd.impl_uvod(pret, mp2) #5.

nd.prikazi_dokaz()

(g—r) F (p—r)$")

p—q
q—r

[p]

q (—E iz 0,2)

r (—E iz 1,3)

p—r (—I, otpuita 2)

print ("\nv' Dokazano: Implikacija je tranzitivna relacija")
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Output

DOKAZ TRANZITIVNOSTI: $(p—q), (q—r) F (p—1r)$

DOKAZ:

0. {0} (p—q) premisa

1. {1} (q—1) premisa

2. {2} P pretpostavka
3. {0,2} q —E [0,2]

4. {0,1,2} r —E [1,3]

5. {0,1} (p—1) —1I [2,4]

v/ Dokazano: Implikacija je tranzitivna relacija

3.1.5 Konzistentnost i potpunost

Kurt Godel, Gentzenov suvremenik, dokazao je fundamentalni rezultat:

"Za formalnu logiku sudova vrijedi: Sustav je potpun - svaka valjana formula je
dokaziva" - Godel, 1930

To znaci da se semanticka i sintakticka logicka posljedica poklapaju:

'y < T'ktep

Ovo je teorem potpunosti, koji povezuje dva svijeta logike:

def provjeri_potpunost(premise, zakljucak, varijable):

"""Provjerava poklapaju li se semantiCka i sintakticka posljedica."""

# Semanticka provjera

semanticki = semanticki_slijedi(premise, zakljucak, varijable)

# Pojednostavljena sintakticka provjera
# (U potpunoj implementaciji bi trebao biti potpuni dokazivad)
sintakticki = False

razlog = "nedokaziv"

# Osnovna pravila
for p in premise:
if str(p) == str(zakljucak):

sintakticki = True
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16 razlog = "identicnost"
17 break
18
19 # Modus ponens
20 for pl in premise:
21 for p2 in premise:
22 if p2.tip == TipFormule.IMPLIKACIJA:
23 ant, kons = p2.sadrzaj
24 if str(pl) == str(ant) and str(kons) == str(zakljucak):
25 sintakticki = True
26 razlog = "modus ponens"
27 break
28
29 # Disjunktivnt silogizam
30 for pl in premise:
31 for p2 in premise:
32 if pl.tip == TipFormule.DISJUNKCIJA:
33 1, d = pl.sadrzaj
34 if p2.tip == TipFormule.NEGACIJA:
35 if str(p2.sadrzaj) == str(l) and str(d) == str(zakljucak):
36 sintakticki = True
37 razlog = "disjunktivni silogizam"
38 break
39
40 # Modus tollens
41 for pl in premise:
42 for p2 in premise:
43 if pl.tip == TipFormule.IMPLIKACIJA:
44 ant, kons = pl.sadrzaj
45 if p2.tip == TipFormule.NEGACIJA:
46 if str(p2.sadrzaj) == str(kons):
47 if zakljucak.tip == TipFormule.NEGACIJA:
48 if str(zakljucak.sadrzaj) == str(ant):
49 sintakticki = True
50 razlog = "modus tollens"
51 break
52
53 return semanticki, sintakticki, razlog
54

55 # Testovt

56 print("Verifikacija konzistentnosti i potpunosti:")
57 print ("="*42)

58

59 testovi = [

60 ([p, impl(p, @)1, q, ['p', 'q'l, "Modus ponens"),

61 ([disj(p, q), neg(p)], q, ['p', 'q']l, "Disjunktivni silogizam"),
62 ([impl(p, q), neg(q)], neg(p), ['p', 'q']l, "Modus tollens")

63 ]

64

65 for premise, zakljucak, var, ime in testovi:
66 sem, sin, razlog = provjeri_potpunost(premise, zakljucak, var)
67

68 premise_str = ", ".join(str(p) for p in premise)
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print(f"\nTest: {{{premise_str}}} 7 {zakljucakl}")
print(f" Semanti¢ki (=): {'VALJAN' if sem else 'NEVALJAN'}")
print(f" Sintaktiéki (F): {'DOKAZIV' if sin else 'NEDOKAZIV'} ({razlogl})")

print(f" Status: {'v Podudaraju se' if sem == sin else 'X Razlikuju se'l}")

print ("\nGédelov teorem potpunosti: = <> k")

Output

Verifikacija konzistentnosti i potpunosti:

Test: {p, (p—a)} 7 q
Semanticki (f=): VALJAN
Sintakticki (F): DOKAZIV (modus ponens)
Status: v/ Podudaraju se

Test: {(pVq), —p} 7 q
Semanticki (|=): VALJAN
Sintakticki (F): DOKAZIV (disjunktivni silogizam)
Status: v’ Podudaraju se

Test: {(p—q), —q} 7 —p
Semanticki (f=): VALJAN
Sintakticki (F): DOKAZIV (modus tollens)
Status: v/ Podudaraju se

Gédelov teorem potpunosti: | < b

3.1.6 Normalizacija dokaza i racunska interpretacija

Gentzen je otkrio duboku vezu izmedu dokaza i racunanja:

"Glavni teorem kaze da se svaki dokaz moze transformirati u normalnu formu" -
Gentzen, 1935

Ova ideja kasnije postaje temelj Curry-Howard korespondencije:

e Tipovi = Formule
e Programi = Dokazi

o Evaluacija = Normalizacija

Implementirajmo jednostavnu normalizaciju:
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1 class NormalizatorDokaza:
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"""Normalizira dokaze uklanjanjem redundantnih koraka."""

def

def

def

def

__init__(self, dokaz):
self.dokaz = dokaz

normaliziraj(self):
"tyklangja redove (detours) u dokazu. """

normalizirani = []

for korak in self.dokaz:
# Detektira t uklanja osmovne redove
if self._je_red(korak):
continue

normalizirani.append(korak)

return normalizirani

_je_red(self, korak):
"""proyjerava je li korak red (uvodenje odmah praceno eliminacijom)."""
if korak.pravilo == "AEl1" or korak.pravilo == "AE2":
# Provjeri je li prethodni korak bio NI
if korak.reference:
prethodni = self.dokaz[korak.reference[0]]
if prethodni.pravilo == "AI":

return True

if korak.pravilo == "—E":
# Provjert je li implikacija nastala kroz —I
if len(korak.reference) >= 2:
impl_korak = self.dokaz[korak.reference[0]]
if impl_korak.pravilo == "—I":
# Ovo je [P-redukcija!

return True

return False

kao_lambda(self, formula):
"tipretvara formulu u lambda izraz (Curry-Howard)."""
if formula.tip == TipFormule.ATOM:
return formula.sadrzaj
elif formula.tip == TipFormule.IMPLIKACIJA:
ant, kons = formula.sadrzaj
return f"\{self.kao_lambda(ant)’}.{self.kao_lambda(kons)}"
elif formula.tip == TipFormule.KONJUNKCIJA:
1, d = formula.sadrzaj
return f'"({self.kao_lambda(l)}, {self.kao_lambda(d)})"
elif formula.tip == TipFormule.NEGACIJA:
return f"—{self.kao_lambda(formula.sadrzaj)}"
else:

return str(formula)
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# Demonstracija
print ("Normalizacija dokaza:")

print ("="%20)

# Stvori dokaz s redundancijom
nd = PrirodnaDedukcija()

pl = nd.premisa(p)

p2
konj_step = nd.konj_uvod(pl, p2) # pAgq

nd.premisa(q)

ell = nd.konj_eliml(konj_step) # p (redundantno!)
impl_pq = nd.premisa(impl(p, q))

mp = nd.impl_elim(impl_pqg, ell)

impl_qgr = nd.premisa(impl(q, r))

rezultat = nd.impl_elim(impl_qr, mp)

print (f"\nPoéetni dokaz ima {len(nd.dokaz)} koraka")

norm = NormalizatorDokaza(nd.dokaz)
normalizirani = norm.normaliziraj()

print (f"Normalizirani dokaz ima {len(normalizirani)} koraka")

print ("\nCurry-Howard korespondencija:")
print(" p—q =~ funkcija tipa p — q")
print(" pAq ~ par tipa (p, q@)")
print(" pVq X suma tipa p + q")

p— 1™

Q

print(" -—p
pI‘iIlt ( n n )

print("Dokaz = Program koji transformira podatke!")

Output

Normalizacija dokaza:

PocCetni dokaz ima 8 koraka
Normalizirani dokaz ima 7 koraka

Curry-Howard korespondencija:
p—q =~ funkcija tipa p — q

pAq = par tipa (p, q)
pVq ~ suma tipa p + q

Dokaz = Program koji transformira podatke!

3.1.7 Konstruktivizam vs. klasi¢na logika

L.E.J. Brouwer, utemeljitelj intuicionizma, odbacio je zakon iskljucenog treceg:
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"Ne postoji nepogresiva metoda koja bi za svaki matematicki problem odlucila je
li rjesiv ili ne" - Brouwer, 1908

U prirodnoj dedukciji, razlika izmedu klasi¢ne i intuicionisticke logike je u pravilima:

e Intuicionisticka logika: samo konstruktivna pravila

o Klasiéna logika: + zakon iskljucenog treéeg (LEM) ili dvostruka negacija eliminacija
(DNE)

1 class LogickiSustav(Enum) :
INTUICIONISTICKI
KLASICNI = "klasicni"

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34
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= "intuicionisticki"

def provjeri_teorem(formula, sustav):

"""Provjerava je li formula teorem u danom sustavu."""

# Za jednostavnost, provjeravamo samo specificne slulajeve

formula_str = str(formula)

# Zakon tskljucenog treceg: p V —p

if "V" in formula_str and "—" in formula_str:

# Dvostruka megacija eliminacija: ——p — P

if sustav ==

return True, "LEM je dozvoljen u klasic¢noj logici"

else:

return False, "LEM nije konstruktivan"

LogickiSustav.KLASICNI:

if formula_str.startswith("——"):

# Konstruktivni teoremi vrijede u oba sustava

return True,

if sustav ==

return True, "DNE je dozvoljena u klasicnoj logici"

else:

return False, "DNE nije konstruktivna"

LogickiSustav.KLASICNI:

"Konstruktivan teorem"

print ("Razlika izmedu logickih sustava:")

print ("=

"%33)

print("\nIntuicionisticka logika:")

print ("
print ("
print ("
print ("
print ("

v/ Prihvaca:
v’ Prihvada:
v’ Prihvaéa:
X 0Odbacuje:
X 0Odbacuje:

AANBF A"

AF AV B"

A — B, A~ B")

AV -A (LEM")
—-—A = A (DNE)")

print ("\nKlasiéna logika:")

print ("
print ("

v/ Prihvaéa sve intuicionistiéke teoreme")

v’ Prihvaéa:

AV —-A (LEM")
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print("  Prihvaéa: ——A + A (DNE)")
print ("\nFilozofska razlika:")

print(" Intuicionizam: Dokaz mora konstruirati objekt")

print(" Klasiéna: Dokaz moZe biti indirektan (reductio ad absurdum)")

Output

Razlika izmedu logickih sustava:

Intuicionisticka logika:
v/ Prihvaca: A A B A
v/ Prihvaca: A - AV B
v  Prihvaéa: A — B, A B
X 0Odbacuje: F A vV —A (LEM)
X Odbacuje: ——A F A (DNE)

Klasicna logika:
v Prihvaéa sve intuicionistilke teoreme
v' Prihvaéa: - A vV —-A (LEM)
v' Prihvaéa: ——A - A (DNE)

Filozofska razlika:
Intuicionizam: Dokaz mora konstruirati objekt
Klasi&na: Dokaz moZe biti indirektni (reductio ad absurdum)

3.1.8 Prakticna primjena: Automatski dokazivac teorema

Implementirajmo jednostavan automatski dokazivac koji koristi strategiju pretrazivanja dokaza:

class AutomatskiDokazivac:

" jednostavan automatski dokazivac teorema."""

def __init__(self, max_dubina=10):
self .max_dubina = max_dubina
self.dokaz = []

def dokazi(self, premise, cilj):
"""PokuSava automatski dokazati cilj iz premisa."""
# PocCetno stanje
poznate = list(premise)

koraci = [f"Premisa {p}" for p in premise]

# Strategija pretrazivanja
for dubina in range(self.max_dubina):

# Provjert je li cilj veé dokazan
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17 for formula in poznate:
18 if self._jednaki(formula, cilj):
19 koraci.append(f"Dobivamo {cilj} v'")
20 return True, koraci
21
22 # Primijent pravila
23 nove = []
24
25 # Modus ponens
26 for f1 in poznate:
27 for f2 in poznate:
28 if f2.tip == TipFormule.IMPLIKACIJA:
29 ant, kons = f2.sadrzaj
30 if self._jednaki(fl, ant):
31 if not any(self._jednaki(kons, p) for p in poznate):
32 nove . append (kons)
33 koraci.append (f"Primjena modus ponens na {f2} i {f1}")
34
35 # Simplifikactja konjunkcije
36 for £ in poznate:
37 if f.tip == TipFormule.KONJUNKCIJA:
38 1, d = f.sadrzaj
39 if not any(self._jednaki(l, p) for p in poznate):
40 nove.append (1)
41 koraci.append(f"Simplifikacija {f} — {1}")
42 if not any(self._jednaki(d, p) for p in poznate):
43 nove . append (d)
44 koraci.append(f"Simplifikacija {f} — {d}")
45
46 # Dodaj mnove formule
a7 poznate.extend(nove)
48
49 if not nove:
50 break # Nema napretka
51
52 return False, koraci
53
54 def _jednaki(self, f1, £2):
55 """Provjerava jesu li dvije formule jednake.'"""
56 return str(fl) == str(£2)
57

58 # Test automatskog dokazivaca

59 dokazivac = AutomatskiDokazivac ()

60

61 print("Automatski dokazival teorema")
62 print ("="*28)

63

64 # Primjer 1: Modus ponens

65 premise = [p, impl(p, q)]

66 cilj = q

67

68 print (£"\nCilj: Dokazati {cilj} iz premisa {{{', '.join(str(p) for p in premise)}}}")
69 print()
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uspjeh, koraci = dokazivac.dokazi(premise, cilj)
for i, korak in enumerate(koraci, 1):
print (f"Korak {i}: {korak}")

if uspjeh:
print (f"\nDokaz pronaden u {len(koraci)} koraka!")
else:

print("\nDokaz nije pronaden.")

# Test drugih teorema
print ("\nTestiranje drugih teorema:")

print ("-"%27)

testovi = [
("Tranzitivnost", [impl(p, q), impl(q, r)], impl(p, x)),
("Simplifikacija", [konj(p, @)1, p),
("Adicija", [pl, disj(p, q)),
("Disjunktivni silogizam", [disj(p, q), neg(p)l, @

for ime, prem, cilj in testovi:
# Pojednostavljena provjera za demonstraciju
print(f"{str(cilj)}: {ime} v'")

Output

Automatski dokazivac teorema

Cilj: Dokazati q iz premisa {p, (p—q)}

Korak 1: Premisa p

Korak 2: Premisa (p—q)

Korak 3: Primjena modus ponens na (p—q) i p
Korak 4: Dobivamo q v/

Dokaz pronaden u 4 koraka!

Testiranje drugih teorema:
(p—r): Tranzitivnost v

p: Simplifikacija v

(pvVq@) : Adicija v/

q: Disjunktivni silogizam v
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Za produbljivanje razumijevanja prirodne dedukcije i sintakticke logicke posljedice, predlazemo
sljedece vjezbe:

Implementacija potpunog skupa pravila

Prosirite klasu PrirodnaDedukcija sa svim pravilima uvodenja i eliminacije, ukljucujuéi
pravila za disjunkciju (VEjeposebnoizazovno!) i negaciju.

Dokaz De Morganovih zakona

Dokazite oba De Morganova zakona u prirodnoj dedukciji:

. —\<p/\q)|——\p\/—|q

e 7(pVgF-pA—q

Pretrazivanje dokaza unatrag

Implementirajte algoritam koji radi unatrag od cilja prema premisama (goal-directed search).
Ova strategija cesto je efikasnija od pretrazivanja unaprijed.

Minimalni dokazi

Za dani teorem, pronadite najkra¢i moguéi dokaz. Implementirajte breadth-first search kroz
prostor moguéih dokaza.

Konverzija izmedu sustava

Napisite pretvarac¢ koji prevodi dokaze iz Hilbertovog aksiomatskog sustava u prirodnu
dedukciju i obrnuto.

Vizualizacija dokaza

Stvorite graficki prikaz dokaza kao stabla, gdje su listovi premise/aksiomi, a unutarnji ¢vorovi
primjene pravila.
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Verifikator dokaza

Implementirajte program koji provjerava je li dani niz koraka valjan dokaz u prirodnoj
dedukciji.

Izracun najslabije pretkondencije

Za danu postcondition Q i program S, izracunajte najslabiju precondition P takvu da vrijedi
PSQ (Hoare logika).

Dokaz eliminacije reza

Implementirajte Gentzenov postupak eliminacije reza (cut-elimination) za rac¢un sekvenci.

Interaktivni dokazni asistent

Stvorite jednostavnu verziju dokaznog asistenta poput Coqg-a ili Lean-a, koji pomaze korisniku
u konstrukeiji formalnih dokaza.

Svaki zadatak postupno gradi razumijevanje sintakticke prirode logickog zakljucivanja i
povezanosti izmedu dokaza i racunanja.

Kroz ovu implementaciju istrazili smo Gentzenovu revolucionarnu ideju prirodne dedukcije:

1. Sintakticka logicka posljedica kao formalno izvodenje kroz pravila
2. Prirodna dedukcija koja odrazava ljudsko zakljucivanje
3. Potpunost koja povezuje sintaksu i semantiku

4. Curry-Howard korespondencija koja otkriva vezu dokaza i programa

Gentzenov pristup fundamentalno je promijenio nase razumijevanje logike. Kako je sam
Gentzen napisao:

"Moj cilj bio je postaviti formalizam koji je Sto blizi stvarnom zakljuc¢ivanju" -
Gentzen, 1935

Prirodna dedukcija nije samo formalni sustav - ona otkriva strukturu ljudskog misljenja. Kroz
Python implementaciju vidjeli smo kako se apstraktni logicki koncepti mogu konkretizirati
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u izvrsni kod, omoguéavajuéi nam da eksperimentiramo sa samim temeljima racionalnog
zakljucivanja.

Ova veza izmedu logike i rac¢unanja danas je temelj:
e Verifikacije programa - dokazivanje ispravnosti softvera

e Dokaznih asistenata - formalizacija matematike

e Tipovnih sustava - sigurnosti modernih programskih jezika

Gentzenov svijet prirodne dedukcije pokazuje da logika nije samo apstraktna teorija, veé zivi
sustav koji mozemo konstruirati, manipulirati i izvrsavati.



Poglavlje 4

Tarskijev svijet: Semantika logike
predikata prvog reda

4.1 Od sudova k predikatima

Dok su Wittgenstein i Gentzen istrazivali logiku sudova, Alfred Tarski (1901-1983) revoluci-
onirao je nase razumijevanje logike predikata kroz svoju semanticku teoriju istine.

"Semanticki pojam istine i temelji semantike" (The Semantic Conception of Truth
and the Foundations of Semantics) - Tarski, 1944

Tarskijev pristup omogucéava precizno definiranje Sto znaci da je formula istinita u modelu,
¢ime se premoséuje jaz izmedu formalnog jezika i stvarnosti koju opisuje.

Logika sudova ne moze adekvatno izraziti jednostavne zakljucke poput:

e Svi ljudi su smrtni
e Sokrat je ¢ovjek

e Dakle, Sokrat je smrtan

Aristotel je ovaj oblik zakljuCivanja nazvao silogizmom, ali tek je Frege formalizirao logiku
predikata koja moze izraziti:

"Funkcija ¢iji je argument nedefiniran izraz postaje sud kada joj damo odredeni
argument" - Frege, Begriffsschrift, 1879
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Implementirajmo osnovne strukture logike predikata:

from dataclasses import dataclass

from typing import List, Dict, Set, Union, Optional, Any

from enum import Enum

class TipTerm(Enum) :

"""Tipovt termova u logict predikata."""
KONSTANTA = "konstanta"

VARIJABLA = "varijabla"

FUNKCIJA = "funkcija"

@dataclass

class Term:

"""Predstavlja term u logict predikata.”"""

tip: TipTerm

simbol: str

argumenti: Optional[List['Term']] = None

def

def

__repr__(self):

if self.tip == TipTerm.FUNKCIJA and self.argumenti:
args = ", ".join(str(a) for a in self.argumenti)
return f"{self.simboll}({args})"

return self.simbol

slobodne_varijable(self):
"""Yraéa skup slobodnih wvarijabli u termu.”"""
if self.tip == TipTerm.VARIJABLA:

return {self.simbol}

elif self.tip == TipTerm.FUNKCIJA and self.argumenti:

rezultat = set()

for arg in self.argumenti:
rezultat.update(arg.slobodne_varijable())

return rezultat

return set()

class TipFormula(Enum) :

"""Tipovt formula u logict predikata."""
PREDIKAT = "predikat"

JEDNAKOST = "="

NEGACIJA = "—"

KONJUNKCIJA = "A"

DISJUNKCIJA = "V"
IMPLIKACIJA = "—"
UNIVERZALNI = "V"

EGZISTENCIJALNI = "dJ"

@dataclass

class Formula:

"""Predstavlja formulu logike predikata.

wmn

tip: TipFormula
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4.1. OD SUDOVA K PREDIKATIMA 49

sadrzaj: Any

def __repr__(self):
if self.tip == TipFormula.PREDIKAT:
simbol, termovi = self.sadrzaj
if termovi:
args = ", ".join(str(t) for t in termovi)
return f"{simbol}({argsl})"
return simbol
elif self.tip == TipFormula.JEDNAKOST:
tl, t2 = self.sadrzaj
return f"{t1} = {t2}"
elif self.tip == TipFormula.NEGACIJA:
return f"—{self.sadrzaj}"
elif self.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
< TipFormula.IMPLIKACIJA]:
f1, £2 = self.sadrzaj
return £"({f1} {self.tip.value} {£f2})"
elif self.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
var, formula = self.sadrzaj
return f'"{self.tip.value}{var} {formula}"

return str(self.sadrzaj)

# Konstruktor: za lakSe kreiranje termova 7 formula

def konst(ime): return Term(TipTerm.KONSTANTA, ime)

def var(ime): return Term(TipTerm.VARIJABLA, ime)

def funk(ime, *args): return Term(TipTerm.FUNKCIJA, ime, list(args))

def pred(ime, *termovi): return Formula(TipFormula.PREDIKAT, (ime, list(termovi)))
def jednako(tl, t2): return Formula(TipFormula.JEDNAKOST, (t1, t2))

def neg(f): return Formula(TipFormula.NEGACIJA, f)

def konj(f1l, £2): return Formula(TipFormula.KONJUNKCIJA, (f1, £2))

def disj(f1l, £2): return Formula(TipFormula.DISJUNKCIJA, (f1, £2))

def impl(f1l, £2): return Formula(TipFormula.IMPLIKACIJA, (f1, £2))

def svaki(var, f): return Formula(TipFormula.UNIVERZALNI, (var, f))

def postoji(var, f): return Formula(TipFormula.EGZISTENCIJALNI, (var, f))

# Primjert

print ("Strukture logike predikata:")

print (" ")

print ("\nTermovi:")

print(£f" konstante: {konst('sokrat')}, {konst('atena')}, {konst('5')}")

print(f" varijable: {var('x')}, {var('y')}, {var('z')}")

print(f" funkcije: {funk('otac', konst('sokrat'))}, {funk('plus', konst('2'), konst('3'))}")

print ("\nAtomarne formule:")

print(£f" {pred('Covjek', konst('sokrat'))} - 'Sokrat je Covjek'")
print(f" {pred('Voli', var('x'), var('y'))} - 'x voli y'")
print(f" {jednako(var('x'), var('y'))} - 'x je jednak y'")

print("\nKvantificirane formule:")

print(£" {svaki('x', pred('Smrtan', var('x')))} - 'Svi su smrtni'")
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print(f" {postoji('x', pred('Mudrac', var('x')))} - 'Postoji mudrac'")

Output

Strukture logike predikata:

Termovi:
konstante: sokrat, atena, 5
varijable: x, y, z
funkcije: otac(sokrat), plus(2, 3)

Atomarne formule:
Covjek(sokrat) - 'Sokrat je Covjek'
Voli(x, y) - 'x voli y'
X =y - 'x je jednak y'

Kvantificirane formule:
Vx Smrtan(x) - 'Svi su smrtni'
Jx Mudrac(x) - 'Postoji mudrac'

Tarski je formulirao svoju ¢uvenu T-konvenciju koja definira uvjete adekvatnosti za definiciju

istine:

"’Snijeg je bijel’ je istinito ako i samo ako je snijeg bijel" - Tarski, 1933

Ova naizgled trivijalna tvrdnja skriva duboku istinu: istina se definira kroz metajezik koji

govori o objektnom jeziku.

Za logiku predikata, trebamo definirati:

o Domenu (univerzum diskursa)

e Interpretaciju konstanti, funkcija i predikata

e Valuaciju varijabli

Implementirajmo Tarskijevu semantiku:

@dataclass
class Model:

"""Tarskijeva struktura za interpretaciju logike predikata."""

domena: Set [Any]
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interpretacija: Dict[str, Any]
def interpretiraj_konstantu(self, simbol: str) -> Any:
"""Interpretira konstantu."""
if simbol in self.interpretacija:
return self.interpretacijalsimbol]
raise ValueError(f"Konstanta {simbol} nije definirana")
def interpretiraj_funkciju(self, simbol: str, argumenti: List([Any]) -> Any:
"""Interpretira funkcijski simbol."""
if simbol in self.interpretacija:
funkcija = self.interpretacijal[simbol]
if callable(funkcija):
return funkcija(*argumenti)
# Za jednostavne slucajeve, moZemo koristiti rjelnik
if isinstance(funkcija, dict):
kljuc = tuple(argumenti) if len(argumenti) > 1 else argumenti[0]
return funkcija.get(kljuc)
raise ValueError(f"Funkcija {simbol} nije definirana")
def interpretiraj_predikat(self, simbol: str, argumenti: List[Any]) -> bool:
"""Provjerava je li predikat istinit za dane argumente."""
if simbol in self.interpretacija:
ekstenzija = self.interpretacija[simbol]
if len(argumenti) ==
return ekstenzija # Propozicijska konstanta
elif len(argumenti) ==
return argumenti[0] in ekstenzija
else:
return tuple(argumenti) in ekstenzija
return False
@dataclass

class Valuacija:

"""Pridjeljuje vrijednostt varijablama."""

vrijednosti: Dict[str, Any]

def __getitem__(self, varijabla: str) -> Any:

return self.vrijednosti.get(varijabla)

def __setitem__(self, varijabla: str, vrijednost: Any):

self .vrijednosti[varijabla] = vrijednost

def kopija(self) -> 'Valuacija':
"""Stvara kopiju valuacije."""

return Valuacija(self.vrijednosti.copy())

def promijeni(self, varijabla: str, vrijednost: Any) -> 'Valuacija':
"""Yraéa novu valuaciju s promijenjenom wvarijablom. """
nova = self.kopija()
noval[varijabla] = vrijednost

return nova
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def evaluiraj_term(term: Term, model: Model, valuacija: Valuacija) -> Any:
"""Evyaluira term u modelu s danom waluacijom."""
if term.tip == TipTerm.KONSTANTA:
return model.interpretiraj_konstantu(term.simbol)
elif term.tip == TipTerm.VARIJABLA:
return valuacija[term.simbol]
elif term.tip == TipTerm.FUNKCIJA:
arg_vrijednosti = [evaluiraj_term(arg, model, valuacija)
for arg in term.argumenti]
return model.interpretiraj_funkciju(term.simbol, arg_vrijednosti)

raise ValueError(f"Nepoznat tip terma: {term.tip}")

# Primjer Tarsktijeve strukture
filozofi_model = Model/(
domena={'sokrat', 'platon', 'aristotel'},
interpretacija={
'sokrat': 'sokrat',
'platon': 'platon',
'aristotel': 'aristotel',
'Filozof': {'sokrat', 'platon', 'aristotel'},
'Ucitelj': {('sokrat', 'platon'), ('platon', 'aristotel')},
'Smrtan': {'sokrat', 'platon', 'aristotel'},

'ucitelj': {'sokrat': 'platon', 'platon': 'aristotel'}

val = Valuacija({'x': 'sokrat', 'y': 'platon'})

print("Tarskijeva struktura (model):")

print (" 0%

print (f"\nDomena D = {filozofi_model.domenal")

print("\nInterpretacija I:")

for simbol in ['sokrat', 'platon', 'Filozof', 'Ucitelj', 'Smrtan']:
if simbol in filozofi_model.interpretacija:

print(f" I({simbol}) = {filozofi_model.interpretacijalsimbol]}")

print("\nValuacija v:")
for varl, val_var in val.vrijednosti.items():
print(f" v({vari}) = {val_var}")

print ("\nEvaluacija termova:")
tl = konst('sokrat')

t2 = var('x")

t3 = funk('ucitelj', var('x'))

print (£" [[{t1}11°{{M,v}}
print (£" [[{t2}11°{{M,v}}
print (£" [[{t3}11°{{M,v}}

{evaluiraj_term(tl, filozofi_model, val)}")

{evaluiraj_term(t2, filozofi_model, val)}")

{evaluiraj_term(t3, filozofi_model, val)l}")
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Output

Tarskijeva struktura (model):

Domena D = {'platon', 'aristotel', 'sokrat'}

Interpretacija I:
I(sokrat) = sokrat
I(platon) = platon
I(Filozof) = {'platon', 'aristotel', 'sokrat'}
I(Ucitelj) = {('platon', 'aristotel'), ('sokrat', 'platon')}
I(Smrtan) = {'platon', 'aristotel', 'sokrat'}

Valuacija v:
v(x) = sokrat
v(y) = platon

Evaluacija termova:
[[sokrat]]~{M,v} = sokrat
[[x]1°{M,v} = sokrat
[[ucitelj(x)]1]1"{M,v} = platon

Tarskijeva rekurzivna definicija istine definira kada je formula ¢ istinita u modelu M s
valuacijom v, $to pisemo M, v |= ¢:

1. M,v = P(t1,...,t,) ako (I(t1),...,I(t,)) € I(P)

2. M,v = =p ako M, v [~ ¢

3. MivEpAyYpako Mo EpiMvEY

4. M,v = Vxyp ako za svaki d € D: M,v[z/d] = ¢
5. M,v |= Jzp ako postoji d € D: M, v[z/d] = ¢

Implementirajmo ovu rekurzivnu definiciju:

1 def evaluiraj_formulu(formula: Formula, model: Model, valuacija: Valuacija) -> bool:

2 """Rekurzivno evaluira formulu prema Tarskijevoj definicijsi."""

3

4 if formula.tip == TipFormula.PREDIKAT:

5 simbol, termovi = formula.sadrzaj

6 arg_vrijednosti = [evaluiraj_term(t, model, valuacija) for t in termovil

7 return model.interpretiraj_predikat(simbol, arg_vrijednosti)
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9 elif formula.tip == TipFormula.JEDNAKOST:
10 tl, t2 = formula.sadrzaj
11 vl = evaluiraj_term(tl, model, valuacija)
12 v2 = evaluiraj_term(t2, model, valuacija)
13 return vl == v2
14
15 elif formula.tip == TipFormula.NEGACIJA:
16 return not evaluiraj_formulu(formula.sadrzaj, model, valuacija)
17
18 elif formula.tip == TipFormula.KONJUNKCIJA:
19 f1, £2 = formula.sadrzaj
20 return (evaluiraj_formulu(f1l, model, valuacija) and
21 evaluiraj_formulu(f2, model, valuacija))
22
23 elif formula.tip == TipFormula.DISJUNKCIJA:
24 f1, £f2 = formula.sadrzaj
25 return (evaluiraj_formulu(f1l, model, valuacija) or
26 evaluiraj_formulu(f2, model, valuacija))
27
28 elif formula.tip == TipFormula.IMPLIKACIJA:
29 f1, £2 = formula.sadrzaj
30 return (not evaluiraj_formulu(fl, model, valuacija) or
31 evaluiraj_formulu(f2, model, valuacija))
32
33 elif formula.tip == TipFormula.UNIVERZALNI:
34 varijabla, podformula = formula.sadrzaj
35 # Provjeri za sve elemente domene
36 for element in model.domena:
37 nova_valuacija = valuacija.promijeni(varijabla, element)
38 if not evaluiraj_formulu(podformula, model, nova_valuacija):
39 return False
40 return True
41
42 elif formula.tip == TipFormula.EGZISTENCIJALNI:
43 varijabla, podformula = formula.sadrzaj
44 # Provjeri postoji lt barem jedan element
45 for element in model.domena:
46 nova_valuacija = valuacija.promijeni(varijabla, element)
47 if evaluiraj_formulu(podformula, model, nova_valuacija):
48 return True
49 return False
50
51 raise ValueError (f"Nepoznat tip formule: {formula.tipl}")
52

53 def prikazi_evaluaciju(formula: Formula, model: Model, valuacija: Valuacija):

54 """Prikazuje rTezultat evaluacije."""

55 rezultat = evaluiraj_formulu(formula, model, valuacija)
56 simbol = "T" if rezultat else "L"

57 print(f" M, v = {formula} = {simboll}")

58

59 # Testiranje evaluacije

60 print("Evaluacija formula:")

61 print ("

ll)



62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

4.1. OD SUDOVA K PREDIKATIMA 95

print ("\nAtomarne formule:")

f1 = pred('Filozof', konst('sokrat'))

f2 = pred('Ucitelj', konst('sokrat'), konst('platon'))
£3 = pred('Ucitelj', konst('platon'), konst('sokrat'))

prikazi_evaluaciju(fi, filozofi_model, val)
prikazi_evaluaciju(f2, filozofi_model, val)

prikazi_evaluaciju(£f3, filozofi_model, val)

print ("\nSlozene formule:")
f4
£5

konj(pred('Filozof', var('x')), pred('Smrtan', var('x')))

impl(pred('Filozof', var('x')), pred('Smrtan', var('x')))

prikazi_evaluaciju(f4, filozofi_model, val)

prikazi_evaluaciju(f5, filozofi_model, val)

print("\nKvantificirane formule:")

f6 = svaki('x', pred('Smrtan', var('x')))
£7
£8 = svaki('x', impl(pred('Filozof', var('x')), pred('Smrtan', var('x'))))
9
£10 = svaki('x', postoji('y', pred('Ucitelj', var('x'), var('y'))))

postoji('x', pred('Ucitelj', var('x'), konst('platon')))

postoji('x', postoji('y', pred('Ucitelj', var('x'), var('y'))))

prikazi_evaluaciju(f6, filozofi_model, val)
prikazi_evaluaciju(f7, filozofi_model, val)
prikazi_evaluaciju(£f8, filozofi_model, val)
prikazi_evaluaciju(f9, filozofi_model, val)

prikazi_evaluaciju(£f10, filozofi_model, val)

Output

Evaluacija formula:

Atomarne formule:
M, v | Filozof(sokrat) = T
M, v = Ucitelj(sokrat, platon)
M, v | Ucitelj(platon, sokrat)

o
-

SloZene formule:
M, v |= (Filozof(x) A Smrtan(x)) = T
M, v |= (Filozof(x) — Smrtan(x)) = T

Kvantificirane formule:

M, v = Vx Smrtan(x) = T

M, v = Jx Ucitelj(x, platon) = T
, v = Vx (Filozof(x) — Smrtan(x)) = T
, v | 3x Jy Ucitelj(x, y) = T

v | Vx Jdy Ucitelj(x, y) = L

== =

b
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Quine je naglasio vaznost razlikovanja slobodnih i vezanih varijabli:

"Biti znaci biti vrijednost vezane varijable" (To be is to be the value of a bound
variable) - Quine, 1948

Varijabla je vezana ako je u dosegu kvantifikatora, inace je slobodna.

Formula bez slobodnih varijabli naziva se zatvorena formula ili reCenica.

def slobodne_varijable(formula: Formula, vezane: Set[str] = None) -> Set[str]:
"""Vraéa skup slobodnih wvarijabli u formulz."""
if vezane is None:

vezane = set()

if formula.tip == TipFormula.PREDIKAT:
_, termovi = formula.sadrzaj
slobodne = set()
for term in termovi:
if term.tip == TipTerm.VARIJABLA and term.simbol not in vezane:
slobodne.add(term.simbol)
elif term.tip == TipTerm.FUNKCIJA:
slobodne.update (term.slobodne_varijable() - vezane)

return slobodne

elif formula.tip == TipFormula.JEDNAKOST:
tl, t2 = formula.sadrzaj
slobodne = set()
if t1.tip == TipTerm.VARIJABLA and tl.simbol not in vezane:
slobodne.add(t1l.simbol)
if t2.tip == TipTerm.VARIJABLA and t2.simbol not in vezane:
slobodne.add (t2.simbol)

return slobodne

elif formula.tip == TipFormula.NEGACIJA:

return slobodne_varijable(formula.sadrzaj, vezane)

elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
< TipFormula.IMPLIKACIJA]:
f1, £2 = formula.sadrzaj

return slobodne_varijable(fl, vezane) | slobodne_varijable(f2, vezane)

elif formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
varijabla, podformula = formula.sadrzaj
nove_vezane = vezane | {varijabla}

return slobodne_varijable(podformula, nove_vezane)

return set()



4.1. OD SUDOVA K PREDIKATIMA o7

38

39 def vezane_varijable(formula: Formula) -> Set[str]:

40 """Vraca skup vezanih wvartijabli u formuli."""

41 vezane = set()

42

43 if formula.tip == TipFormula.NEGACIJA:

44 return vezane_varijable(formula.sadrzaj)

45

46 elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
— TipFormula.IMPLIKACIJA]:

47 f1, £2 = formula.sadrzaj

48 return vezane_varijable(f1) | vezane_varijable(£f2)

49

50 elif formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:

51 varijabla, podformula = formula.sadrzaj

52 return {varijabla} | vezane_varijable(podformula)

53

54 return vezane

55

56 def je_zatvorena(formula: Formula) -> bool:
57 ""iproyjerava je li formula zatvorena (redenica).”""

58 return len(slobodne_varijable(formula)) ==

60 def substituiraj(formula: Formula, varijabla: str, term: Term) -> Formula:

61 """Substituira term za wvarijablu u formulc."""

62 if formula.tip == TipFormula.PREDIKAT:

63 simbol, termovi = formula.sadrzaj

64 novi_termovi = []

65 for t in termovi:

66 if t.tip == TipTerm.VARIJABLA and t.simbol == varijabla:

67 novi_termovi.append(term)

68 else:

69 novi_termovi.append(t)

70 return pred(simbol, *novi_termovi)

71

72 elif formula.tip == TipFormula.NEGACIJA:

73 return neg(substituiraj(formula.sadrzaj, varijabla, term))

74

75 elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
< TipFormula.IMPLIKACIJA]:

76 f1, £2 = formula.sadrzaj

77 nova_f1l = substituiraj(f1, varijabla, term)

78 nova_f2 = substituiraj(f2, varijabla, term)

79 if formula.tip == TipFormula.KONJUNKCIJA:

80 return konj(nova_f1, nova_f2)

81 elif formula.tip == TipFormula.DISJUNKCIJA:

82 return disj(nova_f1, nova_£f2)

83 else:

84 return impl(nova_f1, nova_f2)

85

86 elif formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:

87 kvant_var, podformula = formula.sadrzaj

88 if kvant_var == varijabla:
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# Varijabla je wezana, ne substituiraj

return formula
nova_podformula = substituiraj(podformula, varijabla, term)
if formula.tip == TipFormula.UNIVERZALNI:

return svaki(kvant_var, nova_podformula)
else:

return postoji(kvant_var, nova_podformula)

return formula

# Testiranje

print("Analiza varijabli:")
print ( n " )
formule_test = [
pred('Voli', var('x'), var('y')),
svaki('x', pred('Voli', var('x'), var('y'))),
svaki('x', postoji('y', pred('Voli', var('x'), var('y')))),
impl(svaki('x', pred('P', var('x'))), pred('P', var('y')))
]
for £ in formule_test:

slobodne = slobodne_varijable(f)

vezane = vezane_varijable(f)
zatvorena = "T" if je_zatvorena(f) else "L"
print (f"\nFormula: {f}")
print(f" Slobodne varijable: {slobodne}")
print(f" Vezane varijable: {vezanel}")
print(f" Zatvorena? {zatvorenal")

print ("\nSubstitucija:")

print ("=============")

f1 = pred('P', var('x'))

f2 = svaki('x', pred('P', var('x')))

£3 = svaki('x', pred('P', var('x'), var('y')))

print (£"\n{f1} [x/sokrat] = {substituiraj(fil, 'x', konst('sokrat'))}")

print (£"{£2} [x/sokrat] = {substituiraj(f2, 'x', konst('sokrat'))}")
print (£"{£3}[y/sokrat] = {substituiraj(f3, 'y', konst('sokrat'))}")

Output

Analiza varijabli:

Formula: Voli(x, y)
Slobodne varijable: {'y', 'x'}
Vezane varijable: set()
Zatvorena? |
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Formula: Vx Voli(x, y)
Slobodne varijable: {'y'}
Vezane varijable: {'x'}
Zatvorena? L

Formula: Vx Jdy Voli(x, y)
Slobodne varijable: set()
Vezane varijable: {'y', 'x'}
Zatvorena? T

Formula: (Vx P(x) — P(y))
Slobodne varijable: {'y'}
Vezane varijable: {'x'}
Zatvorena? |

Substitucija:

P(x) [x/sokrat] = P(sokrat)
Vx P(x) [x/sokrat] = Vx P(x)
Vx P(x, y)[y/sokrat] = Vx P(x, sokrat)

U logici predikata razlikujemo:

o Valjanost (logicki istinita) formula: istinita u svim modelima
e Zadovoljiva formula: istinita u barem jednom modelu

¢ Nezadovoljiva formula: lazna u svim modelima

GA9qdel je dokazao potpunost logike predikata prvog reda:

"Svaka valjana formula logike predikata prvog reda je dokaziva' - Goedel, 1929

Ali takoder i nepotpunost aritmetike:

"U svakom dovoljno bogatom formalnom sustavu postoje istinite tvrdnje koje se
ne mogu dokazati" - GA€del, 1931

1 def je_validna(formula: Formula, modeli: List[Model]) -> bool:
2 """Provjerava je li formula validna w svim danim modelima."""

3 for model in modeli:
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# Za svaku mogucu valuaciju
# (za jednostavnost, provjeravamo samo praznu valuaciju za zatvorene formule)
if je_zatvorena(formula):

val = Valuacija({})

if not evaluiraj_formulu(formula, model, val):

return False

else:

# Za formule sa slobodnim varijablama, trebamo provjeriti sve valuacije

slobodne = slobodne_varijable(formula)

def sve_valuacije(varijable, domena, trenutna={}):
if not varijable:
yield Valuacija(trenutna.copy())
else:
var = varijablel[0]
for element in domena:
trenutnal[var] = element
yield from sve_valuacije(varijable[1:], domena, trenutna)

del trenutnal[var]

for val in sve_valuacije(list(slobodne), model.domena) :
if not evaluiraj_formulu(formula, model, val):
return False

return True

def je_zadovoljiva(formula: Formula, modeli: List[Model]) -> bool:
"""Provjerava je li formula zadovoljiva u barem jednom modelwu."""
for model in modeli:
if je_zatvorena(formula):
val = Valuacija({})
if evaluiraj_formulu(formula, model, val):
return True
else:

slobodne = slobodne_varijable(formula)

def sve_valuacije(varijable, domena, trenutna={}):
if not varijable:
yield Valuacija(trenutna.copy())
else:
var = varijablel[0]
for element in domena:
trenutna[var] = element
yield from sve_valuacije(varijable[1:], domena, trenutna)

del trenutnal[var]

for val in sve_valuacije(list(slobodne), model.domena) :
if evaluiraj_formulu(formula, model, val):
return True

return False

# Testni model?t
modell = Model(

domena={'a', 'b'},
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interpretacija={
'P'Z {lal}’
'R': {(lal’ 'b'), (Ibv’ |a|)}

model2 = Model(
domena={'1', '2'},
interpretacija={
'P': set(),
'R': {(C'1r, "1")}

model3 = Model(
domena={'x', 'y', 'z'},
interpretacija={
P {'x", 'y'},
'R': {Cx', 'y, Cy', 'y, Cz', 'y}

modeli = [modell, model2, model3]

# Test formula

print ("Provjera validnosti i zadovoljivosti:")

print ( " n )

test_formule = [
("Zakon identiteta", svaki('x', impl(pred('P', var('x')), pred('P', var('x'))))),
("Egzistencija P", postoji('x', pred('P', var('x')))),
("Kontradikcija", konj(svaki('x', pred('P', var('x'))),
neg(svaki('x', pred('P', var('x')))))),
("Svaki ima nekoga", svaki('x', postoji('y', pred('R', var('x'), var('y'))))),
("Postoji za sve", postoji('y', svaki('x', pred('R', var('x'), var('y')))))

for naziv, formula in test_formule:

print (f"\nFormula: {formulal}")

# Evaluiraj u svakom modelu
rezultati = []
for i, model in enumerate(modeli, 1):

val = Valuacija({})

rez = evaluiraj_formulu(formula, model, val)
rezultati.append(rez)

print(£" Model {i}: {'T' if rez else 'Ll'}")

# Odredi status
if all(rezultati):

print(" Status: VALIDNA v'")
elif any(rezultati):

print(" Status: ZADOVOLJIVA")
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else:
print (" Status: NEZADOVOLJIVA x")

print("\nVaZno zapaZanje:")

print(" Vxdy R(x,y) # JyVvx R(x,y)")
print (" Redoslijed kvantifikatora je bitan!")

Output

Provjera validnosti i zadovoljivosti:

Formula: Vx (P(x) — P(x))
Model 1: T
Model 2: T
Model 3: T
Status: VALIDNA V

Formula: JIx P(x)
Model 1: T
Model 2:
Model 3: T
Status: ZADOVOLJIVA

Formula: (Vx P(x) A —Vx P(x))
Model 1: L
Model 2: L
Model 3: L
Status: NEZADOVOLJIVA X

Formula: Vx Jy R(x, y)
Model 1: T
Model 2: L
Model 3: T
Status: ZADOVOLJIVA

Formula: Jy Vx R(x, y)
Model 1: L
Model 2: L
Model 3: T
Status: ZADOVOLJIVA

Vazno zapazZanje:
Vxdy R(x,y) # dyVx R(x,y)
Redoslijed kvantifikatora je bitan!

4.1.6 Skolemizacija i prenex normalna forma

Thoralf Skolem pokazao je kako eliminirati egzistencijalne kvantifikatore:
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"Svaka formula logike predikata moze se transformirati u ekvivalentnu formulu bez
egzistencijalnih kvantifikatora" - Skolem, 1920

Prenex normalna forma: svi kvantifikatori su na pocéetku formule.

Skolemizacija: zamjena egzistencijalnih kvantifikatora Skolemovim funkcijama.

def u_prenex_formu(formula: Formula, kvantifikatori=[]) -> Formula:
"""Pretvara formulu u prenex normalnu formu.
(Pojednostavljena verzija za demonstractju)
nmnn
# Ovo je pojednostavljena implementactja

# Potpuna implementacija bi trebala rukovati svim slucajevima

if formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
var, podformula = formula.sadrzaj

return u_prenex_formu(podformula, kvantifikatori + [(formula.tip, var)])

# Rekonstruiraj formulu s kvantifikatorima na pocletku
rezultat = formula
for tip_kvant, var in reversed(kvantifikatori):
if tip_kvant == TipFormula.UNIVERZALNI:
rezultat = svaki(var, rezultat)
else:

rezultat = postoji(var, rezultat)

return rezultat

def skolemizuj(formula: Formula, univerzalni_kontekst=[]) -> Formula:
"""Skolemizacija — eliminactija egzistencijalnih kvantifikatora.

(Pojednostavljena verzija)

mwimn

if formula.tip == TipFormula.UNIVERZALNI:
var, podformula = formula.sadrzaj
nova_podformula = skolemizuj(podformula, univerzalni_kontekst + [var])

return svaki(var, nova_podformula)

elif formula.tip == TipFormula.EGZISTENCIJALNI:

var, podformula = formula.sadrzaj

# Stvori Skolemov term
if not univerzalni_kontekst:
# Skolemova konstanta
skolem_term = konst(f"c_{var}")
else:
# Skolemova funkcija
argumenti = [var(v) for v in univerzalni_kontekst]

skolem_term = funk(f"f_{var}", *argumenti)
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# Substituiraj
nova_podformula = substituiraj(podformula, var, skolem_term)

return skolemizuj(nova_podformula, univerzalni_kontekst)

elif formula.tip == TipFormula.NEGACIJA:

return neg(skolemizuj(formula.sadrzaj, univerzalni_kontekst))

elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
— TipFormula.IMPLIKACIJA]:

f1, £2 = formula.sadrzaj

nova_f1 = skolemizuj(f1l, univerzalni_kontekst)

nova_f2 = skolemizuj(f2, univerzalni_kontekst)

if formula.tip == TipFormula.KONJUNKCIJA:

return konj(nova_f1, nova_£2)
elif formula.tip == TipFormula.DISJUNKCIJA:
return disj(nova_f1, nova_f2)
else:
return impl(nova_f1, nova_£f2)
return formula
print ("Prenex normalna forma:")
print ( n n )

# Primjeri prenex transformacije

f1 = impl(svaki('x', pred('P', var('x'))), postoji('y', pred('Q', var('y'))))
print (£"\nOriginal: {f1}")

print (f"Prenex: Jx dy (=P(x) V Q(y))")

£f2 = svaki('x', impl(pred('P', var('x')), postoji('y', pred('R', var('x'), var('y')))))
print (£"\nOriginal: {f2}")
print (f"Prenex: Vx dy (—P(x) V R(x, y))")

print ("\nSkolemizacija:")

# Primjer 1: Egzistencijalni kvantifikator bez univerzalnog konteksta
£3 = postoji('x', pred('P', var('x')))

print (£"\nOriginal: {£3}")

print (£"Skolemizovano: P(c)")

print(" gdje je c nova Skolemova konstanta")

# Primjer 2: Egzistencijalni u kontekstu univerzalnog

f4 = svaki('x', postoji('y', pred('R', var('x'), var('y'))))
print (£"\nOriginal: {f4}")

print (f"Skolemizovano: Vx R(x, £(x))")

print(" gdje je f nova Skolemova funkcija")

# Primjer 3: SloZeniji slucaj

£f5 = postoji('x', svaki('y', postoji('z', pred('S', var('x'), var('y'), var('z')))))
print (£"\nOriginal: {f5}")

print (f"Skolemizovano: Vy S(a, y, g(y))")

print(" gdje su a konstanta i g funkcija")
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print ("\nKorak po korak - formula: Vx (P(x) — dJy R(x, y))")

print (" ")
print("\nl. Eliminacija implikacije:")

print(" Vx (—-P(x) V Jy R(x, y))")

print("\n2. PremjeStanje kvantifikatora (prenex):")

print(" Vx Jy (=P(x) V R(x, y))")

print("\n3. Skolemizacija:")

print(" Vx (=P(x) V R(x, £(x)))")

print(" gdje f(x) je Skolemova funkcija")

print ("\n4. Rezultat je ekvizadovoljiv s originalnom formulom")

Output

Prenex normalna forma:

Original: (Vx P(x) — 3Jy Q(y))
Prenex: dJx dy (=P(x) V Q(y))

Original: Vx (P(x) — Jy R(x, y))
Prenex: Vx dy (=P(x) V R(x, y))

Skolemizacija:

Original: dx P(x)
Skolemizovano: P(c)
gdje je c nova Skolemova konstanta

Original: Vx Jy R(x, y)
Skolemizovano: Vx R(x, f(x))
gdje je f nova Skolemova funkcija

Original: dx Vy dJz S(x, y, 2z)
Skolemizovano: Vy S(a, y, g(y))

gdje su a konstanta i g funkcija

Korak po korak - formula: Vx (P(x) — dJy R(x, y))

1. Eliminacija implikacije:
Vx (=P(x) V Jy R(x, y))

2. PremjesStanje kvantifikatora (prenex):
Vx Jdy (=P(x) V R(x, y))

3. Skolemizacija:
Vx (=P(x) V R(x, £(x)))
gdje f(x) je Skolemova funkcija
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4. Rezultat je ekvizadovoljiv s originalnom formulom

Jacques Herbrand pokazao je kako svesti problem zadovoljivosti na propozicijski slucaj:

"Zadovoljivost formule prvog reda moze se svesti na zadovoljivost beskonac¢nog
skupa propozicijskih formula" - Herbrand, 1930

Herbrandov univerzum: skup svih termova koji se mogu konstruirati iz konstanti i funkcija.

def generiraj_herbrandov_univerzum(konstante: Set[str], funkcije: Dict[str, int], dubina: int
— = 2):

"""Generira Herbrandov univerzum do zadane dubine.

funkcije: dict koji mapira time funkcije u njen aritet

mnmn

H =[]

# Hy - samo konstante

H.append(set (konstante))

for d in range(l, dubina + 1):

novi = set(H[d-1]) # Ukljuci sve iz prethodne razine

# Za svaku funkciju
for funk_ime, aritet in funkcije.items():
# Generiraj sve kombinacije argumenata iz H[d-1]
import itertools
for args in itertools.product(H[d-1], repeat=aritet):
args_str = ", ".join(args)
novi.add(f"{funk_ime} ({args_str})")

H.append (novi)

return H

def generiraj_herbrandovu_bazu(predikati: Dict[str, int], termovi: Set([str]):
"""Generira Herbrandovu bazu - sve atomarne formule s Herbrandovim termovima.
predikati: dict koji mapira ime predikata u njegov aritet

i

baza = set()

for pred_ime, aritet in predikati.items():
if aritet == O:
baza.add(pred_ime)

else:
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import itertools

for args in itertools.product(termovi, repeat=aritet):
args_str = ", ".join(args)
baza.add(f"{pred_ime} ({args_str})")

return baza
# Primjer
konstante = {'a', 'b'}
funkcije = {'f': 1, 'g': 2} # f je umarna, g je binarna

predikati = {'P': 1, 'R': 2} # P je unarni, R je binarni

print ("Herbrandov univerzum:")

print ( " " )
print (f"\nKonstante: {konstantel}")

print (f"Funkcije: {{{', '.join(f'{f}/{a}' for f, a in funkcije.items())}}}")

H = generiraj_herbrandov_univerzum(konstante, funkcije, 2)

print (£"\nHy = {H[0]}")
print(£"H; = {H[1]1}")
print (£"Hs ({len(H[2])} termova)")

print ("\nHerbrandova baza:")

print ( n " )

baza = generiraj_herbrandovu_bazu(predikati, H[0])
print(£"\nZa predikate P/1 i R/2:")

print("By = {")

baza_lista = sorted(list(baza))

print(f" {', '.join(baza_listal[:2])},")
print(f" {', '.join(baza_lista[2:]1)}")
print("}")

print ("\nHerbrandove interpretacije:")

print (" ")

print (£"\nBroj moguéih interpretacija za Bp: 2° = {2#*len(baza)l}")
print("\nPrimjer interpretacije I;:")

print(" P(a) = T, P(b) = L")

print(" R(a, a) = T, R(a, b) = T")

print(" R(b, a) = L, R(b, b) = T")

print ("\nHerbrandov teorem:")

print (" L))

print ("\nFormula Vx Jy R(x, y) je zadovoljiva")

print ("<=")
print("Skup {R(a, f£(a)), R(b, £(b)), ...} je zadovoljiv")

print ("\nTime se problem prvog reda svodi na propozicijski!")
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Implementirajmo jednostavan dokaziva¢ teorema koji koristi rezoluciju:

1 class Klauzula:

2 """Predstavlja klauzulu w CNF formz."""

3 def __init__(self, literali):

4 self .literali = set(literali)

5

6 def __repr__(self):

7 if not self.literali:

8 return "U" # Prazna klauzula

9 return "{" + ", ".join(str(l) for 1 in self.literali) + "}"

10

11 def je_prazna(self):

12 return len(self.literali) ==

13

14 class Literal:

15 """predstavlja literal (atomarna formula %l%i njena negacija)."""

16 def __init__(self, predikat, argumenti, negiran=False):

17 self.predikat = predikat

18 self.argumenti = argumenti

19 self .negiran = negiran

20

21 def __repr__(self):

22 args = "(" + ", ".join(str(a) for a in self.argumenti) + ")" if self.argumenti else
o mn

23 return ("—" if self.negiran else "") + self.predikat + args

24

25 def __eq__(self, other):

26 return (self.predikat == other.predikat and

27 self.argumenti == other.argumenti and

28 self .negiran == other.negiran)

29

30 def __hash__(self):

31 return hash((self.predikat, tuple(self.argumenti), self.negiran))

32

33 def komplementaran(self, other):

34 """Proyjerava jesu li literali komplementarnz."""

35 return (self.predikat == other.predikat and

36 self.argumenti == other.argumenti and

37 self .negiran != other.negiran)

38

39 def unifikacija(tl, t2, subst={}):

40 "t Jjednostavna unifikacija za konstante i warijable."""

41 if t1 == t2:

42 return subst

43 elif tl.startswith('x') or tl.startswith('y') or til.startswith('z'):

44 # t1 je varijabla

45 if t1 in subst:

46 return unifikacija(subst[t1], t2, subst)
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else:
subst [t1] = t2
return subst
elif t2.startswith('x') or t2.startswith('y') or t2.startswith('z'):
# t2 je varijabla
return unifikacija(t2, t1, subst)
else:

return None # Unifikacija neuspjesna

def primijeni_substituciju(literal, subst):
"""Primjenjuje substituciju na literal."""
novi_argumenti = []
for arg in literal.argumenti:
if arg in subst:
novi_argumenti.append(subst [arg])
else:
novi_argumenti.append(arg)

return Literal(literal.predikat, novi_argumenti, literal.negiran)

# Demonstractija

print ("Rezolucijski dokazivaé teorema:")

print (" ")
print("\nCilj: Dokazati da Sokrat je smrtan")
print("\nPremise:")

print(" 1. Vx (Covjek(x) — Smrtan(x))")
print(" 2. Covjek(sokrat)")

# Pretvorba u klauzule

k1l = Klauzula([Literal("Covjek", ['x'], True), Literal("Smrtan", ['x'])])
k2 = Klauzula([Literal("Covjek", ['sokrat'])])

k3 Klauzula([Literal("Smrtan", ['sokrat'l, True)]) # Negacija cilja

print("\nKlauzule (nakon Skolemizacije i CNF):")
print(£" C1: {k1}")

print(f" C2: {k2}")

print(f" C3: {k3} (negacija cilja)")

print ("\nRezolucijski dokaz:")

print(" ——————————————————— ")

print ("Korak 1: Rezolucija C1 i C2")

print(" Unifikacija: x ~> sokrat")

print(" {—-Covjek(sokrat), Smrtan(sokrat)} + {Covjek(sokrat)l}")
print(" — {Smrtan(sokrat)l}")

print ("\nKorak 2: Rezolucija {Smrtan(sokrat)} i C3")
print(" {Smrtan(sokrat)} + {—-Smrtan(sokrat)l}")
print(" =— [ (prazna klauzula)")

print ("\nv' DOKAZ PRONADEN!")

print ("Sokrat je doista smrtan.")

print ("\n "
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print ("\nSloZeniji primjer - tranzitivnost:")

print (" ")

print ("\nPremise:")

print(" 1. Vx Vy (Roditelj(x, y) — Predak(x, y))")
print(" 2. Vx Vy Vz ((Predak(x, y) A Predak(y, z)) — Predak(x, z))")
print(" 3. Roditelj(ivan, marko)")

print(" 4. Roditelj(marko, ana)")

print("\nCilj: Dokazati Predak(ivan, ana)")

print ("\nKoraci dokazivanja:")

print("1. Iz premise 1 i 3: Predak(ivan, marko)")
print("2. Iz premise 1 i 4: Predak(marko, ana)")
print("3. Iz premise 2, koraka 1 i 2: Predak(ivan, ana)")

print ("\nv' Teorem dokazan!")

Za produbljivanje razumijevanja semantike i sintakse logike predikata, predlazemo sljedece
viezbe:

Implementacija potpune evaluacije

Prosirite funkciju "evaluiraj formulu" da podrzava slozenije termovima s ugnijezdenim funkci-
jama.

Provjera validnosti formula

Implementirajte algoritam koji provjerava je li formula validna konstruiranjem kona¢no mnogo
modela (za formule s kona¢nim Herbrandovim univerzumom).

Unifikacijski algoritam

Implementirajte potpuni Robinson unifikacijski algoritam koji rukuje slozenim termovima i
provjerava occur-check.

CNF transformacija

Napisite funkciju koja pretvara proizvolju formulu logike predikata u konjunktivnu normalnu

formu (CNF).
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Rezolucijski dokazivac

Prosirite mini dokaziva¢ da automatski pronalazi dokaze koristenjem rezolucije s unifikacijom.

Model checker

Stvorite interaktivni model checker gdje korisnik moze definirati model i provjeriti istinitost
formula.

Analiza sloZenosti

Istrazite slozenost problema zadovoljivosti za razlic¢ite fragmente logike predikata (Horn
klauzule, monadski predikat, itd.).

Visualizacija modela

Implementirajte graficki prikaz modela kao usmjerenog grafa za binarne relacije.

Prevodenje prirodnog jezika

Napisite parser koji prevodi jednostavne recenice prirodnog jezika u formule logike predikata.

Igra evaluacije

Implementirajte Hintikkinu semanticku igru za evaluaciju formula - dvoje igraca (Svatko i
Netko) naizmjence biraju vrijednosti za kvantificirane varijable.

Svaki zadatak postupno gradi razumijevanje Tarskijeve semanticke teorije istine i odnosa
izmedu sintakse i semantike u logici predikata prvog reda.

Kroz ovu implementaciju istrazili smo Tarskijev revolucionarni pristup semantici logike
predikata:

1. Sintaksu logike predikata - termove, formule i kvantifikatore
2. Tarskijevu semanticku teoriju istine - modele, interpretacije i valuacije
3. Rekurzivnu evaluaciju formula prema Tarskijevoj definiciji

4. Validnost i zadovoljivost u logici predikata
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5. Skolemizaciju i vezu s propozicijskim slu¢ajem

Tarski je svojim radom odgovorio na fundamentalno pitanje:

'Sto znadi da je reGenica istinita?" - Tarski, 1933

Njegov odgovor kroz rekurzivnu definiciju istine omogucéio je:

Precizno razumijevanje semantike formalnih jezika

Razvoj teorije modela

Temelj za automatsko dokazivanje teorema

Most izmedu logike i racunarstva

Tarskijev svijet pokazuje kako apstraktni matematicki objekti mogu biti reprezentirani i
manipulirani kroz konkretne strukture podataka. Python implementacija omoguéava nam da
eksperimentiramo s ovim konceptima i razvijemo intuiciju za duboke logicke istine.

Logika predikata prvog reda ostaje temelj:

Baza podataka - SQL je u biti logika predikata

Umjetne inteligencije - predstavljanje znanja

Verifikacije programa - dokazivanje svojstava

¢ Semantickog weba - formalizacija ontologija

Tarskijev svijet nas uci da istina nije samo filozofski koncept, ve¢ precizno definirana matema-
ticka struktura koju mozemo konstruirati, analizirati i racunati.



Poglavlje 5

Turingov svijet: Granice izracunlji-
vosti

5.1 Od Hilbertovog programa do Turingovih strojeva

Godine 1928., David Hilbert postavio je svoj ¢uveni Entscheidungsproblem (problem
odlucivosti):

"Postoji li algoritam koji za svaku tvrdnju logike predikata moze odluciti je li
dokaziva?" - Hilbert, 1928

Alan Turing (1912-1954) odgovorio je na ovo pitanje 1936. godine uvodenjem koncepta koji
danas nazivamo Turingov stroj:

"Moguée je izmisliti jedan stroj koji se moze Kkoristiti za rac¢unanje bilo kojeg
izracunljivog niza" - Turing, On Computable Numbers, 1936

Turingov rad ne samo da je rijesio Hilbertov problem (negativno!), veé je postavio temelje
moderne teorije ra¢unanja.

Turingov stroj sastoji se od:

o Beskonacne trake podijeljene na celije
» Glave za c¢itanje/pisanje koja se moze pomicati lijevo ili desno
¢ Konac¢nog skupa stanja ukljucujuéi pocetno i zavrsna stanja

e Prijelazne funkcije koja odreduje sljedeéi korak
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Formalno: M = (Qa E, F, 57 40, Qaccept qreject)

Implementirajmo Turingov stroj u Pythonu:

from dataclasses import dataclass
from typing import Dict, Tuple, Optional, List, Set

from enum import Enum

class Smjer (Enum) :

"""Smjer pomicanja glave."""

LIJEVO = 'L’
DESNO = 'D'
ST0J = 'S!
Q@dataclass
class TuringovStroj:

"""Implementacija deterministickog Turingovog stroja."""

def __init__(self, stanja: Set[str], ulazni_alfabet: Set[str],

alfabet_trake: Set[str], prijelazi: Dict,
pocetno: str, prihvaca: str, odbacuje: str):

self.Q = stanja

self.Sigma = ulazni_alfabet

self.Gamma = alfabet_trake

self.delta = prijelazi

self.q0 = pocetno

self.q_accept = prihvaca

self.q_reject = odbacuje

self.prazno = '_' # Simbol za praznu celiju

# Trenutna konfiguracija
self .traka = []
self.pozicija = 0
self.stanje = self.q0
self.povijest = []

def postavi_ulaz(self, ulaz: str):
"""Postavlja ulazni niz na traku."""
self .traka = list(ulaz) + [self.prazno]
self.pozicija = 0
self.stanje = self.q0

self .povijest = [self._trenutna_konfiguracija()]

def _trenutna_konfiguracija(self) -> Tuplel[str, List[str], int]:

""nYraéa trenutnu konfiguraciju (stanje, traka, pozicija)."""

return (self.stanje, self.traka.copy(), self.pozicija)

def korak(self) -> bool:

"""ITzyrsava jedan korak stroja. Vraca False ako je zavrsio."""

if self.stanje in [self.q_accept, self.q_reject]:

return False
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def

def

# Citaj simbol s trake

if self.pozicija >= len(self.traka):
self.traka.append(self.prazno)

simbol = self.traka[self.pozicijal

# Pronadi prijelaz
if (self.stanje, simbol) not in self.delta:
self.stanje = self.q_reject

return False
novo_stanje, novi_simbol, smjer = self.deltal[(self.stanje, simbol)]

# AZuriraj konfiguraciju
self.stanje = novo_stanje

self.traka[self.pozicijal = novi_simbol

if smjer == Smjer.LIJEVO:
self .pozicija = max(0, self.pozicija - 1)
elif smjer == Smjer.DESNO:
self.pozicija += 1
if self.pozicija >= len(self.traka):
self.traka.append(self.prazno)

self .povijest.append(self._trenutna_konfiguracija())

return True

pokreni(self, max_koraka: int = 1000) -> str:

"""Pokreée stroj do kraja tli maksimalnog broja koraka."""
koraci = 0

while self.korak() and koraci < max_koraka:

koraci += 1

if self.stanje == self.q_accept:
return "PRIHVACEN"

elif self.stanje == self.q _reject:
return "ODBACEN"

else:
return "PREKORACEN LIMIT"

prikazi_povijest(self):
"""Prikazuje povijest tzvrsavanja."""
for i, (stanje, traka, poz) in enumerate(self.povijest):
# PrikaZt traku s trenutnom pozicijom
prikaz = ""
for j, simbol in enumerate(traka):
if j == poz:
prikaz += f"[{stanje}] {simboll} "
else:
prikaz += f"{simbol} "
print (f"Korak {i}: {prikazl}")
if poz < len(traka):
print(" " * (9 + poz * 2 + len(stanje) // 2) + "1")
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# Primjer: Stroj kojt mijenja 0—1 % 1—0
stanja = {'q0', 'ql', 'q_accept', 'q_reject'}
ulazni = {'0', '1'}

traka = {'0', '1', '_'}

# Prijelazna funkcija

prijelazi = {

('q0', '0'): ('ql', '1', Smjer.DESNO),

('q0', "1'): ('ql', '0O', Smjer.DESNO),

('ql", '0'): ('q0', '1', Smjer.DESNO),

('q1t", "1'): ('q0', '0', Smjer.DESNO),

('q0', '_'"): ('q_accept', '_', Smjer.LIJEVO),

('ql', '_"): ('g_accept', '_', Smjer.LIJEVO)
}
tm = TuringovStroj(stanja, ulazni, traka, prijelazi, 'q0', 'g_accept', 'q_reject')
print ("Turingov stroj inicijaliziran")

print (" )
print ("\nKomponente stroja:")

print(f" Stanja Q = {tm.Q}")

print(f" Ulazni alfabet ¥ = {tm.Sigmal}")
print(f" Alfabet trake I' = {tm.Gamma}")
print(f" Pocetno stanje = {tm.q0}")

print(f" Prihvaca stanje = {tm.q_acceptl}")
print(f" Odbacuje stanje = {tm.q_rejectl}")

print ("\nPrijelazna funkcija 6:")

for (s, sym), (ns, nsym, d) in list(prijelazi.items())[:3]:

print(£" §({s}, {sym}) = ({ns}, {nsym}, {d.value})")
# Test
ulaz = "0011"
print (f"\nSimulacija na ulazu '{ulazl}':")
print ( n n )
print )
tm.postavi_ulaz(ulaz)

rezultat = tm.pokreni()

tm.prikazi_povijest ()

print (£"\nRezultat: {rezultat}")
print (f"Finalna traka: {''.join(tm.traka)l}")

Turingov stroj inicijaliziran

Komponente stroja:
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Stanja Q = {'q0', 'ql', 'q_reject', 'q_accept'}
Ulazni alfabet ¥ = {'1', '0'}

Alfabet trake I' = {'1', '0', '_'}

Poletno stanje = q0

Prihvaca stanje = q_accept

Odbacuje stanje = gq_reject

Prijelazna funkcija d:
0(q0, 0) = (q1, 1, D)
0(q0, 1) = (q1, 0, D)
0(ql, 0) = (q0, 1, D)

Simulacija na ulazu '0011':

Korak 0: [q0] 0 0 1 1 _

+
Korak 1: 1 [q1] 0 1 1 _
T
Korak 2: 1 1 [q0] 1 1 _
T
Korak 3: 1 1 0 [ql] 1 _
T
Korak 4: 1 1 0 0 [q0] _
T
Korak 5: 1 1 0 [g_accept] 0 _
T

Rezultat: PRIHVACEN
Finalna traka: 1100_

Istovremeno s Turingom, Alonzo Church razvio je lambda rac¢un kao alternativni formalizam:

"Efektivno izracunljiva funkcija je ona koja se moze izraziti u lambda racunu" -
Church, 1936

Church-Turingova teza tvrdi da su svi razumni modeli racunanja ekvivalentni:

e Turingovi strojevi
o Lambda racun
o Rekurzivne funkcije (Godel, Kleene)

o Postovi sustavi
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o Register strojevi

Implementirajmo lambda racun i pokazimo ekvivalenciju:

class LambdaTerm:
"""Apstraktna klasa za lambda terme."""

pass

class Var(LambdaTerm) :
nn “Va?"'l;]abla. nmnn
def __init__(self, ime):

self.ime = ime

def __repr__(self):

return self.ime

def substitute(self, var, term):
if self.ime == var:
return term

return self

class Abs(LambdaTerm) :
"""Lambda apstrakcija."""

def __init__(self, param, tijelo):
self.param = param

self.tijelo = tijelo

def __repr__(self):
return f"A{self.param}.{self.tijelo}"

def substitute(self, var, term):
if self.param == var:
return self # Varijabla je wvezana

return Abs(self.param, self.tijelo.substitute(var, term))

class App(LambdaTerm) :
nn ”Apl’bkaclja. mnmn
def __init__(self, funkcija, argument):
self.funkcija = funkcija
self.argument = argument

def __repr__(self):
return f"({self.funkcija} {self.argument})"

def substitute(self, var, term):
return App(
self.funkcija.substitute(var, term),

self.argument.substitute(var, term)

def beta_redukcija(term: LambdaTerm, max_koraka=100) -> LambdaTerm:
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"""Beta redukcija lambda terma."""

koraci = 0

while koraci < max_koraka:

if isinstance(term, App) and isinstance(term.funkcija, Abs):

# Beta redukcija: (\z.M)N — M[z/N]

term = term.funkcija.tijelo.substitute(
term.funkcija.param,
term.argument

)

koraci += 1

else:
break

return term

# Church brojevi — reprezentactija prirodnih brojeva
def church_broj(n):

"""Konstruira Church broj za n."""

#n = \f.)\z.fn(z)

f = lambda func: lambda x: x if n == 0 else func(church_broj(n-1) (func) (x))

return f

def church_to_int(church_n):
"""Pretvara Church broj w Python int."""

return church_n(lambda x: x + 1) (0)

# AritmeticCke operacije

SUCC = lambda n: lambda f: lambda x: f(n(f)(x))
PLUS
MULT = lambda m: lambda n: lambda f: m(n(f))

# Booleove wvrijednosti

TRUE = lambda x: lambda y: x

FALSE = lambda x: lambda y: y

NOT = lambda p: p(FALSE) (TRUE)

AND = lambda p: lambda q: p(q) (FALSE)
OR = lambda p: lambda q: p(TRUE)(q)

print ("Lambda raéun")

print ("\nOsnovni konstrukti:")

print(f" Varijabla: {Var('x')}")

print(f" Apstrakcija: {Abs('x', Var('x'))}")
print(f" Aplikacija: {App(Var('f'), Var('x'))}")

print ("\nChurch brojevi:")
for i in range(4):
if i ==

print(f" {i} Af . Ax.x")

else:

f_aplikacije = ' '.join(['(f' for _ in range(i)]) + ' x' + ')' % i

print(£" {i} = Af.Ax.{f_aplikacijel}")

lambda m: lambda n: lambda f: lambda x: m(f) (n(f) (x))
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print ("\nAritmeticke operacije:")

print(" SUCC = An.Af.Ax.(f ((n £) x))")
print(" PLUS = Am.An.Af.Ax.((m £) ((m £) x))")
print(" MULT = Am.An.Af.(m (n £))")

print ("\nPrimjer redukcije: (SUCC 1)")

print (" ")

print ("\nKorak 0: ((An.Af.Ax.(f ((m £) x)) Af.Ax.(f x))")
print ("Korak 1: Af.Ax.(f ((Af. Ax.(f x) £) x))")

print ("Korak 2: Af.Ax.(f (Ax.(f x) x))")

print ("Korak 3: Af.Ax.(f (f x))")

print ("\nRezultat: Church broj 2")

# Python simulacija

print ("\nPython simulacija Church brojeva:")

print ( n n )

for i in range(4):
¢ = church_broj(i)
print (f"church({i}) kao Python broj: {church_to_int(c)}")

# Testovi

print("\nTestovi:")
c2 = church_broj(2)
c3 = church_broj(3)

rezultat_succ = church_to_int (SUCC(c2))

print(£" succ(2) = {rezultat_succ} {'v'' if rezultat_succ == 3 else 'X'}")

rezultat_plus = church_to_int (PLUS(c2) (c3))
print(f" plus(2, 3) = {rezultat_plus} {'V'' if rezultat_plus == 5 else 'X'}")

rezultat_mult = church_to_int (MULT (c2) (c3))
print(f" mult(2, 3) = {rezultat_mult} {'v'' if rezultat_mult == 6 else 'X'}")

print ("\nBooleove vrijednosti:")
print(" TRUE = Ax.\y.x")

print(" FALSE = Ax.\y.y")

print(" NOT = Ap.((p FALSE) TRUE)")
print(" AND = Ap.)\q.((p q) FALSE)")

# Test Booleovth operacija
def bool_to_python(church_bool):

return church_bool(True) (False)

print (£"\nTest: NOT TRUE = FALSE {'v'' if not bool_to_python(NOT(TRUE)) else 'Xx'}")
print (£f"Test: AND TRUE FALSE = FALSE {'V'' if not bool_to_python(AND(TRUE) (FALSE)) else
. |><|}||)
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Output

Lambda racun

Osnovni konstrukti:
Varijabla: x
Apstrakcija: Ax.x
Aplikacija: (£ x)

Church brojevi:

0 = M. Ax.x

1 = M. x.(f x)

2 = M. Ax.(f (f x))

3 =M. x.(f (£ (f x)))

Aritmeticke operacije:
SUCC = An.Af.Xx.(f ((n £) x))
PLUS = Am.An.Af. Ax.((m £) ((n £) %))
MULT = Am.An.Af.(m (n £))

Primjer redukcije: (SUCC 1)

Korak 0: ((An.Af. Ax.(f ((n f) x)) Af.Ax.(f %))
Korak 1: Af. Ax.(f ((Af.Ax.(f x) £) x))

Korak 2: Af.Ax.(f (Ax.(f x) x))

Korak 3: Af.Ax.(f (f x))

Rezultat: Church broj 2

Python simulacija Church brojeva:

church(0) kao Python broj:
church(1) kao Python broj:
church(2) kao Python broj:
church(3) kao Python broj:

w N =~ O

Testovi:
succ(2) = 3 V
plus(2, 3) =5 V
mult(2, 3) = 6 V

Booleove vrijednosti:
TRUE = Ax.\y.x
FALSE = Ax.\Ay.y
NOT = Ap.((p FALSE) TRUE)
AND = Ap.)Aq.((p q) FALSE)

Test: NOT TRUE = FALSE v
Test: AND TRUE FALSE = FALSE Vv
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Turing je 1936. dokazao da ne postoji algoritam koji moze odluciti hoce li se proizvoljan
program zaustaviti:

"Ne moze postojati opéi proces za odredivanje hoce li se dani stroj ikada ispisati
0" - Turing, 1936

Halting problem: Za dani Turingov stroj M i ulaz w, odluciti hoée li se M zaustaviti na w.

Dokaz koristi dijagonalizaciju, tehniku koju je Cantor koristio za dokaz neprebrojavosti
realnih brojeva:

def simuliraj_halt_problem():

"""Demonstracija paradoksa problema zaustavljanja."""

# Pretpostavljamo da imamo magicnu funkciju HALT

def pretpostavljeni_halt(program_kod, ulaz):
"""Hipoteticka funkcija koja 'rjeSava' problem zaustavljanja."""
# Ovo je nemoguée implementirati opcentito!
# Za demonstractiju, wvracamo random vTrijednost
import hashlib
h = hashlib.md5((program_kod + ulaz).encode()) .hexdigest()
return int(h, 16) % 2 ==

# Dijagonalizacijski stroj D
def D(M_kod) :
"""Stroj koji stvara paradoks."""
if pretpostavljeni_halt(M_kod, M_kod):
# Ako M staje ma M, onda D ulazi u beskonacnu petlju
while True:
pass
else:
# Ako M ne staje ma M, onda D staje
return "STOP"

# Paradoks: Sto se dogada s D(D)?
D_kod = "def D(M): ..."

return D_kod

print ("Problem zaustavljanja")

print ( n n )
print ("\nPretpostavimo da postoji funkcija HALT(M, w) koja vraca:")
print(" T ako se M zaustavlja na ulazu w")

print(" L ako se M ne zaustavlja na ulazu w")

print ("\nDijagonalizacijski dokaz:")

print ( Meo—— ——-—-—-—-;—_-;—_ ;— .— . —.;(—_ (——;_—-( . — n )
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print("\nl. Konstruiramo stroj D koji na ulazu M:")
print(" - Ako HALT(M, M) = T, onda D ulazi u beskonalnu petlju")
print(" - Ako HALT(M, M) = 1, onda D se zaustavlja")

print("\n2. Sto se dogada kad pokrenemo D(D)?")

print(" - Ako D(D) se zaustavlja, onda HALT(D, D) = T")
print (" — Po definiciji D, to znacli da D(D) ne staje!")
print(" - Ako D(D) ne staje, onda HALT(D, D) = L")

print (" — Po definiciji D, to znaci da D(D) staje!")

print ("\n3. KONTRADIKCIJA! ")
print ("\nDakle, funkcija HALT ne moZe postojati.")

# Simulactja

print ("\nSimulacija paradoksa:")

print ( n n )
def simple_loop():
while True:

pass

def simple_halt():
return "STOP"

print ("\nPokuSaj 1: Pretpostavljamo HALT(simple_loop, '') = L")

print(" Stroj D bi se zaustavio")

print("\nPokusaj 2: Pretpostavljamo HALT(simple_halt, '') = T")
print(" Stroj D bi uSao u petlju")

print ("\nPokuSaj 3: HALT(D, D) = ?")

print(" Paradoks! Ne moZemo odluiiti.")

print ("\nPrakticne posljedice:")

print (" ")

print ("\nNeodlucivi problemi u programiranju:")

print(" e Hoce 1li program ikad pristupiti null pointeru?")
print(" e Jesu li dva programa ekvivalentna?")

print(" e Hoée li program ikad ispisati \"Hello World\"?")
print(" e Je 1li funkcija totalna (definirana za sve ulaze)?")

print(" e Postoji 1li ulaz za koji program vraéa 427")

print ("\nRice-ov teorem: Svako netrivijalno svojstvo programa je neodluéivo!")

Output

Problem zaustavljanja

Pretpostavimo da postoji funkcija HALT(M, w) koja vraca:
T ako se M zaustavlja na ulazu w
1 ako se M ne zaustavlja na ulazu w
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Dijagonalizacijski dokaz:

1. Konstruiramo stroj D koji na ulazu M:
- Ako HALT(M, M) = T, onda D ulazi u beskonaénu petlju
- Ako HALT(M, M)

1, onda D se zaustavlja

2. Sto se dogada kad pokrenemo D(D)?
- Ako D(D) se zaustavlja, onda HALT(D, D) = T
— Po definiciji D, to znali da D(D) ne staje!
- Ako D(D) ne staje, onda HALT(D, D) = L
— Po definiciji D, to znali da D(D) staje!

3. KONTRADIKCIJA! *
Dakle, funkcija HALT ne moZe postojati.

Simulacija paradoksa:

Poku8aj 1: Pretpostavljamo HALT(simple_loop, '') = L
Stroj D bi se zaustavio
PokuSaj 2: Pretpostavljamo HALT(simple_halt, '') = T

Stroj D bi uSao u petlju

Pokusaj 3: HALT(D, D) = 7
Paradoks! Ne moZemo odluciti.

Prakticne posljedice:

Neodlucdivi problemi u programiranju:
e HoCe 1li program ikad pristupiti null pointeru?
e Jesu 1li dva programa ekvivalentna?
e HoCe 1li program ikad ispisati "Hello World"?
e Je 1i funkcija totalna (definirana za sve ulaze)?
e Postoji 1li ulaz za koji program vraca 427

Rice-ov teorem: Svako netrivijalno svojstvo programa je neodlucivo!

Turing je razlikovao dvije klase problema:

e Odludivi (rekurzivni): Turingov stroj uvijek staje s DA/NE odgovorom

o Poluodlucivi (rekurzivno prebrojivi): Turingov stroj staje za DA, mozda ne staje za
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Post je pokazao:

"Jezik je odluciv ako i samo ako su i on i njegov komplement rekurzivno prebrojivi"
- Post, 1944

1 class JezikKlasa(Enum) :

2 """Klastfikacija jezika po odlucivosts."""
3 ODLUCIV = "odluciv"

4 POLUODLUCIV = "poluodluciv"

5 NEODLUCIV = "neodluciv"

7 def odluciv_paran_broj_jedinica(w: str) -> str:

8 """OdluCuje jezik s parnim brojem jedinica."""
9 broj_jedinica = w.count('1')

10 if broj_jedinica 7 2 ==

11 return "PRIHVACEN"

12 else:

13 return "ODBACEN"

14

15 def poluodluciv_halting(M_opis: str, w: str, max_koraka: int = 100) -> str:

16 ""Simulira poluodlucivost problema zaustavljanja."""
17 # Simuliramo tizvrsSavanje do maz_koraka

18 # U stwarnosti, ovo bt moglo trajati zauvijek!

19

20 koraci = 0

21 while koraci < max_koraka:

22 # Simulacija. ..

23 koraci += 1

24

25 # Za demonstraciju, "zaustavlja se" za neke slucajeve
26 if len(M_opis + w) % 7 == O:

27 return "PRIHVACEN"

28

29 return "NEPOZNATO (jo$ uvijek radi...)"

30

31 def enumerator(jezik_generator):

32 """Enumerator za rekurzivno prebrojiv jezik."""
33 for niz in jezik_generator():

34 yield niz

35

36 def generator_anbn():

37 ""iGenerira jezik {a"b" takav da n > OF."""
38 n=20

39 while True:

40 yield 'a' * n + 'b' * n

41 n+=1

42

43 def provjeri_pripadnost_enumeracijom(w: str, enumerator, max_koraka: int = 1000):
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"""Proyjerava pripadnost enumeracijom."""
for i, generirani in enumerate(enumerator):
if i >= max_koraka:
return "NEPOZNATO"
if generirani ==
return "PRONADEN"
return "NIJE PRONADEN"

print("Hijerarhija jezika")

print ( n " )
print("\nl. ODLUCIVI (Rekurzivni) jezici:")
print("  Turingov stroj M takav da za svaki w:")

print (" o M(w) PRIHVATI ako w € L")
print(" e M(w) = ODBACI ako w ¢ L")
print(" e M se UVIJEK zaustavlja")

print("\n2. POLUODLUCIVI (Rekurzivno prebrojivi) jezici:")
print("  Turingov stroj M takav da za svaki w:")

PRIHVATI ako w € L")

ODBACI ili oo ako w ¢ L")

print(" o M(w)

print(" o M(w)

print("\n3. NEODLUCIVI jezici:")

print(" Ne postoji Turingov stroj koji odluluje jezik")

print ("\nPrimjeri:")

print ("\nODLUCIV: L = {w takav da w ima paran broj jedinical}")
testovi = ['1011', '1001', '1111']
for w in testovi:

rezultat = odluciv_paran_broj_jedinica(w)

broj = w.count('1')

print(f" Test '{w}': {broj} jedinice — {rezultatl}")

print ("\nPOLUODLUCIV: H = {{M,w) takav da M se zaustavlja na w}")
print(" MoZemo simulirati M na w")
print(" Ako stane — PRIHVATI")

print(" Ako ne stane — ... (Cekamo zauvijek)")

print ("\nSimulacija poluodluiivog problema:")

print ( " n )

print ("\nEnumerator za jezik {a"b" takav da n > 0}:")
gen = generator_anbn()

prvih_6 = [next(gen) for _ in range(6)]

print(f" Generirani nizovi: {', '.join(prvih_6 if prvih_6[0] else ['ec'] + prvih_6[1:1)}")

print("\nProvjera 'aabb' € L?")
enum = enumerator (generator_anbn)
for i in range(3):
niz = next(enum)
if niz == 'aabb':
print(f" Korak {i+1}: Generiraj {niz if niz else 'e'} — PRONADEN! ")
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break
else:

print(f" Korak {i+1}: Generiraj {niz if niz else 'e'} — ne odgovara")

print("\nProvjera 'abab' € L?")
enum = enumerator (generator_anbn)
for i in range(5):
niz = next(enum)
print(f" Korak {i+1}: {niz if niz else 'e'} — ne")

print(" ... (nikad nee pronaci, ali ne znamo to unaprijed!)")
print ("\nPostov teorem:")

print("\nL je odluéiv <= L i ne L su rekurzivno prebrojivi")
print ("\nDokaz (=):")

print(" Ako je L odluciv, imamo M koji uvijek staje.")
print(" Za L: pokreni M, prihvati ako M prihvati.")

print(" Za ne L: pokreni M, prihvati ako M odbaci.")

print ("\nDokaz (<=):")

print(" Ako su L i ne L r.p., imamo M; i Mp.")

print(" Simuliraj M; i Mz paralelno (dovetailing).")

print(" Jedan mora stati — odluéi!")

Output

Hijerarhija jezika

1. ODLUCIVI (Rekurzivni) jezici:
Turingov stroj M takav da za svaki w:
o M(w) = PRIHVATI ako w € L
e M(w) = ODBACI ako w ¢ L
e M se UVIJEK zaustavlja

2. POLUODLUCIVI (Rekurzivno prebrojivi) jezici:
Turingov stroj M takav da za svaki w:
e M(w) = PRIHVATI ako w € L
e M(w) = ODBACI ili oo ako w ¢ L

3. NEODLUCIVI jezici:
Ne postoji Turingov stroj koji odluluje jezik

Primjeri:

ODLUCIV: L = {w takav da w ima paran broj jedinica}
Test '1011': 3 jedinice — ODBACEN
Test '1001': 2 jedinice — PRIHVACEN
Test '1111': 4 jedinice — PRIHVACEN

POLUODLUCIV: H

{<{M,w) takav da M se zaustavlja na w}
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MoZemo simulirati M na w
Ako stane — PRIHVATI
Ako ne stane — ... (Cekamo zauvijek)

Simulacija poluodlucivog problema:

Enumerator za jezik {a"b" takav da n > 0}:
Generirani nizovi: €, ab, aabb, aaabbb, aaaabbbb, aaaaabbbbb

Provjera 'aabb' € L?
Korak 1: Generiraj € — ne odgovara
Korak 2: Generiraj ab — ne odgovara
Korak 3: Generiraj aabb — PRONADEN!

Provjera 'abab' € L7
Korak 1: € — ne
Korak 2: ab — ne
Korak 3: aabb — ne
Korak 4: aaabbb — ne
Korak 5: aaaabbbb — ne
(nikad neée pronaéi, ali ne znamo to unaprijed!)

Postov teorem:

L je odlu¢iv <= L i ne L su rekurzivno prebrojivi

Dokaz (=):
Ako je L odluciv, imamo M koji uvijek staje.
Za L: pokreni M, prihvati ako M prihvati.
Za ne L: pokreni M, prihvati ako M odbaci.

Dokaz («=):
Ako su L i ne L r.p., imamo M; i M».
Simuliraj M; i Mp paralelno (dovetailing).
Jedan mora stati — odluci!

Turing je uveo koncept redukcije - svodenja jednog problema na drugi:

"Mnogi problemi mogu se svesti na problem zaustavljanja" - Turing, 1936

Many-one redukcija: A <,, B ako postoji izracunljiva funkcija f takva da:

weEA << f(w)eB
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1 class Redukcija:

2
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def

def

"""Reprezentira many-one redukciju izmedu problema."""

def __init__(self, ime, od_problema, do_problema) :
self.ime = ime
self.od = od_problema
self.do = do_problema

def __repr__(self):
return f"{self.od} <,, {self.do}"

reduciraj_acceptance_na_halting(M, w):
"""Reducira ACCEPTANCE problem na HALTING."""

# Konstruiramo novi stroj M'
def M_prime(x):
# Simuliraj M na w

rezultat = simuliraj_tm(M, w)

if rezultat == "PRIHVACEN":
return "STOP" # M' staje
else:
while True: # M' ne staje

pass

return M_prime

simuliraj_tm(M, w, max_koraka=100):
"hSimulira Turingov stroj (pojednostavljeno). """
# Za demonstraciju

import hashlib

h = int(hashlib.md5((str(M) + w).encode()).hexdigest(), 16)

if h ), 3 == 0:

return "PRIHVACEN"
elif h % 3 == 1:

return "ODBACEN"
else:

return "LOOP"

class OracleTM:

"""Turingov stroj s orakulom."""

def __init__(self, oracle_problem):

self.oracle = oracle_problem

def query_oracle(self, instance):
"""Pita orakul za odgovor."""
# U teoriji, orakul instantno odgovara

return self.oracle(instance)

def rijeSi_problem_s_orakulom(self, problem, ulaz):

"""RjeSava problem koristeét orakul."""
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# Primjer: s H-orakulom moZemo rijeSiti mnoge probleme

if problem == "EMPTY":
# Je 11 L(M) prazan?
# Konstruiraj M' koji prihvaca sve ako M prihvaéa bar nesto
return self.query_oracle(("modified M", ulaz))

return "NEPOZNAT"

def halting_oracle(instance):
"""Hipoteticks: halting oracle."""
M, w = instance
# Ovo je nemoguce implementirats!
# Za demonstractiju:
if "while True" in str(M):
return False
elif "return" in str(M):
return True
else:

return None

print ("Redukcije medu problemima')

print (" )

print ("\nMany-one redukcija: A <,, B")

print(" Postoji izracunljiva f: w € A <= f(w) € B")
print("\nAko A <,, B i B je odlu¢iv — A je odlué&iv")
print("Ako A <,, B i A je neodluiv — B je neodluéiv")

print ("\nPrimjer redukcije:")

print (" ")

print ("\nProblem: ACCEPTANCE <,, HALTING")
print("\nACCEPTANCE: Prihvaéa 1i M ulaz w?")
print ("HALTING: Zaustavlja 1i se M na w?")
print ("\nRedukcija:")

print(" Konstruiraj M' koji:")

print(" 1. Simulira M na w")

print(" 2. Ako M prihvati — M' staje")
print(" 3. Ako M odbaci — M' ulazi u petlju")

print("\nTada: M prihvaéa w <= M' se zaustavlja na w")

print("\nLanac redukcija:")

print (" ")

print ("\nEMPTY (Je 1i L(M) = 0?)")

print (" L <"

print ("REGULAR (Je 1i L(M) regularan?)")
print (" & <m0

print ("EQUIVALENT (Je 1i L(M;) = L(M2)7)")
print (" 1 <"

print ("HALTING")

print("\nSvi su neodluivi!")

print ("\nTuringovi stupnjevi:")

pI‘iIlt ( n n )
print ("\nStupanj 0: 0dluéivi problemi")

print(" Primjer: Je li broj paran?")
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106 print("\nStupanj O': Problem zaustavljanja")

107 print(" H = {{M,w) takav da M staje na w}")

108 print("\nStupanj O'': Halting za oracle strojeve")

109 print(" H' = {{M"H,w) takav da M s H-orakulom staje na w}")
110 print("\nBeskonac¢na hijerarhija: 0 < 0' < 0'' < ...")

111

112 print("\nOracle simulacija:")

113 print (" ")

114

115 oracle_tm = OracleTM(halting_oracle)

116

117 print("\nTuringov stroj s H-orakulom moZe:")

118 print(" e RijeS8iti problem zaustavljanja za obiéne TM")

119 print(" e Ali ne moZe rijeSiti svoj vlastiti problem zaustavljanja!")
120

121 print("\nTest oracle stroja:")

122 testl = oracle_tm.query_oracle(("while True: pass", ""))

123 print(f" Query: Staje 1li 'while True: pass'? — {'DA' if testl else 'NE'}")
124

125 test2 = oracle_tm.query_oracle(("return 42", ""))

126 print(f" Query: Staje 1i 'return 42'? — {'DA' if test2 else 'NE'}")
127

128 print(" Query: Staje 1li ovaj oracle stroj? — PARADOKS!")

Output

Redukcije medu problemima

Many-one redukcija: A <, B
Postoji izraéunljiva f: w € A < f(w) € B

Ako A <, B 1 B je odlué¢iv — A je odlucliv
Ako A <, B i A je neodluc¢iv — B je neodluciv

Primjer redukcije:

Problem: ACCEPTANCE <,, HALTING

ACCEPTANCE: Prihvaca 1i M ulaz w?
HALTING: Zaustavlja 1li se M na w?

Redukcija:
Konstruiraj M' koji:
1. Simulira M na w
2. Ako M prihvati — M' staje
3. Ako M odbaci — M' ulazi u petlju

Tada: M prihvacéa w <= M' se zaustavlja na w
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Lanac redukcija:

EMPTY (Je 1i L(M) = 07)
<

REGULAR (Je 1i L(M) regularan?)
L <

EQUIVALENT (Je 1i L(M;) = L(My)?)
L <

HALTING

Svi su neodlucivi!

Turingovi stupnjevi:

Stupanj 0: 0dlucivi problemi
Primjer: Je 1li broj paran?

Stupanj 0': Problem zaustavljanja
H = {{M,w) takav da M staje na w}

Stupanj 0'': Halting za oracle strojeve
H' = {{M"H,w) takav da M s H-orakulom staje na w}

Beskonac¢na hijerarhija: 0 < 0' < 0'' < ...

Oracle simulacija:

Turingov stroj s H-orakulom moZe:
e RijeSiti problem zaustavljanja za obicne TM
e Ali ne moZe rijeSiti svoj vlastiti problem zaustavljanja!

Test oracle stroja:
Query: Staje 1i 'while True: pass'? — NE
Query: Staje 1i 'return 42'7? — DA
Query: Staje 1i ovaj oracle stroj? — PARADOKS!

Pokazat éemo ekvivalenciju razli¢itih modela rac¢unanja:

Register strojevi (Shepherdson and Sturgis, 1963): Jednostavniji model s registrima koji

drze prirodne brojeve.

p-rekurzivne funkcije (Godel, Kleene): Funkcije definirane rekurzijom i minimalizacijom.




5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA

93

1 class RegisterMachine:

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

"""Simulacija register stroja."""

def

def

def

def

def

def

def

__init__(self, num_registers=10):
self .registers = [0] * num_registers
self.pc = 0 # Program counter

self .program = []

self.halted = False

inc(self, r):
"""Inkrementiraj registar."""
self .registers[r] += 1

self.pc += 1

dec(self, r):
"""Dekrementiraj registar (bounded at 0)."""
if self.registers[r] > O:

self .registers[r] -= 1

self.pc += 1

jz(self, r, label):

"""Skoct ako je registar nula."""

if self.registers[r] == 0:
self.pc = label

else:

self.pc += 1

jmp(self, label):
"""Bezuvjetni skok."""

self.pc = label

halt(self):
"""Zaustavi izvrSavanje.
self.halted = True

mwmn

run(self, max_steps=1000):
"""Pokrent program."""

steps = 0

while not self.halted and steps < max_steps and self.pc < len(self.program):

instruction = self.program[self.pc]
instruction()
steps += 1

return self.registers[0] # Vraéa RO kao rezultat

# mu-rekurzivne funkcije

47 def zero(x):
nn llNuZ funkczja,' nnn

return 0O

48

49

50

51

52

def succ(x):
”””Sljedbenik. mmnn
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53 return x + 1
54

55 def proj(i, *args):

56 """Projekcija - vraca t-tt argument."""
57 return args[il
58

59 def compose(f, *gs):

60 """Kompozicija funkcija."""

61 def h(xargs):

62 g_results = [g(*args) for g in gs]
63 return f(*g_results)

64 return h

65

66 def primitive_recursion(f, g):

67 """Primitivna rekurzija."""

68 def h(x, *args):

69 if x ==

70 return f(*args)

71 else:

72 return g(x-1, h(x-1, *args), *args)
73 return h

74

75 def mu_operator (f):

76 """u-operator — minimalizactija."""

77 def h(*args):

78 y=0

79 while f(xargs, y) != O:

80 y +=1

81 if y > 1000: # ZaStita od beskonacne petlje
82 return None

83 return y

84 return h

85

86 # Primjert u-rekurzivnih funkcija

88 # Zbrajanje

89 add = primitive_recursion(

90 lambda y: y, # add(0, y) =y

91 lambda x, rec, y: succ(rec) # add(S(z), y) = S(add(z, y))
92 )

93

94 # MnoZenje

95 mult = primitive_recursion(

96 lambda y: 0, # mult(0, y) = 0

97 lambda x, rec, y: add(rec, y) # mult(S(z), y) = add(mult(z, y), y)
98 )

99

100 # Eksponencijacija

101 exp = primitive_recursion(

102 lambda x: 1, # exp(z, 0) = 1
103 lambda y, rec, x: mult(x, rec) # ezp(z, S(y)) = mult(z, exp(z, y))
104 )

105
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106 print("Register stroj")

107 print("=s=============")

108 print("\nInstrukcije:")

109 print(" INC(R): R := R + 1")

110 print(" DEC(R): R := max(0, R - 1)")

111 print(" JZ(R, L): ako je R = 0, sko&i na L")
112 print(" HALT: zaustavi")

113

114 print("\nProgram za zbrajanje R1 + R2 — RO:")

115 print (" ")
116
117 # Program za zbrajanje

118 rm = RegisterMachine()

119 rm.registers([1] = 3 # Rl = 3

120 rm.registers[2] = 2 # R2 = 2

121

122 rm.program = [

123 lambda: rm.jz(1, 4), # 0: ako R1=0, %di na 4
124 lambda: rm.dec(1), # 1: R1-—-

125 lambda: rm.inc(0), # 2: RO++

126 lambda: rm.jmp(0), # 3: 1di na 0

127 lambda: rm.jz(2, 8), # 4: ako R2=0, idi na 8
128 lambda: rm.dec(2), # 5: R2—-

129 lambda: rm.inc(0), # 6: RO++

130 lambda: rm.jmp(4), # 7: idi na 4

131 lambda: rm.halt() # 8: HALT

132 ]

133

134 print("\nO: JZ(R1, 4)")

135 print("1: DEC(R1)")

136 print("2: INC(RO)")

137 print("3: JMP(0)")

138 print("4: JZ(R2, 8)")

139 print("5: DEC(R2)")

140 print("6: INC(RO)")

141 print("7: JMP(4)")

142 print("8: HALT")

143

144 print("\nIzvrSavanje: R1=3, R2=2")
145 P G e S ")
146

147 # Prikaz prvih nekoliko koraka

148 for i in range(5):

149 print (f"Korak {i}: PC={rm.pc}, RO={rm.registers[0]}, Ri={rm.registers([1]},
— R2={rm.registers[2]}")

150 if not rm.halted and rm.pc < len(rm.program):

151 rm.program[rm.pc] ()

152

153 print("...")

154

155 # Resetuj 1 pokreni do kraja
156 rm = RegisterMachine()

157 rm.registers[1] = 3
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158 rm.registers[2] = 2

159 rm.program = [

160 lambda: rm.jz(1, 4),
161 lambda: rm.dec(1),
162 lambda: rm.inc(0),
163 lambda: rm.jmp(0),
164 lambda: rm.jz(2, 8),
165 lambda: rm.dec(2),
166 lambda: rm.inc(0),
167 lambda: rm.jmp(4),
168 lambda: rm.halt()
169 ]

170

171 rezultat = rm.run()
172 print(f"ZavrSeno: RO={rezultat} (3 + 2 = 5) {'v'' if rezultat == 5 else 'Xx'}")

174 print ("\np-rekurzivne funkcije")

175 print (" ")

176 print("\nOsnovne funkcije:")

177 print(" Z(x) = 0 (nul funkcija)")
178 print(" S(x) = x + 1 (sljedbenik)")

179 print(" P";(x1,...,%,) = x; (projekcija)")

181 print("\nOperatori:")

182 print(" Kompozicija: h(x) = £(g1(x),...,ge(x))")
183 print(" Primitivna rekurzija:")

184 print (" h(0, y) = £(y)")

185 print (" h(S(x), y) = gz, h(x, y), ")

186 print(" p-operator: h(x) = uyl[f(x, y) = 01")

187

188 print("\nPrimjer - zbrajanje:")

189 print(" add(0, y) = y")

190 print(" add(S(x), y) = S(add(x, y))")

191 print(£"\nTest: add(3, 2) = {add(3, 2)} {'V' if add(3, 2) =

192

5 else 'X'}")

193 print("\nPrimjer - mnoZenje:")

194 print(" mult(0, y) = 0")

195 print (" mult(S(x), y) = add(mult(x, y), y)")
196 print(f"\nTest: mult(3, 4) = {mult(3, 4)} {'v' if mult(3, 4) == 12 else 'X'}")
197

198 print("\nPrimjer - eksponencijacija:")

199 print(" exp(x, 0) = 1")

200 print(" exp(x, S(y)) = mult(x, exp(x, y))")

201 print (f"\nTest: exp(2, 3) = {exp(3, 2)} {'V'' if exp(3, 2)

202

9 else 'x'}")

203 print("\np-operator primjer:")

204 print(" ")
205

206 def sqrt_floor(n):

207 """Korijen zaokruZen naniZe koristeét p—operator."""
208 def predicate(n, x):
209 return O if x*x > n else 1

210
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x=0
while predicate(n, x) !'= 0:
x +=1

return x - 1

print ("\nsqrt_floor(n) = px[x® > nl")

print ("\nsqrt_floor(10):")

for x in range(5):

print (£" x={x}: {x}? = {x*x} {'>' if x*x > 10 else '<'} 10")

if x*x > 10:

print(f" Rezultat: {x-1} v'")

break

print("\nEkvivalencija modela:")

print ( n n )

print ("\nTuringov stroj = Register stroj = p-rekurzivne funkcije")

print ("\nSvi mogu simulirati jedni druge!")

Output

Register stroj

HALT: zaustavi

Instrukcije:
INC(R): R :=R + 1
DEC(R): R := max(0, R - 1)

JZ(R, L): ako je R = 0, skoi na L

Program za zbrajanje R1 + R2 — RO:

JZ(R1, 4)
DEC(R1)
INC(RO)
JMP (0)
JZ(R2, 8)
DEC(R2)
INC(RO)
JMP (4)
HALT

0 N O O1dbd WN - O

IzvrSavanje: R1=3, R2=2

Korak 0: PC=0, RO=0, R1=3,
Korak 1: PC=1, RO=0, R1=3,
Korak 2: PC=2, R0=0, R1=2,
Korak 3: PC=3, RO=1, R1=2,
Korak 4: PC=0, RO=1, R1=2,

ZavrSeno: R0=5 (3 + 2 = 5)

R2=2
R2=2
R2=2
R2=2
R2=2
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p-rekurzivne funkcije

Osnovne funkcije:
Z(x) = 0 (nul funkcija)
S(x) = x + 1 (sljedbenik)
P (x1,...,%y) = x; (projekcija)

Operatori:
Kompozicija: h(x) = f(g1(x),...,gr(x))
Primitivna rekurzija:
h(0, y) = £(y)
h(S(x), y) = glx, hix, y), y)
p-operator: h(x) = uylf(x, y) = 0]

Primjer - zbrajanje:

add(0, y) =y

add(S(x), y) = S(add(x, y))
Test: add(3, 2) =5 V
Primjer - mnoZenje:

mult(0, y) =0

mult(S(x), y) = add(mult(x, y), y)
Test: mult(3, 4) = 12 V
Primjer - eksponencijacija:

exp(x, 0) =1

exp(x, S(y)) = mult(x, exp(x, y))
Test: exp(2, 3) = 8 X

p—operator primjer:

sqrt_floor(n) = ux[x? > n]

sqrt_floor(10):

x=0: 02 =0 < 10
x=1: 12 =1 < 10
x=2: 22 =4 < 10
x=3: 32 =9 < 10
x=4: 42 = 16 > 10

Rezultat: 3 V

Ekvivalencija modela:

Turingov stroj = Register stroj = p-rekurzivne funkcije
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Svi mogu simulirati jedni druge!

5.1.7 Prakticne primjene i granice

Teorija izracunljivosti ima duboke prakti¢ne implikacije:

1 def
2
3
4
5
6
7
8 def

10
11
12
13
14
15
16
17
18
19
20 def
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 def
38
39
40
41

42

simuliraj_verifikaciju(program_code) :

"""PokuSava verificirati sigurnost programa."""

# Pojednostavljeno za demonstractju

if "/ 0" in program_code or "/ x" in program_code:
return "POTENCIJALNO NESIGURNO"

return "SIGURNQO"

busy_beaver (n) :
"""Simulacija Busy Beaver problema."""

# Poznate wvrijednosti

known = {
1: 1,
2: 6,
Bg 2l
4: 107,
5: 47176870 # Donja granica

}
return known.get(n, "NEPOZNAT0")

kolmogorov_approximation(s) :
"""Aproksimacija Kolmogorovljeve sloZemostt. """

# Vrlo gruba aproksimacija

# Provjert ponavljajule uzorke
if len(set(s)) ==
# Samo jedan simbol

return £"0(log n) - print '{s[0]}'*{len(s)}"

# Provjert je li kompresibilan

import zlib

compressed = zlib.compress(s.encode())
if len(compressed) < len(s) * 0.5:

return £"0(log n) - kompresibilan"

return f"O(n) - nasumicéan"

godel_numeracija(formula) :

"""Simulacija Godel numeracije."""

# Pojednostavljeno — koristi hash

import hashlib

h = hashlib.md5(formula.encode()) .hexdigest()
return int(h[:5], 16)
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print ("Prakticne primjene teorije izralunljivosti")

print (" )

print("\nl. VERIFIKACIJA PROGRAMA")

progl = "def div_safe(a, b): return a / 2"

prog2 = "def div_unsafe(a, b): return a / x"

print ("\nPokuSaj verifikacije: div_safe(10, 2)")
print(f"  Sigurno: dijeljenje s 2 je OK")

print ("\nPokusaj verifikacije: div_unsafe(10, x)")

print(f" A Potencijalno nesigurno: x moZe biti 0")

print("\nRice-ov teorem: Ne moZemo automatski verificirati')

print("sva netrivijalna svojstva programa!")

print ("\n2. KOMPAJLERI I OPTIMIZACIJA")
print(" ————————————————————————————— "

print ("\nNedostizan kod:")
print(" if False: ... — moZe se ukloniti v'")

print(" if complex_condition(): ... — neodluéivo!")

print("\n3. BUSY BEAVER PROBLEM")
print(" —————————————————————— n)

print ("\nBB(n) = maksimalni broj koraka n-stanja TM prije zaustavljanja")

print ("\nPoznate vrijednosti:")

for n in range(l, 6):
print(f" BB({n}) = {busy_beaver(n)}")
print(" BB(6) > 10710710710718")
print ("\nBB funkcija raste brZe od svake izracdunljive funkcije!")
print("\n4. KOLMOGOROVLJEVA SLOZENQOST")
print("---——--- === ===
print("\nK(s) = duljina najkraceg programa koji generira s")

print ("\nPrimjeri:")
nizovi = ['0000000000', '0110101101', '3141592653']
for s in nizovi:
k = kolmogorov_approximation(s)
if '0000' in s:
print(f" '{s}' — K = 0(log n) [print '0'*10]")
elif '011' in s:
print(f" '{s}' — K ~ 0(n) [print '{s}'1")

else:

print(f" m prvih 1000 znamenki — K ~ 0(log n) [algoritam za 7w]")

print ("\nTeorem: K(s) je neizraéunljiva!")

print("\n5. GODELOV TEOREM NEPOTPUNOSTI")
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06 P ")
97

98 print("\nSimulacija G6del numeracije:")
99 formula = "Vx P(x)"

100 gn = godel_numeracija(formula)

101 print(f£"\nFormula: {formula}")

102 print(£"Gédel broj: {gn}")

104 print("\nGédel je pokazao: Aritmetika moZe govoriti o sebi!")
105 print ("\nKonstrukcija paradoksa:")

106 print(" G = 'Ova recenica nije dokaziva'")

107 print(" ")

108 print(" Ako je G dokaziva — G je laZna — kontradikcija!")

109 print(" Ako G nije dokaziva — G je istinita — nepotpunost!")

110
111 print ("\nFILOZOFSKE IMPLIKACIJE")
112 print (" ")
113

114 print("\nLucas-Penrose argument:")

115 print (" Ljudski um moZe vidjeti istinu Gédelove relenice.")
116 print(" Strojevi ne mogu.")

117 print(" — Um nije stroj?")

118

119 print("\nProtu-argument:")

120 print(" Mi ne znamo nasu vlastitu formalizaciju.")
121 print(" Mozda smo nekonzistentni.")

122 print(" — Godelov teorem se primjenjuje i na nas!")
123

124 print ("\nChurch-Turingova teza:")

125 print(" Sve Sto je efektivno izralunljivo")

126 print(" moZe izracunati Turingov stroj.")

127 print(" ")

128 print(" Je 1li to istina o fizickom svijetu?")

129 print(" Kvantno racunanje? Hiper-racunanje?")

Output

Prakticne primjene teorije izracunljivosti

1. VERIFIKACIJA PROGRAMA

PokuSaj verifikacije: div_safe(10, 2)
v/ Sigurno: dijeljenje s 2 je OK

Pokusaj verifikacije: div_unsafe(10, x)
A Potencijalno nesigurno: x moZe biti 0

Rice-ov teorem: Ne moZemo automatski verificirati
sva netrivijalna svojstva programa!
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2. KOMPAJLERI I OPTIMIZACIJA

NedostiZan kod:
if False: ... — moZe se ukloniti Vv
if complex_condition(): ... — neodlugivo!

3. BUSY BEAVER PROBLEM

BB(n) = maksimalni broj koraka n-stanja TM prije zaustavljanja

Poznate vrijednosti:

BB(1) =1

BB(2) = 6

BB(3) = 21

BB(4) = 107

BB(5) = 47176870

BB(6) > 1071071071018

BB funkcija raste brZe od svake izracunljive funkcije!

4. KOLMOGOROVLJEVA SLOZENOST

K(s) = duljina najkraceg programa koji generira s

Primjeri:
'0000000000' — K 0(log n) [print '0'*10]
'0110101101' — K 0(n) [print '0110101101']
7 prvih 1000 znamenki — K ~ 0(log n) [algoritam za ]

~
~
~
~

Teorem: K(s) je neizracunljival!

5. GODELOV TEOREM NEPOTPUNOSTI

Simulacija Gédel numeracije:

Formula: Vx P(x)
Goédel broj: 177015

Godel je pokazao: Aritmetika moZe govoriti o sebi!

Konstrukcija paradoksa:
G = 'Ova recenica nije dokaziva'

Ako je G dokaziva — G je laZna — kontradikcija!
Ako G nije dokaziva — G je istinita — nepotpunost!
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FILOZOFSKE IMPLIKACIJE

Lucas-Penrose argument:
Ljudski um moZe vidjeti istinu Goédelove recenice.
Strojevi ne mogu.
— Um nije stroj?

Protu-argument:
Mi ne znamo nasSu vlastitu formalizaciju.
MoZda smo nekonzistentni.
— Go6delov teorem se primjenjuje i na nas!

Church-Turingova teza:
Sve Sto je efektivno izracunljivo
moZze izracunati Turingov stroj.

Je 1i to istina o fizickom svijetu?
Kvantno racunanje? Hiper-racunanje?

Za produbljivanje razumijevanja teorije izracunljivosti, predlazemo sljedeée vjezbe:

Implementacija univerzalnog Turingovog stroja

Napisite TM koji moze simulirati bilo koji drugi TM zadan kao ulaz.

Dokaz neodludivosti kroz redukciju

Pokazite da je problem "Ispisuje li TM ’Hello World’?" neodluciv redukcijom na problem
zaustavljanja.

Interpreter A-racuna

Implementirajte potpuni evaluator za A-raéun s normalnim i aplikativnim redoslijedom
evaluacije.

Ackermanova funkcija

Implementirajte Ackermanovu funkciju i pokazite da raste brze od svake primitivno rekurzivne
funkcije.
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Quineov program

Napisite program koji ispisuje svoj vlastiti kod (self-reproducing program).

Simulacija nedeterministickog TM

Implementirajte NTM i pokazite kako se moze simulirati deterministicki.

Post korespodencijski problem

Implementirajte solver za instance PCP-a i demonstrirajte neodlucivost.

Busy Beaver pretrazivac

Napisite program koji trazi TM s n stanja koji rade najduze prije zaustavljanja.

Godelova numeracija

Implementirajte potpunu Gédelovu numeraciju za aritmeticke formule.

Kleeneov teorem rekurzije

Demonstrirajte Kleeneov teorem konstruiranjem programa koji ispisuje svoj Godel broj.

Svaki zadatak postupno gradi razumijevanje granica izracunljivosti i fundamentalnih koncepata
teorije racunanja.

Kroz ovu implementaciju istrazili smo Turingov revolucionarni doprinos teoriji izracunljivosti:

1. Turingov stroj kao univerzalni model racunanja
2. Church-Turingova teza o ekvivalenciji modela
3. Problem zaustavljanja kao prva granica

4. Hijerarhija jezika po odlucivosti

5. Alternativni formalizmi i njihova ekvivalencija
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Turingov rad odgovorio je na Hilbertov Entscheidungsproblem, ali je otvorio jos dublja pitanja:

"Mozemo li nadié¢i granice Turingovog stroja?" - Pitanje koje i danas istrazujemo

Teorija izracunljivosti pokazuje da postoje fundamentalne granice onoga $to mozemo izracunati:

e Ne mozemo odluciti hoce li se program zaustaviti
e Ne mozemo verificirati sva svojstva programa
e Ne mozemo izracunati Kolmogorovljevu sloZenost

¢ Ne mozemo formalizirati svu matematiku

Ali takoder otkriva duboke veze:

o Izmedu logike i rac¢unanja (Curry-Howard)
e Izmedu raCunanja i filozofije uma

o Izmedu matematike i njenih granica (Godel)

Turingov svijet nas uci da su granice izracunljivosti takoder granice formalnog znanja. Python
implementacija omogué¢ava nam da eksperimentiramo s ovim granicama i razvijemo intuiciju
za ono $to je mogude - i Sto nije moguce - automatizirati.

Teorija izracunljivosti ostaje temelj:

¢ Racunarske znanosti - Sto mozemo algoritamski rijesiti

e Umjetne inteligencije - granice strojnog ucenja

Filozofije uma - priroda svijesti i racunanja

Matematike - granice formalnih sustava

Turingovo naslijede zivi u svakom racunalu, svakom algoritmu i svakom pitanju o granicama
onoga Sto mozemo znati i izra¢unati.
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1
2
3
4

5

Poglavlje 6

Cantorov svijet

6.1 Teorija skupova, beskonacnost i granice razuma

U ovom poglavlju istrazujemo temelje teorije skupova kroz praktiécnu Python implementa-
ciju, inspirirani Cantorovim revolucionarnim radom koji je promijenio nase razumijevanje
beskonacnosti.

"'Bit matematike lezi upravo u njezinoj slobodi" (Das Wesen der Mathematik liegt
gerade in ihrer Freiheit) - Georg Cantor, 1883

Cantor je pokazao da beskonacnost nije jedinstvena - postoje razli¢ite "veli¢ine" beskonacnosti,
sto je dovelo do dubokih filozofskih i matematickih posljedica.

Skup je temeljan, nedefiniran pojam u matematici - kolekcija objekata koje nazivamo ele-
mentima. Cantor je definirao:

"Skup je mnostvo koje mislimo kao jedinstvo" (Eine Menge ist ein Vieles, welches
sich als Fines denken ldisst)

Implementirajmo osnovne skupovne operacije:

class Skup:

"""Predstavlja matematickt skup s osmovnim operactijama."""

def __init__(self, elementi):

self.elementi = set(elementi) if not isinstance(elementi, set) else elementi
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7 def __repr__(self):

8 if not self.elementi:

9 return "("

10 return "{" + ", ".join(str(e) for e in sorted(self.elementi)) + "}"
11

12 def __contains__(self, element):

13 return element in self.elementi

14

15 def unija(self, drugi):

16 """Unija skupova: A U B"""

17 return Skup(self.elementi | drugi.elementi)
18

19 def presjek(self, drugi):

20 """Presjek skupova: A N B"""

21 return Skup(self.elementi & drugi.elementi)
22

23 def razlika(self, drugi):

24 """Razlika skupova: A \\ B"""

25 return Skup(self.elementi - drugi.elementi)
26

27 def simetricna_razlika(self, drugi):

28 nnuSimetriéna razlika: A A B"""

29 return Skup(self.elementi ~ drugi.elementi)
30

31 def je_podskup(self, drugi):

32 """Provjera je li skup podskup drugog: A C B"""
33 return self.elementi <= drugi.elementi

34

35 # Primjert skupova

36 A = Skup([1, 2, 3, 4, 5])
37 B = Skup([3, 4, 5, 6, 7])
38

39 print("Osnovni skupovi:")

40 print(f" A = {A}")

41 print(f" B = {B}")

42 print("\nSkupovne operacije:")

43 print(f" A U B = {A.unija(B)}")

44 print(f" A N B = {A.presjek(B)}")

45 print(f" A \\ B = {A.razlika(B)}")

46 print(f" A A B = {A.simetricna_razlika(B)}")
47 print("\nRelacije:")

48 print(f" 3 € A: {'T' if 3 in A else 'L'}")
49 print(f" 8 € A: {'T' if 8 in A else 'l'}")
50 print(£" {{3, 4}} C A: {'T' if Skup([3, 4]).je_podskup(A) else 'L'}")

Osnovni skupovi:

A
B

{1, 2, 3, 4, 5}
{3, 4, 5, 6, 7}
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Skupovne operacije:
AUuB-=141, 2, 3, 4, 5, 6, T}
ANB-=A{3, 4, 5%

AN B=A{1, 2}
AAB=A{1, 2,6, 7}

Relacije:
3 €A T
8 € A: L

{3, 4y C A: T

Partitivni skup P(A) je skup svih podskupova skupa A. Cantorov teorem pokazuje funda-
mentalnu ¢injenicu:

Za svaki skup A vrijedi: ||P(A4)| > ||A]]

Ovo vodi u beskona¢nu hijerarhiju sve ve¢ih beskonac¢nosti:

Partitivni skup P(A) je skup svih podskupova skupa A. Cantorov teorem pokazuje funda-
mentalnu ¢injenicu:

Za svaki skup A vrijedi: |P(A)| > |A]

Ovo vodi u beskonac¢nu hijerarhiju sve ve¢ih beskonac¢nosti:

def partitivni_skup(skup):
""iGenerira partitivnt skup (skup svih podskupova)."""
elementi = list(skup.elementi)
n = len(elementi)
rezultat = []

# Generiraj sve podskupove pomocéu binarnog brojanja
for i in range(2%*n):
podskup = set()
for j in range(n):
if i & (1 << j):
podskup.add(elementi[j])
rezultat .append (Skup (podskup))

return rezultat

# Demonstractija partitivnog skupa
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S = Skup([1, 2, 31)
P_S = partitivni_skup(S)

print(£"Skup S = {S}")

print(f"Kardinalnost |S| = {len(S.elementi)l}")

print ("\nPartitivni skup P(S):")

for podskup in sorted(P_S, key=lambda x: (len(x.elementi), str(x))):
print(£" {podskupl}")

print (f"\nKardinalnost |P(S)| = {len(P_S)} = 2"{len(S.elementi)}")
print (f"\nCantorov teorem: |P(S)| > [S| v'")

# Iterirana primjena partitivnog skupa
print("\nRast kardinalnosti kroz iteracije:")
trenutni = Skup([])
for i in range(6):
kard = len(trenutni.elementi)
print(£" P{''.join(['*'?**°°7%% ' [int(d)] for d in str(i)1D}(M): ", end="")
print (£" [{'P(" * i}P{')'*i}| = {kard}")
if i < 5:

trenutni = Skup(range(2**kard))

Output

Skup S = {1, 2, 3}
Kardinalnost |S| = 3

Partitivni skup P(S):
0
{1}
{2}
{3}
{1, 2}
{1, 3}
{2, 3}
{1, 2, 3}

Kardinalnost |[P(S)| = 8 = 273
Cantorov teorem: |P(S)| > |S| V

Rast kardinalnosti kroz iteracije:
PO(): 101 =0
PL(DY: P =1
P2(0): IPCP))I =2
P3(D): IPREPWNI] =4
PLP): IP(P(P(PDNNI] = 16
PS(0): IP(P(P(P(P(P))))I| = 65536
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Cantor je definirao jednakost kardinalnosti kroz postojanje bijekcije (1-1 korespondencije)
izmedu skupova:

Dva skupa imaju istu kardinalnost ako i samo ako postoji bijekcija izmedu njih

Ovo omogucava usporedbu "veli¢ina" beskonac¢nih skupova:

class Bijekcija:

"""Predstavlja bijektivnu funkctiju tzmedu skupova."""

def __init__(self, naziv, funkcija, inverzna=None):
self .naziv = naziv
self.funkcija = funkcija

self.inverzna = inverzna

def je_bijekcija_na_uzorku(self, domena, kodomena) :

"""Provyjerava bijekciju na konacnom uzorku."""
# Provjert injektivnost
slike = {}
for x in domena:

y = self.funkcija(x)

if y in slike:

return False # Nije injektivna

slikel[y] = x

# Za konacne skupove, provjert surjektivnost
if len(kodomena) <= len(domena) :
for y in kodomena:
if y not in slike:

return False # Nije surjektivna

return True

# Primjert bijekcija izmedu beskonacnih skupova

# 1. N = Parni brojevi

bij_parni = Bijekcija(
"f: N — 2N",
lambda n: 2 * n,
lambda m: m // 2

#2. N = 7Z (cijeli brojevi)

def nat_to_int(n):
"""Mapira prirodne brojeve na cijele brojeve."""
if n ==

return 0O
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elif n % 2 == 1:
return -((n + 1) // 2)
else:

return n // 2
bij_cijeli = Bijekcija("g: N — 7Z", nat_to_int)

# 3. N - Q" (pozitiuni racionalni - Cantorov zigzag)
def cantor_zigzag(n):

"""Cantorov zigzag kroz racionalne brojeve."""

# Jednostavna verzija za demonstraciju

dijagonala = 1

pozicija = n

while pozicija >= dijagonala:
pozicija -= dijagonala

dijagonala += 1

brojnik = pozicija + 1
nazivnik = dijagonala - pozicija

return (brojnik, nazivnik)
bij_racionalni = Bijekcija("h: N — Q'", cantor_zigzag)

# Testiranje bijekcija

print ("Provjera bijekcija:\n")

print("1. £: N — 2N (parni brojevi), f(n) = 2n")

uzorak_nat = list(range(10))

uzorak_parni = [bij_parni.funkcija(n) for n in range(5)]

print(f" Bijekcija? T")

print(f"  Primjeri: f(0)={bij_parni.funkcija(0)}, £(1)={bij_parni.funkcija(1)}, "
£"f(2)={bij_parni.funkcija(2)}, f(3)={bij_parni.funkcija(3)},
— f(4)={bij_parni.funkcija(4)}")

print("\n2. g: N — Z (cijeli brojevi)")

print(£f" Bijekcija? T")

print(£f"  Primjeri: g(0)={nat_to_int(0)}, g(1)={nat_to_int(1)}, "
f'g(2)={nat_to_int(2)}, g(3)={nat_to_int(3)}, g(4)={nat_to_int(4)}")

print("\n3. h: N — QT (pozitivni racionalni - Cantorov zigzag)")

print(f" Bijekcija? T")
print(" Prva mapiranja:")
for i in range(5):

b, n = cantor_zigzag(i)
print (£" {i} — {b}/{n}")

print("\nZakljudak: N, 2N, Z i Q" imaju istu kardinalnost (Ng)")
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Output

Provjera bijekcija:

1. £f: N — 2N (parni brojevi), f(n) = 2n
Bijekcija? T
Primjeri: £(0)=0, £(1)=2, £(2)=4, £(3)=6, £(4)=8

2. gt N = Z (cijeli brojevi)
Bijekcija? T
Primjeri: g(0)=0, g(1)=-1, g(2)=1, g(3)=-2, g(4)=2

3. h: N =+ Q" (pozitivni racionalni - Cantorov zigzag)
Bijekcija? T
Prva mapiranja:

0 — 1/1
1 — 1/2
2 — 2/1
3 —» 1/3
4 — 2/2

Zakljugak: N, 2N, Z i Q" imaju istu kardinalnost (Np)

6.1.5 Cantorova dijagonalna metoda

Cantorov najslavniji rezultat je dokaz da realni brojevi nisu prebrojivi - njihova kardinal-
nost je ve¢a od prirodnih brojeva. Dijagonalna metoda je elegantan dokaz kontradikcijom:

"Vidim to, ali ne vjerujem!" - pisao je Cantor Dedekindu o ovom otkrié¢u

import math

def dijagonalna_metoda_demo():

"""Demonstracija Cantorove dijagonalne metode."""

# Simuliraj "popis" realnih brojeva izmedu 0 7 1

# (u stvarnosti je ovo memoguce!)

realni_popis = [
math.pi - 3, # 0.14159. ..
math.e - 2, # 0.71828. ..
0.5, # 0.50000. ..
1/3, # 0.33333. ..
(math.sqrt(5)-1)/2, # 0.61803... (zlatni rez)
math.sqrt(2) - 1, # 0.41421...
math.sqrt(3) - 1, # 0.73205...
math.pi/12, # 0.26179. ..
0.123456789012345, # 0.12345...
0.987654321098765 # 0.98765. ..
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19 ]

20

21 print("Cantorova dijagonalna metoda")

22 print ("="%30)

23 print("\nPretpostavimo da moZemo popisati sve realne brojeve u [0,1]:\n")
24

25 # PrikaZi popts

26 for i, broj in enumerate(realni_popis):

27 print (£"r{chr(0x2080+i)} = {broj:.14f}...")

28

29 # Izvucti dijagonalne elemente

30 print ("\nDijagonalni elementi (oznaleni):")

31 dijagonala = []

32 for i, broj in enumerate(realni_popis):

33 # Pretvori u string decimala

34 decimale = str(broj).split('.')[1] if '.' in str(broj) else 'O’
35 if i < len(decimale):

36 digit = decimalel[il

37 dijagonala.append(int(digit))

38 print (£" r{chr(0x2080+i)}[{i}] = {digit}")

39

40 # Konstruiraj novt broj mijenjanjem dijagonale

41 print ("\nKonstrukcija novog broja d mijenjanjem dijagonale:")

42 print(f" Dijagonala: {''.join(map(str, dijagonala))}...")

43

44 novi_broj_cifre = []

45 for d in dijagonala:

46 # Mijenjaj svaku cifru (npr. d — d+1 mod 10, izbjegni 9—0)
47 nova_cifra = (d + 1) if d < 9 else O

48 novi_broj_cifre.append(nova_cifra)

49

50 novi_broj_str = "0." + ''.join(map(str, novi_broj_cifre))

51 print(f" Novi broj d = {novi_broj_str}...")

52

53 # PokaZi da se razlikuje od svakog broja na popisu

54 print ("\nProvjera: d se razlikuje od svakog r; na i-toj poziciji:")
55 for i in range(min(5, len(dijagonala))):

56 print(f" d # r{chr(0x2080+i)} jer d[{i}]={novi_broj_cifre[i]} # "
57 f£'"r{chr(0x2080+i) } [{i}]={dijagonalal[il} v'")

58

59 print ("\nKONTRADIKCIJA! Broj d € [0,1] ali d nije na popisu.")
60 print("Zakljucak: Realni brojevi nisu prebrojivi.")

61

62 dijagonalna_metoda_demo ()

Cantorova dijagonalna metoda

Pretpostavimo da moZemo popisati sve realne brojeve u [0,1]:
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ro = 0.14159265358979. ..
r1 = 0.71828182845905. ..
r2 = 0.50000000000000. ..
r3 = 0.33333333333333...
ry = 0.61803398874989. ..
r5 = 0.41421356237310...
r¢ = 0.73205080756888. ..
r7 = 0.26179938779915. ..
rg = 0.12345678901234. ..
r9 = 0.98765432109877. ..

Dijagonalni elementi (oznaleni):
Io [O] =1
ri[1] =
r3[3] =
ry[4] =
r5[8] =
rg[6] =
r7[7] =
rg[8] =
r9l[9] =

O © 00 00 W W wr

Konstrukcija novog broja d mijenjanjem dijagonale:
Dijagonala: 113338890...
Novi broj d = 0.224449901...

Provjera: d se razlikuje od svakog r; na i-toj poziciji:
d # rg jer d[0]=2 # ro[0]=1
d # r; jer d[1]1=2 # ri[1]=1
d # r9 jer d[2]=4 # r,[2]=3
d # r3 jer d[3]=4 # r3[3]=3
d # ry4 jer d[4]=4 # r,[4]=3

ANENENENEN

KONTRADIKCIJA! Broj d € [0,1] ali d nije na popisu.
Zakljucak: Realni brojevi nisu prebrojivi.

Cantor je otkrio transfinitne kardinalne brojeve - hijerarhiju beskonacnosti:

o Ny (alef-nula): kardinalnost prirodnih brojeva
« 28 = ¢: kardinalnost realnih brojeva (kontinuum)

e N No,...: veée beskonacénosti

Hipoteza kontinuuma: Ne postoji kardinalnost izmedu Ng i c.
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class KardinalniBroj:

"tnpredstavlja kardinalni broj (konacan ili transfinitan)."""

def __init__(self, simbol, opis, primjeri=None):
self.simbol = simbol
self.opis = opis

self .primjeri = primjeri or []

def __repr__(self):

return self.simbol

# Definiraj kardinalne brojeve
alef_0 = KardinalniBroj("®,", "Prebrojiva beskonacnost",
[lINII’ ||Z||, IIQII’ "Parni", "PrOSti"])

kontinuum = KardinalniBroj("c", "Kardinalnost kontinuuma",

[an, n [0’1] ||’ ||p(N)n’ uRQHJ)

print("Hijerarhija kardinalnih brojeva'")
print ("="*32)

print ("\nKonaéne kardinalnosti:")
print(" |Q] = 0")

print (" [{a}| = 1")

print(" |{a,b,c}| = 3")

print ("\nPrebrojive beskonaénosti (kardinalnost Np):")
prebrojivi = [

("N", "prirodni brojevi"),

("Z", "cijeli brojevi"),

("Q", "racionalni brojevi"),

("Parni", "parni brojevi"),

("Prosti", "prosti brojevi')
]
for skup, opis in prebrojivi:
print(f" |[{skup}| = Ny ({opis})")

print ("\nNeprebrojive beskonanosti:")
neprebrojivi = [
("R", "$27°Ng = c$", "realni brojevi"),
("[0,1]", "$c$", "interval [0,1]1"),
("P(N)", "$27Ng$", "partitivni skup od N"),
("R?", "$c$", "ravnina"),
("R"R", "$27c$", "funkcije R—R")
]
for skup, kard, opis in neprebrojivi:
print(f" |{skup}| = {kard:<10} ({opis})")

print ("\nHipoteza kontinuuma (CH):")
print(" CH tvrdi: N; = 27°8p = c")
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print(" Status: NEZAVISNA od ZFC aksioma (Cohen & G6del)")

Output

Hijerarhija kardinalnih brojeva

Konac¢ne kardinalnosti:

10l =0
[{a}| = 1
[{a,b,c}| =3

Prebrojive beskonalnosti (kardinalnost Ng):

IN| = Ng (prirodni brojevi)
|Z] = Ny (cijeli brojevi)

QI = N (racionalni brojevi)
|Parni| = N (parni brojevi)

0
[Prosti| = Ny (prosti brojevi)
Neprebrojive beskonalnosti:

IRI = $2°Rg = c$ (realni brojevi)

[[0,1]] = $c$ (interval [0,1])
[P(N)| = $27N¢$ (partitivni skup od N)
IR2| = $c$ (ravnina)

IR"R| = $27c$ (funkcije R—R)

Hipoteza kontinuuma (CH):
CH tvrdi: ¥y = 27Xy = ¢
Status: NEZAVISNA od ZFC aksioma (Cohen & Godel)

Cantorova naivna teorija skupova dovela je do paradoksa. Najpoznatiji je Russellov paradoks
(1901):

Neka je R =z : x ¢ x skup svih skupova koji ne sadrze sami sebe. Pitanje: Je li
R e R?

Ovaj paradoks pokazuje da ne mozemo slobodno formirati skupove - potrebni su aksiomi!

def russellov_paradoks_demo():

"""Demonstracija Russellovog paradoksa."""

print ("Russellov paradoks - simulacija")
print ("="%32)
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6 print ("\nPokuSajmo definirati skup R = {x : x ¢ x}")

7

8 # Primjeri obicnih skupova

9 print("\nObic¢ni skupovi (ne sadrZe sami sebe):")

10 obicni = [

11 ("Skup brojeva {1,2,3}", "ne sadrzi sebe"),

12 ("Skup slova {a,b,c}", "ne sadrzi sebe"),

13 ("Prazan skup ()", "ne sadrZi sebe")

14 ]

15 for skup, status in obicni:

16 print(f" {skup}: {status} v'")

17

18 print ("\nNeobiéni skupovi (hipotetski sadrZe sami sebe):")
19 neobicni = [

20 ("Skup svih skupova", "sadrzi sebe (7)"),

21 ("Skup apstraktnih koncepata", "moZzda sadrzi sebe (?)")
22 ]

23 for skup, status in neobicni:

24 print(£" {skup}: {statusl}")

25

26 # Analiza paradoksa

27 print("\nAnaliza paradoksa:")

28 print(" Pretpostavka 1: R € R")

29 print (" — Po definiciji R, ako R € R tada R ¢ R")

30 print (" — KONTRADIKCIJA! ")

31

32 print("\n Pretpostavka 2: R ¢ R")

33 print (" — Po definiciji R, ako R ¢ R tada R € R")

34 print (" — KONTRADIKCIJA! L")

35

36 print("\nZakljucak: R ne moZe postojati kao skup!")

37

38 # RjeSenja

39 print("\nRjeSenja paradoksa:")

40 print(" 1. Teorija tipova (Russell): hijerarhija tipova")
41 print(" 2. ZFC aksiomi (Zermelo-Fraenkel): ogranicena konstrukcija")
42 print(" 3. NBG teorija (von Neumann): razlika skup/klasa")
43

44 print("\nFilozofske implikacije:")

45 print(" e Granice samoreferencijalnosti')

46 print(" e Nemoguénost \"skupa svih skupova\"")

47 print(" e Potreba za formalnim aksiomima")

48 print(" e Godel: inherentna nepotpunost formalnih sustava")
49

50 russellov_paradoks_demo ()

Russellov paradoks - simulacija
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PokuSajmo definirati skup R = {x : x ¢ x}

Obiéni skupovi (ne sadrZe sami sebe):
Skup brojeva {1,2,3}: ne sadrzi sebe v/
Skup slova {a,b,c}: ne sadrzi sebe v/
Prazan skup (): ne sadrzi sebe v

Neobiéni skupovi (hipotetski sadrZe sami sebe):
Skup svih skupova: sadrzi sebe (7)
Skup apstraktnih koncepata: moZda sadrzi sebe (7)

Analiza paradoksa:
Pretpostavka 1: R € R
— Po definiciji R, ako R € R tada R ¢ R
— KONTRADIKCIJA! L

Pretpostavka 2: R ¢ R
— Po definiciji R, ako R ¢ R tada R € R
— KONTRADIKCIJA! L

Zakljucak: R ne moZe postojati kao skup!

RjeSenja paradoksa:
1. Teorija tipova (Russell): hijerarhija tipova
2. ZFC aksiomi (Zermelo-Fraenkel): ogranicena konstrukcija
3. NBG teorija (von Neumann): razlika skup/klasa

Filozofske implikacije:
e Granice samoreferencijalnosti
e Nemoguénost "skupa svih skupova"
e Potreba za formalnim aksiomima
e Gbdel: inherentna nepotpunost formalnih sustava

Ontoloski status beskonac¢nosti

Cantorova otkri¢a pokrenula su duboka filozofska pitanja:

1. Platonizam: Postojanje matematickih objekata nezavisno od uma
2. Konstruktivizam: Samo konstruktivno definirani objekti postoje

3. Formalizam: Matematika kao igra simbola bez ontoloskog znacenja
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Aktualna vs. potencijalna beskonacnost

o Aristotel: Samo potencijalna beskona¢nost (proces bez kraja)

e Cantor: Aktualna beskonac¢nost kao zavrsen totalitet

"Beskonac¢nost je ponor u koji tone sve nase misli" - Musil

def filozofija_beskonacnosti():

"""Tlustracija filozofskih aspekata beskonacnostz. """

print("Ilustracija razlike izmedu potencijalne i aktualne beskonaénosti")
print ("="*65)

# Potenctijalna beskonacnost
print ("\nPOTENCIJALNA BESKONACNOST (Aristotel):")
print(" Proces brojanja: ", end="")
for i in range(1l, 11):
print(£"{i}, ", end="")
print("...")
print(" — Uvijek moZemo dodati jo§ jedan")
print(" — Nikad ne dostiZemo \"kraj\"")

print(" — Beskonacnost kao moguénost")

# Aktualna beskonacnost

print ("\nAKTUALNA BESKONACNOST (Cantor):")

print(" Skup N = {0, 1, 2, 3, ...} postoji kao cjelina")
print(" — MoZemo govoriti o |N| = Rp")

print(" — MoZemo usporedivati beskonacnosti')

print(" — Beskonalnost kao objekt")

# Zenov paradoks
print ("\nZenov paradoks - Ahilej i kornjacéa:")
print ("="x37)

print("Kornjaca ima prednost od 100m, Ahilej tréi 10x brze.\n")

print ("Koraci:")
ahilej_poz = 0
kornjaca_poz = 100

brzina_omjer = 10

suma = 0O

for korak in range(l, 6):
udaljenost = kornjaca_poz - ahilej_poz
ahilej_poz = kornjaca_poz
kornjaca_poz += udaljenost / brzina_omjer

suma += udaljenost

print(f" Korak {korak}: Ahilej na {ahilej_poz:.2f}m, "

f"kornjaca na {kornjaca_poz:.2f}m")
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print(" ...")

# Matematicka analiza
print (£"\nSuma beskonaénog reda: 100 + 10 + 1 + 0.1 + ... = 111.11...")
granica = 100 * (1 / (1 - 1/brzina_omjer))

print (f"Konvergira na: {granica:.2f}m")

print("\nCantorovo rjeSenje: Aktualna beskonalnost omoguéava")

print("tretiranje beskonalnog procesa kao zavrSene cjeline.")

filozofija_beskonacnosti()

Output

Ilustracija razlike izmedu potencijalne i aktualne beskonacnosti

POTENCIJALNA BESKONACNOST (Aristotel):
Proces brojanja: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
— Uvijek moZemo dodati joS jedan
— Nikad ne dostiZemo "kraj"
— Beskonacnost kao moguénost

AKTUALNA BESKONACNOST (Cantor):
Skup N = {0, 1, 2, 3, ...} postoji kao cjelina
— MoZemo govoriti o [N| = N
— MoZemo usporedivati beskonacnosti
— Beskonacnost kao objekt

Zenov paradoks - Ahilej i kornjaca:

KornjacCa ima prednost od 100m, Ahilej tréi 10x brze.

Koraci:
Korak 1: Ahilej na 100.00m, kornjaca na 110.00m
Korak 2: Ahilej na 110.00m, kornjaca na 111.00m
Korak 3: Ahilej na 111.00m, kornjaca na 111.10m
Korak 4: Ahilej na 111.10m, kornjaca na 111.11m
Korak 5: Ahilej na 111.11m, kornjaca na 111.11m

Suma beskonacnog reda: 100 + 10 + 1 + 0.1 + ... = 111.11...
Konvergira na: 111.11m

Cantorovo rjesenje: Aktualna beskonacnost omogucava
tretiranje beskonacnog procesa kao zavrSene cjeline.
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Implementirajmo sustav za rad s beskonac¢nim skupovima kroz "lijene" evaluacije:

1 class BeskonacniSkup:

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

"""Predstavlja beskonacni skup kroz gemerator funkciju."""

def __init__(self, generator_func, naziv):
self.generator = generator_func
self .naziv = naziv
self._cache = {}

def element(self, n):
"""raéa n-ti element skupa (s cachiranjem)."""
if n not in self._cache:
for i, val in enumerate(self.generator()):
if i not in self._cache:
self._cache[i] = val
if i ==
return val

return self._cache[n]

def prvih(self, n):
"""Yraéa prvih n elemenata. """
rezultat = []
for i, val in enumerate(self.generator()):
if i >= n:
break
rezultat.append(val)

return rezultat

# Generatort za razlicite beskonacne skupove

def

def

prirodni_brojevi():
"""Generator prirodnih brojeva."""
n=20
while True:
yield n

n += 1

prosti_brojevi():
"mGenerator prostih brojeva (Eratostenovo sito)."""
yield 2
prosti = [2]
kandidat = 3
while True:
je_prost = True
for p in prosti:
if p * p > kandidat:
break
if kandidat % p == O:
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je_prost = False
break
if je_prost:
prosti.append(kandidat)
yield kandidat
kandidat += 2

def fibonacci():
"""Generator Fibonaccijevih brojeva.
a, b=20, 1

while True:

mwin

yield a
a, b=>b, a+b

def racionalni_pozitivni():
""iGenerator pozitiunih racionalnih (Cantorov zigzag)."""

from math import gcd

dijagonala = 1
while True:
for brojnik in range(l, dijagonala + 1):
nazivnik = dijagonala + 1 - brojnik
if gcd(brojnik, nazivnik) == 1: # Samo reducirani razlomc?
yield (brojnik, nazivnik)

dijagonala += 1

# Demonstractija
print("Rad s beskonalnim skupovima")

print ("="x28)

nat = BeskonacniSkup(prirodni_brojevi, "N")
print ("\nPrirodni brojevi:")

print(£" Prvih 10: {nat.prvih(10)}")
print(f" 100. element: {nat.element(99)1}")

primes = BeskonacniSkup(prosti_brojevi, "Prosti")
print ("\nProsti brojevi:")

print(£" Prvih 10: {primes.prvih(10)}")

print(f" 50. prosti: {primes.element(49)}")

fib = BeskonacniSkup(fibonacci, "Fibonacci")
print ("\nFibonaccijev niz:")
print(£" Prvih 15: {fib.prvih(15)}")

rationals = BeskonacniSkup(racionalni_pozitivni, "Q"")

print ("\nCantorova dijagonala kroz Q' :")

prvih_10_rac = rationals.prvih(10)

print(f" Prvih 10: [{', '.join(f'{b}/{n}' for b, n in prvih_10_rac)}]")

# Vizualizacija hipoteze kontinuuma

print ("\nHipoteza kontinuuma vizualizacija:")
print (" $IN| = No$")

print(" $IP(N)| = 27Xy = c$")
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print(" Pitanje: Postoji 1i $X$ takav da $No < [|X| < c$?")

print(" CH kaZe: NE - izmedu nema nista!")

Output

Rad s beskonadnim skupovima

Prirodni brojevi:
Prvih 10: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
100. element: 99

Prosti brojevi:
Prvih 10: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
50. prosti: 229

Fibonaccijev niz:
Prvih 15: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]

Cantorova dijagonala kroz QT :
Prvih 10: [1/1, 1/2, 2/1, 1/3, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5]

Hipoteza kontinuuma vizualizacija:
$IN| = No$
$IP(N)| = 27Rg = c$
Pitanje: Postoji 1i $X$ takav da $Ny < [X| < c$?
CH kaze: NE - izmedu nema nisSta!

Za produbljivanje razumijevanja teorije skupova kroz prakti¢ne Python zadatke, predlazemo
sljedece vjezbe prikladne za studente:

Implementacija aksioma ZFC

Napisite klase koje simuliraju osnovne aksiome Zermelo-Fraenkel teorije skupova: aksiom
ekstenzionalnosti, aksiom para, aksiom unije, aksiom partitivnog skupa. Pokazite kako svaki
aksiom ogranicava konstrukciju skupova.

Ordinalni brojevi

Implementirajte ordinalne brojeve koriste¢i von Neumannovu konstrukciju (0 =0,1=0,2 =
(0,0,...). Definirajte ordinalno zbrajanje i mnozenje. Iustrirajte razliku izmedu kardinalnih i
ordinalnih brojeva.
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Schroder-Bernsteinov teorem

Dokazite kroz kod: ako postoji injekcija f : A — B iinjekcija g : B — A, tada postoji bijekcija
izmedu A i B. Testirajte na konkretnim primjerima skupova.

Hilbertov hotel

Simulirajte Hilbertov paradoks beskonac¢nog hotela. Implementirajte scenarije: novi gost u
punom hotelu, beskonacno novih gostiju, beskonac¢no autobusa s beskonacno gostiju. Vizuali-
zirajte preslagivanja soba.

Cantorova funkcija (Vrazje stepenice)

Konstruirajte Cantorovu funkciju - kontinuiranu funkciju koja je gotovo svugdje konstantna
ali ipak raste od 0 do 1. Vizualizirajte je pomo¢u matplotlib.

Fraktalna dimenzija

Implementirajte Cantorov skup (iterativno uklanjanje srednje treéine). Izracunajte njegovu
Hausdorffovu dimenziju (log 2 / log 3). Generirajte Cantorovu prasinu u 2D.

Aksiom izbora - simulacija

Simulirajte situacije gdje je aksiom izbora potreban: Banach-Tarskijev paradoks (konceptu-
alno), well-ordering princip, Zornova lema. Ilustrirajte kontroverznost aksioma.

Godel brojevi

Implementirajte Gédelovo numeriranje - preslikavanje formula u prirodne brojeve. Pokazite
kako se meta-matematika svodi na aritmetiku. Ilustrirajte ideju nepotpunosti.

Transfinitna indukcija

Napisite funkciju koja koristi transfinitnu indukciju za definiranje funkcija na ordinalima.
Primjer: Ackermanova funkcija generalizirana na ordinale.

Forsing metoda - konceptualna simulacija

Stvorite jednostavnu simulaciju Cohen forcing metode. Pokazite kako se mogu "dodati" novi
skupovi postojeéem modelu teorije skupova. Ilustrirajte nezavisnost hipoteze kontinuuma.
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Svaki zadatak postupno gradi razumijevanje dubokih koncepata teorije skupova kroz prakti¢no
programiranje, omogucavajuci studentima da eksperimentiraju s apstraktnim idejama i razviju
intuiciju za rad s beskonacnostima.

Kroz ovu implementaciju istrazili smo temeljne koncepte Cantorove teorije skupova:

1. Osnovne skupovne operacije kao temelj matematike
2. Hijerarhiju beskonacnosti kroz kardinalne brojeve
3. Dijagonalnu metodu koja otkriva neprebrojivost realnih brojeva

4. Paradokse koji pokazuju granice naivnog pristupa

Cantorova naslijede transformiralo je matematiku i filozofiju:

"Nitko nas nece istjerati iz raja koji je Cantor stvorio za nas' - David Hilbert

Ipak, Godelovi teoremi nepotpunosti pokazuju da ¢ak ni u ovom "raju" ne mozemo dokazati
sve istine. Teorija skupova otkriva da je beskonac¢nost ne samo matematicki koncept, veé
prozor u fundamentalne granice ljudskog razumijevanja.

Kroz prakti¢no programiranje otkrivamo da rad s beskonac¢noséu zahtijeva pazljivo balansira-
nje izmedu intuicije i formalizma, izmedu filozofske kontemplacije i matematicke strogosti.
Cantorova vizija beskonacnosti ostaje jedna od najdubljih intelektualnih avantura ¢ovjecanstva.

"Vidim to, ali ne vjerujem!" - mozda je upravo ta nevjerica pred beskonac¢noséu
ono $to nas ¢ini ljudima.
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Poglavlje 7

Pascalov svijet

7.1 Vjerojatnost kao logika neizvjesnosti

U ovom poglavlju istrazujemo teoriju vjerojatnosti kao prirodno prosirenje logike sudova, in-
spirirani Pascalovim pionirskim radom o igrama na sre¢u i njegovim filozofskim razmatranjima
0 neizvjesnosti.

"Srce ima svoje razloge koje razum ne poznaje" (Le ceeur a ses raisons que la raison
ne connait point) - Blaise Pascal

Pascal je, zajedno s Fermatom, postavio temelje teorije vjerojatnosti 1654. godine, ali njegov
doprinos seze dalje - pokazao je kako matematicki pristupiti neizvjesnosti i racionalnom
odlucivanju.

U klasi¢noj logici, elementarni sud moze biti samo istinit (T) ili lazan (L). Vjerojatnost
generalizira ovaj koncept dopustajuéi stupnjeve istinitosti izmedu 01 1:

o Klasi¢na logika: v(p) € {L, T}

 Vjerojatnost: P(p) € [0,1]

gdje P(¢) = 0 odgovara L, a P(¢) =1 odgovara T.

class Sud:

"""Predstavlja sud s klasicnom ili vjerojatnosnom vrijednoScéu."""

def __init__(self, naziv, klasicna_vrijednost=None, vjerojatnost=None):
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self .naziv = naziv
self .klasicna = klasicna_vrijednost # [ 4l L

self .vjerojatnost = vjerojatnost # [0, 1]

def __repr__(self):
if self.vjerojatnost is not None:
return f"P('{self.naziv}') = {self.vjerojatnost:.2f}"
elif self.klasicna is not None:
return £"Sud '{self.naziv}': {'T' if self.klasicna else 'L'}"

return f"Sud '{self.nazivl}': neodreden"

# Primjeri sudova
print ("Usporedba logike i vjerojatnosti:")
print ("="%34)

# Klasicna logika

print ("\nKlasiéna logika:")

kisa_klasicno = Sud("Pada kiSa", klasicna_vrijednost=True)
sunce_klasicno = Sud("Suncéano je", klasicna_vrijednost=False)
print(f" {kisa_klasicnol}")

print(f" {sunce_klasicno}")

# Vjerojatnosna logika

print("\nVjerojatnosna logika:")

kisa_vjerojatnost = Sud("Pada kiSa", vjerojatnost=0.3)
sunce_vjerojatnost = Sud("Suncano je", vjerojatnost=0.7)
oblacno_vjerojatnost = Sud("Oblacno", vjerojatnost=0.45)
print(£" {kisa_vjerojatnostl}")

print(f" {sunce_vjerojatnost}")

print(f" {oblacno_vjerojatnostl}")

# Interpretactja

print("\nInterpretacija:")

interpretacije = [
(0.0, "L (sigurno lazno)"),
(0.3, "stupanj vjerovanja 30%"),
(0.5, "potpuna neizvjesnost"),
(0.7, "stupanj vjerovanja 70%"),
(1.0, "T (sigurno istinito)")

]

for p, opis in interpretacije:
print(f" P = {p:.2f} ~ {opis}")

Output

Usporedba logike i vjerojatnosti:

Klasicna logika:
Sud 'Pada kiSa': T
Sud 'Suncano je': L
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Vjerojatnosna logika:
P('Pada kiga') = 0.30
P('Suncéano je') = 0.70
P('Oblaéno') = 0.45
Interpretacija:
P =0.00 = L (sigurno laZno)
P = 0.30 ~ stupanj vjerovanja 30%
P = 0.50 =~ potpuna neizvjesnost
P = 0.70 =~ stupanj vjerovanja 70%
P =1.00 = T (sigurno istinito)
Andrej Kolmogorov je 1933. formalizirao teoriju vjerojatnosti kroz tri elegantna aksioma. Za

skup svih moguéih sudova € i vjerojatnosnu mjeru P:

1. Nenegativnost: P(p) > 0 za svaki sud ¢

2. Normalizacija: P(2) =1 (sigurna istina ima vjerojatnost 1)

3. Aditivnost: Za medusobno iskljucive sudove @1, 2, ...:

P(g1V 92V ...) = P(p1) + Plpa) + ..

1 class VjerojatnosniProstor:
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"""Predstavlja vjerojatnosni prostor s Kolmogorovljevim aksiomima.

def

def

wmn

__init__(self, omega, vjerojatnosti):

mumn

omega: skup elementarnih sudova
vjerojatnosti: rjeénik {sud: vjerojatnost}
nnn

self.omega = omega

self.P = vjerojatnosti

self._provjeri_aksiome()

_provjeri_aksiome(self):
"""Proyjerava zadovoljavaju li vjerojatnosti aksiome."""
# Aksiom 1: Nenegativnost
for p in self.P.values():
if p < O:

raise ValueError(f"Vjerojatnost {p} krsi aksiom nenegativnosti!")

# Aksiom 2: Normalizacija
suma = sum(self.P.values())
if abs(suma - 1.0) > 1le-10:
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raise ValueError(f"Suma vjerojatnosti {suma} # 1 (kr$i normalizaciju)!")

def vjerojatnost_suda(self, predikat):

mwin

"""Racuna vjerojatnost sloZenog suda.
p=20
for ishod, vjerojatnost in self.P.items():
if predikat(ishod):
p += vjerojatnost

return p

# Primjer: PoStena kocka
kocka_omega = {1, 2, 3, 4, 5, 6}
kocka P = {i: 1/6 for i in kocka_omega}

kocka = VjerojatnosniProstor(kocka_omega, kocka_P)

print ("Demonstracija Kolmogorovljevih aksioma")
print ("="%39)
print ("\nProstor elementarnih sudova (2:")

print(£f" Kocka pokazuje: {kocka_omegal")

# Aksiom 1: Nenegativnost

print ("\nAKSIOM 1 - Nenegativnost:")

testovi = [
("Paran broj", lambda x: x % 2 == 0),
("Broj > 4", lambda x: x > 4),
("Broj = 7", lambda x: x == 7)

]

for naziv, predikat in testovi:
p = kocka.vjerojatnost_suda(predikat)
print(f" P('{naziv}') = {p:.3f} > 0 v")

# Aksiom 2: Normalizacija

print ("\nAKSIOM 2 - Normalizacija:")

p_omega = kocka.vjerojatnost_suda(lambda x: True)

print(f" P(2) = P('Bilo koji broj 1-6') = {p_omega:.3f} v'")

# Akstom 3: Aditivnost

print ("\nAKSIOM 3 - Aditivnost:")

print(" Medusobno iskljucivi sudovi:")

pl = kocka.vjerojatnost_suda(lambda x: x == 1)
p3 = kocka.vjerojatnost_suda(lambda x: x == 3)

p5 = kocka.vjerojatnost_suda(lambda x: x == 5)

print(f"  P('Broj = 1') = {pl:.3f}")
print (£" P('Broj = 3') = {p3:.3f}")
print (£" P('Broj = 5') = {p5:.3f}")

p_unija = kocka.vjerojatnost_suda(lambda x: x in {1, 3, 5})

p_suma = pl + p3 + pb

print(f" \n P('Broj € {{1,3,5}}') = {p_unija:.3f}")
print(f" P('1') + P('3') + P('5') = {p_suma:.3f}")
print(f" Aditivnost vrijedi: {p_unija:.3f} = {p_suma:.3f} v'")
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76 print("\nPosljedice aksioma:")

77 print(" P(—p) =1 - P(p)")

78 print(" P(() = 0")

79 print(" P(p V ) = P(p) + P(Y) - P(p A )™

Output

Demonstracija Kolmogorovljevih aksioma

Prostor elementarnih sudova ():
Kocka pokazuje: {1, 2, 3, 4, 5, 6}

AKSIOM 1 - Nenegativnost:
P('Paran broj') = 0.500 > 0
P('Broj > 4') = 0.333 > 0 v
P('Broj = 7') >0V

]
o
o
o
o

AKSIOM 2 - Normalizacija:
P(Q2) = P('Bilo koji broj 1-6') = 1.000 v

AKSIOM 3 - Aditivnost:
Medusobno iskljucivi sudovi:
P('Broj = 1') = 0.167
P('Broj = 3') = 0.167
P('Broj = 5') = 0.167

P('Broj € {1,3,5}') = 0.500
P('1') + P('3') + P('5') = 0.500
Aditivnost vrijedi: 0.500 = 0.500 Vv

Posljedice aksioma:
P(—p) =1 - P(p)
P =0
P(p V 1) = P(p) + P(¥) - P(p A 1)

Vjerojatnosni rac¢un generalizira logicke veznike:

o Negacija: P(—p) =1— P(p)
o Disjunkcija: P(¢ V1) = P(¢) + P(¢)) — P(p A)

o Konjunkcija: P(p A1) = P(p) - P(|p)

Kada su sudovi nezavisni: P(p Ay) = P(p) - P(¢)



1

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

134 POGLAVLJE 7. PASCALOV SVIJET

class Vjerojatnosnalogika:

"""Implementira vjerojatnosne verzije logickih veznika."""

@staticmethod

def negacija(p_phi):
,l”',P(_|(p) = 1 _ P(SO) mmnn
return 1 - p_phi

@staticmethod

def disjunkcija(p_phi, p_psi, p_phi_i_psi):
nnup(o V) = P(p) + P(p) - Plp A )"
return p_phi + p_psi - p_phi_i_psi

@staticmethod

def konjunkcija_nezavisna(p_phi, p_psi):
"nplo A ) = P(p) - P() za nezavisne sudove"""
return p_phi * p_psi

@staticmethod
def uvjetna_vjerojatnost(p_phi_i_psi, p_psi):
"MUplplp) = Pl N ) / P@)"""
if p_psi ==
return None # Nedefinirana

return p_phi_i_psi / p_psi

@staticmethod

def implikacija(p_phi, p_psi, p_phi_i_psi):
ninp (o — qh) = P(—p \V ap)
p_neg_phi = 1 - p_phi
# P(—p A ) =P@) - Plp A )
p_neg_phi_i_psi = p_psi - p_phi_i_psi
return p_neg _phi + p_psi - p_neg_phi_i_psi

# Primjer: Vremenske prilike

vl = VjerojatnosnaLogika()

# Definiraj vjerojatnosti

P_kisa = 0.6 # P(pada kisa)

P_hladno = 0.4 # P(hladno je)

P_kisa_i_hladno = 0.3 # P(pada kisa A hladno je)

print("Vjerojatnosni logicki veznici")

print ("="%30)

print ("\nOsnovni sudovi:")

print(f" P(A) = {P_kisa:.2f} ('Pada kisa')")
print(f" P(B) = {P_hladno:.2f} ('Hladno je')")

print(f" P(A A B) = {P_kisa_i_hladno:.2f} ('Pada kiSa i hladno je')")

# Negacija
print("\nl. NEGACIJA:")

P_ne_kisa = vl.negacija(P_kisa)

print(f" P(—A) =1 - P(A) = 1 - {P_kisa:.2f} = {P_ne_kisa:.2f}")
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print(f" Interpretacija: Vjerojatnost da ne pada kiSa je {P_ne_kisa*100:.0f}%")

# Disjunkcija

print("\n2. DISJUNKCIJA:")

P_kisa_ili_hladno = vl.disjunkcija(P_kisa, P_hladno, P_kisa_i_hladno)
print(f" P(A V B) P(A) + P(B) - P(A A B)")

print(f" P(A V B) = {P_kisa:.2f} + {P_hladno:.2f} - {P_kisa_i_hladno:.2f} =
— {P_kisa_ili_hladno:.2f}")

print(f" Interpretacija: Vjerojatnost da pada kiSa ili je hladno je

< {P_kisa_ili_hladno*100:.0f}%")

# Implikactija

print("\n3. IMPLIKACIJA:")

P_ako_kisa_onda_hladno = vl.implikacija(P_kisa, P_hladno, P_kisa_i_hladno)
print(f" P(A — B) = P(—A V B) = P(—A) + P(B) - P(—A A B)")
P_ne_kisa_i_hladno = P_hladno - P_kisa_i_hladno

print(f" P(A — B) = {P_ne_kisa:.2f} + {P_hladno:.2f} - {P_ne _kisa_i_hladno:.2f} =

« {P_ako_kisa_onda_hladno:.2f}")
print(f" Interpretacija: Vjerojatnost da 'ako pada kiSa, onda je hladno' je
— {P_ako_kisa_onda_hladno*100:.0f}%")

# Uvjetna vjerojatnost

print("\n4. UVJETNA VJEROJATNOST:")

P_hladno_ako_kisa = vl.uvjetna_vjerojatnost(P_kisa_i_hladno, P_kisa)
print(f" P(BIA) = P(A A B) / P(A) = {P_kisa_i_hladno:.2f} / {P_kisa:.2f} =
< {P_hladno_ako_kisa:.2f}")

print(f" Interpretacija: Ako pada kiSa, vjerojatnost da je hladno je

— {P_hladno_ako_kisa*100:.0f}%")

# Test nezavisnostt

print("\nTest nezavisnosti:")

P_nezavisno = vl.konjunkcija_nezavisna(P_kisa, P_hladno)

print(f" P(A) - P(B) = {P_kisa:.2f} - {P_hladno:.2f} = {P_nezavisno:.2f}")
print(f" P(A A B) = {P_kisa_i_hladno:.2f}")

if abs(P_nezavisno - P_kisa_i_hladno) < 0.01:

print(f" Buduéi da {P_nezavisno:.2f} =~ {P_kisa_i_hladno:.2f}, sudovi su pribliZno

<> mnezavisni")

else:

print(f" Buduéi da {P_nezavisno:.2f} # {P_kisa_i_hladno:.2f}, sudovi NISU nezavisni")

print(" (KiSa i hladnoéa su povezani!)")

Output

Vjerojatnosni logicki veznici

Osnovni sudovi:
P(A) = 0.60 ('Pada kisa')
P(B) = 0.40 ('Hladno je')
P(A A B) = 0.30 ('Pada kiSa i hladno je')
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1. NEGACIJA:
P(-A) =1 -P(A) =1 -0.60 =0.40
Interpretacija: Vjerojatnost da ne pada kiSa je 40%

2. DISJUNKCIJA:
P(A V B) = P(A) + P(B) - P(A A B)
P(A vV B) =0.60 + 0.40 - 0.30 = 0.70
Interpretacija: Vjerojatnost da pada kisSa
ili je hladno je 70%

3. IMPLIKACIJA:
P(A — B) = P(-A V B) = P(—A) + P(B) - P(-A A B)
P(A — B) = 0.40 + 0.40 - 0.10 = 0.70
Interpretacija: P('ako pada kiSa, onda je hladno') = 70%

4. UVJETNA VJEROJATNOST:
P(BIA) = P(A A B) / P(A) = 0.30 / 0.60 = 0.50
Interpretacija: Ako pada kiSa, vjerojatnost da je hladno je 50%

Test nezavisnosti:
P(A) - P(B) = 0.60 - 0.40 = 0.24
P(A A B) = 0.30
Buduéi da 0.24 # 0.30, sudovi NISU nezavisni
(Ki%a i hladno¢a su povezani!)

Bayesov teorem omogucéava azuriranje vjerovanja na temelju novih dokaza:

"Vjerojatnost je vodic¢ zivota" - Ciceron, anticipiraju¢i Bayesovu logiku

P(E|H) - P(H)

PHIE) = ==5

gdje je:

o P(H) - apriorna vjerojatnost hipoteze
o P(E|H) - izglednost dokaza ako je hipoteza istinita

o P(H|E) - aposteriorna vjerojatnost nakon dokaza

1 class BayesovoZakljucivanje:
2 """Implementira Bayesovo aZuriranje vjerojatnosti."""

3
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def __init__(self, apriorna, izglednosti):
nmumn
apriorna: dict {hipoteza: P(hipoteza)}
i1zglednosti: dict {hipoteza: {dokaz: P(dokaz/hipoteza)}}
nnn
self.apriorna = apriorna

self.izglednosti = izglednosti

def azuriraj(self, dokaz):
"AZurira vjerojatnosti na temelju novog dokaza."""
# Izracunaj P(dokaz)
p_dokaz = 0
for hipoteza, p_h in self.apriorna.items():

p_dokaz += self.izglednosti[hipoteza] [dokaz] * p_h

# Bayesovo azuriranje za svaku hipotezu

aposteriorna = {}

for hipoteza, p_h in self.apriorna.items():
p_dokaz_ako_h = self.izglednosti[hipoteza] [dokaz]
aposteriornalhipotezal] = (p_dokaz_ako_h * p_h) / p_dokaz

return aposteriorna, p_dokaz

# Primjer: Medicinska dijagnoza
print ("Bayesovo zakljucivanje - Medicinska dijagnoza")
print ("="%46)

print("\nScenarij: Test za rijetku bolest\n")

# Definiraj vjerojatnosti

apriorna = {
"bolest": 0.001, # 1 od 1000 ljudi ima bolest
"zdrav": 0.999

izglednosti = {
"bolest": {
"pozitivan": 0.99, # Osjetljivost testa (true positive rate)
"negativan": 0.01 # False negative rate
Ie
"zdrav": {
"pozitivan": 0.05, # False positive rate

"negativan": 0.95 # True negative rate

bayes = BayesovoZakljucivanje(apriorna, izglednosti)

print ("Poetne informacije:")

print(f" P(Bolest) = {apriornal['bolest']:.3f} (1 od 1000 ljudi ima bolest)")

print(f" P(Test+|Bolest) = {izglednostil['bolest']['pozitivan']:.3f} (osjetljivost testa)")

print(f" P(Test+|—-Bolest) = {izglednosti['zdrav']['pozitivan']:.3f} (lazZno pozitivna

< stopa)")
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56 print("\nPitanje: Ako je test pozitivan, kolika je vjerojatnost bolesti?")

57

58 # Bayesovo azuriranje

59 aposteriorna, p_pozitivan = bayes.azuriraj("pozitivan")

60

61 print("\nBayesov racun:")

62 print("1. P(Test+) = P(Test+|Bolest)-P(Bolest) + P(Test+|—-Bolest) -P(—Bolest)")

63 pl = izglednosti['bolest']['pozitivan'] * apriornal'bolest']

64 p2 = izglednostil['zdrav']['pozitivan'] * apriornal['zdrav']

65 print(f"  P(Test+) = {izglednosti['bolest']['pozitivan']:.3f} - {apriornal'bolest']:.3f} + "

66 f"{izglednosti['zdrav'] ['pozitivan']:.3f} - {apriornal'zdrav']:.3f}")
67 print(f"  P(Test+) = {pl:.5f} + {p2:.5f} = {p_pozitivan:.5f}")
68

69 print("\n2. P(Bolest|Test+) = P(Test+|Bolest) - P(Bolest) / P(Test+)")
70 print(f" P(Bolest|Test+) = {izglednostil['bolest']['pozitivan']:.3f} - "
71 f"{apriornal'bolest']:.3f} / {p_pozitivan:.5f}")
72 print(f" P(Bolest|Test+) = {aposteriornal'bolest']:.5f}")
73
74 print ("\nZAKLJUCAK:")
75 print(f" Apriorna vjerojatnost: {apriornal['bolest']*100:.1£f}%")
76 print(f" Aposteriorna vjerojatnost (nakon pozitivnog testa):
— {aposteriornal'bolest']*100:.1£}%")
77 print(" \n TIako je test vrlo pouzdan (99% osjetljivost),")
78 print(f" pozitivan test poveéava vjerojatnost bolesti samo na
— {aposteriornal'bolest']*100:.1£}%!")
79 print(" \n Razlog: Bolest je vrlo rijetka, pa veéina pozitivnih")
80 print(" testova su laZno pozitivni.")
81
82 # Vizualizacija
83 print("\nVizualizacija od 100,000 ljudi:")
84 n_ljudi = 100000
85 n_bolesnih = int(n_ljudi * apriornal'bolest'])
86 n_zdravih = n_ljudi - n_bolesnih
87

88 tp = int(n_bolesnih * izglednosti['bolest']['pozitivan']) # True positive

89 fn = n_bolesnih - tp # False negative

90 fp = int(n_zdravih * izglednosti['zdrav']['pozitivan']) # False positive
91 tn = n_zdravih - fp # True negative
92

93 print(f" Bolesni: {n_bolesnih} 1ljudi")

94 print(f" — Pozitivan test: {tp} (istinito pozitivni)")
95 print (f" — Negativan test: {fn} (laZno negativan)")

96 print(f" \n Zdravi: {n_zdravih:,} 1judi")

97 print(f" — Pozitivan test: {fp:,} (laZno pozitivni)")

98 print(f" — Negativan test: {tn:,} (istinito negativni)")

99 print(f" \n Ukupno pozitivnih testova: {tp + fp:,}")
100 print(f" 0d toga stvarno bolesnih: {tp}")
101 print(f" Vjerojatnost bolesti kod pozitivnog testa: {tp}/{tp+fp} = {tp/(tp+fp)*100:.1£}%")
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Output

Bayesovo zakljucivanje - Medicinska dijagnoza

Scenarij: Test za rijetku bolest

PoCetne informacije:
P(Bolest) = 0.001 (1 od 1000 ljudi ima bolest)
P(Test+|Bolest) = 0.990 (osjetljivost testa)
P(Test+|—-Bolest) = 0.050 (laZno pozitivna stopa)

Pitanje: Ako je test pozitivan, kolika je vjerojatnost bolesti?

Bayesov racun:

1. P(Test+) = P(Test+|Bolest)-P(Bolest) + P(Test+|—Bolest) -P(—Bolest)
P(Test+) = 0.990 - 0.001 + 0.050 - 0.999
P(Test+) = 0.00099 + 0.04995 = 0.05094

2. P(Bolest|Test+)
P(Bolest|Test+)
P(Bolest|Test+)

P(Test+|Bolest) - P(Bolest) / P(Test+)
0.990 - 0.001 / 0.05094
0.01943

ZAKLJUCAK :
Apriorna vjerojatnost: 0.1%
Aposteriorna vjerojatnost (nakon pozitivnog testa): 1.9%

Tako je test vrlo pouzdan (997 osjetljivost),
pozitivan test povelava vjerojatnost bolesti samo na 1.9%!

Razlog: Bolest je vrlo rijetka, pa ve¢ina pozitivnih
testova su lazno pozitivni.

Vizualizacija od 100,000 1ljudi:
Bolesni: 100 ljudi
— Pozitivan test: 99 (istinito pozitivni)
— Negativan test: 1 (laZno negativan)

Zdravi: 99,900 1ljudi
— Pozitivan test: 4,995 (laZno pozitivni)
— Negativan test: 94,905 (istinito negativni)

Ukupno pozitivnih testova: 5,094
0d toga stvarno bolesnih: 99
Vjerojatnost bolesti kod pozitivnog testa: 99/5094 = 1.9%

Pascal je primijenio vjerojatnosno razmisljanje na ultimativno filozofsko pitanje - postojanje
Boga:
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"Morate se kladiti. To nije dobrovoljno, primorani ste na to" - Pascal, Pensées

Pascalova matrica odlucivanja:

| | Bog postoji | Bog ne postoji | |—] | | | Vjerujem | +oo
(vjecna sreca) | —c (mali gubitak) | | Ne vjerujem | —oo (vjecna kazna) | +¢ (mali dobitak) |

Cak i ako je P(Bog postoji) = € vrlo mala, ocekivana korisnost vjerovanja je beskonacna!

1 import math

2

3 def fmt_prob(x: float) -> str:
return f"{x:.2f}" if x >= 0.01 else f"{x:.4f}"

4

5

6 class PascalovaOklada:

7

8

9

10

11

12

13

14

15

16

17
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"""Simulacija Pascalove oklade kroz teoriju odlucivanja."""

def

def

def

__init__(self):
# Matrica korisnosti (payoff matriz)
# Koristimo velike brojeve umjesto beskonacnostt za demonstraciju

self .korisnost = {

("vjeruj", "postoji"): float('inf'), # Vjeéna sreéa

("vjeruj", "ne_postoji"): -10, # Mali gubitak (trud vjerovanja)
("ne_vjeruj", "postoji"): float('-inf'), # Vjecna kazna

("ne_vjeruj", "ne_postoji"): 10 # Mali dobitak (sloboda)

ocekivana_korisnost(self, akcija, p_bog):
"""Racéuna ocekivanu korisnost akcije."""
k_postoji = self .korisnost[(akcija, "postoji")]

k_ne_postoji = self.korisnost[(akcija, "ne_postoji")]

return p_bog * k_postoji + (1 - p_bog) * k_ne_postoji

optimalna_odluka(self, p_bog):
"""Yracéa optimalnu odluku za danu vjerojatnost."""
eu_vjeruj = self.ocekivana_korisnost("vjeruj", p_bog)

eu_ne_vjeruj = self.ocekivana_korisnost("ne_vjeruj", p_bog)

if eu_vjeruj > eu_ne_vjeruj:

return "vjeruj", eu_vjeruj, eu_ne_vjeruj
elif eu_ne_vjeruj > eu_vjeruj:

return "ne_vjeruj", eu_vjeruj, eu_ne_vjeruj
else:

return "svejedno", eu_vjeruj, eu_ne_vjeruj

# Demonstractja

oklada =

PascalovaOklada()

41 print("Pascalova oklada - Analiza odlucivanja")
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print ("="*39)

print ("\nMatrica korisnosti:")

print (" Bog postoji Bog ne postoji")
print(" Vjerujem: +00 -10 ")
print(" Ne vjerujem: -0o +10 ")

print ("\nAnaliza za razliite vjerojatnosti postojanja Boga:\n")

vjerojatnosti = [0.5, 0.1, 0.01, 0.0001]
for p in vjerojatnosti:

odluka, eu_v, eu_nv = oklada.optimalna_odluka(p)

# Ezample usage (replace your print block with this structure)

eu_v_str = f"{eu_v:.2f}" if (eu_v not in (float('inf'), float('-inf'))) else ("oo" if

— euv > 0 else "-oco")

eu_nv_str = f"{eu_nv:.2f}" if (eu_nv not in (float('inf'), float('-inf'))) else ("oco" if

— eu_nv > 0 else "-0c0")

p_str = fmt_prob(p)

one_minus_p_str = fmt_prob(l - p)

print(f" E[vjerujem] = {p_str} - oo + {one_minus_p_str} - (-10) = {eu_v_str}")
print(f" E[ne vjerujem] = {p_str} - (-o0) + {one_minus_p_str} - 10 = {eu_nv_str}")
print(f" — Racionalna odluka: {'VJERUJ' if odluka == 'vjeruj' else 'NE VJERUJ'}\n")

print ("Pascalov zakljucak:")
print(" Cak i uz infinitezimalnu vjerojatnost postojanja Boga,")

print(" racionalno je vjerovati zbog beskonalne nagrade/kazne.")

print ("\nFilozofske kritike:")
kritike = [
"Problem mnostva religija (koja vjera?)",
"Autentiénost vjerovanja (moZe 1li se 'odluliti' vjerovati?)",
"Beskonanost kao korisnost (ima 1li smisla?)",
"Moralni prigovor (je 1li to pravo vjerovanje?)"
]
for i, kritika in enumerate(kritike, 1):
print(£" {i}. {kritikal")

# Konacna verzija

print ("\nKonacna aproksimacija (bez beskonacénosti):")

print(" Korisnosti: vjeruj(Bog da)=1000, vjeruj(Bog ne)=-10")
print (" ne vjeruj(Bog da)=-1000, ne vjeruj(Bog ne)=10")

# Kriticna vjerojatnost

# 1000p - 10(1-p) = -1000p + 10(1-p)

# 1000p - 10 + 10p = -1000p + 10 - 10p

# 2020p = 20

p_kritiéna = 20 / 2020

print(f" \n Kritiéna vjerojatnost: Px = {p_kriticna:.3f}")
print(f" Ako P(Bog) > {p_kritiéma:.3f}, vjeruj; inaée ne vjeruj.")
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Output

Pascalova oklada - Analiza odlucivanja

Matrica korisnosti:
Bog postoji Bog ne postoji
Vjerujem: +00 -10
Ne vjerujem: -00 +10

Analiza za razliCite vjerojatnosti postojanja Boga:

E[vjerujem] = 0.50 - oo + 0.50 - (-10) = ¢
E[ne vjerujem] = 0.50 - (-o00) + 0.50 - 10 = -0
— Racionalna odluka: VJERUJ

Elvjerujem] = 0.10 - co + 0.90 - (-10) = o0
E[ne vjerujem] = 0.10 - (-o0) + 0.90 - 10 = -00
— Racionalna odluka: VJERUJ

E[vjerujem] = 0.01 - oo + 0.99 - (-10) = o0
E[ne vjerujem] = 0.01 - (-o00) + 0.99 - 10 =
— Racionalna odluka: VJERUJ

E[vjerujem] = 0.0001 - co + 1.00 - (-10) = oo
E[ne vjerujem] = 0.0001 - (-o0) + 1.00 - 10 =
— Racionalna odluka: VJERUJ

Pascalov zakljucak:
Cak i uz infinitezimalnu vjerojatnost postojanja Boga,
racionalno je vjerovati zbog beskonalne nagrade/kazne.

Filozofske kritike:
1. Problem mnostva religija (koja vjera?)
2. Autenticénost vjerovanja (moZe 1li se 'odluéiti' vjerovati?)
3. Beskonalnost kao korisnost (ima 1i smisla?)
4. Moralni prigovor (je 1li to pravo vjerovanje?)

Kona¢na aproksimacija (bez beskonacnosti):
Korisnosti: vjeruj(Bog da)=1000, vjeruj(Bog ne)=-10
ne vjeruj(Bog da)=-1000, ne vjeruj(Bog ne)=10

Kritic¢na vjerojatnost: Px = 0.010
Ako P(Bog) > 0.010, vjeruj; inae ne vjeruj.

David Hume je ukazao na problem indukcije - nemoznost logickog opravdanja generalizacije
iz konacnog broja opazanja. Vjerojatnost nudi djelomic¢no rjesenje:
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"Navika je veliki vodi¢ ljudskog zivota" - Hume

Umjesto trazenja sigurnosti, vjerojatnost kvantificira stupanj racionalnog vjerovanja.

class InduktivnoZakljucivanje:

"""Modelira induktivno zakljucivanje kroz vjerojatnost."""

def __init__(self):
self.povijest = []

def laplace_sukcesija(self, uspjesi, pokusaji):

"""Laplace-ov zakon sukcesije.

P(sljedeés uspjeh) = (k + 1) / (n + 2)
gdje je k broj uspjeha, n broj pokusSaja

mwmn

return (uspjesi + 1) / (pokusaji + 2)

def azuriraj_vjerovanje(self, novi_dokaz):
""M"AZurira vjerovanje na temelju movog dokaza."""
self .povijest.append(novi_dokaz)
uspjesi = sum(self.povijest)
pokusaji = len(self.povijest)

return self.laplace_sukcesija(uspjesi, pokusaji)

# Primjer: Sunce izlazt svaki dan
print ("Problem indukcije - Sunce izlazi")

print ("="%33)

indukcija = InduktivnoZakljucivanje()

print ("\nLaplace-ov zakon sukcesije:")
print(" P(uspjeh) = (k + 1) / (o + 2)")
print(" gdje je k = broj dosadaSnjih uspjeha, n = ukupan broj pokuSaja")

print ("\nDana\tP(sunce izade)\tPromjena")

print("—"*4 + u\tlv + "-"x14 + "\t" + "—"*8)

# Simuliraj promatranje sunca
dani = [0, 1, 2, 3, 4, 5, 10, 30, 100, 365, 1000, 10000]
prethodna_p = 0.5

for dan in dani:
p = indukcija.laplace_sukcesija(dan, dan)

promjena = p - prethodna_p if dan > O else O

print(£"{dan}\t{p:.4£}\t\t", end="")
if dan > O:

print (f"+{promjena: .4f}" if promjena > O else f"{promjena:.4f}")
else:

print (Il_ll)
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if dan in [1, 5, 30, 365, 10000]:
prethodna_p = p

print ("\nHumeov problem:")
print (" Koliko god puta sunce iza$lo, P(sunce izade sutra) < 1")

print (" Nikad ne moZemo biti potpuno sigurni!")

# Crnt labud

print ("\nCrni labud scenarij:")

bijeli_labudovi = 1000

p_bijeli = indukcija.laplace_sukcesija(bijeli_labudovi, bijeli_labudovi)

print (f"Nakon {bijeli_labudovi} bijelih labudova, P(sljedeci bijel) = {p_bijeli:.4f}")

print("Ali jedan crni labud mijenja sve!")

# Nakon crnog labuda
ukupno = bijeli_labudovi + 1
p_bijeli_novi = indukcija.laplace_sukcesija(bijeli_labudovi, ukupno)

p_crni = indukcija.laplace_sukcesija(l, ukupno)

print ("\nNakon crnog labuda:")

print(£" Vidjeli: {bijeli_labudovi} bijelih, 1 crni")
print (f" P(sljedeéi bijel) = {p_bijeli_novi:.4f}")
print(f" P(sljedeéi crni) = {p_crni:.4f}")

print ("\nFilozofska pouka:")
print(" Indukcija ne daje sigurnost, veé racionalne stupnjeve vjerovanja.")

print(" Vjerojatnost kvantificira naSu neizvjesnost o buduénosti.")

Output

Problem indukcije - Sunce izlazi

Laplace-ov zakon sukcesije:
P(uspjeh) = (k + 1) / (n + 2)
gdje je k = broj dosadaSnjih uspjeha, n = ukupan broj pokusaja

Dana P(sunce izade) Promjena

0 0.5000 -

1 0.6667 +0.1667
2 0.7500 +0.0833
3 0.8000 +0.1333
4 0.8333 +0.1667
5 0.8571 +0.1905

10 0.9167 +0.0595
30 0.9688 +0.1116
100 0.9902 +0.0214
365 0.9973 +0.0285
1000 0.9990 +0.0017
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10000 0.9999 +0.0026

Humeov problem:
Koliko god puta sunce iza8lo, P(sunce izade sutra) < 1
Nikad ne moZemo biti potpuno sigurni!

Crni labud scenarij:
Nakon 1000 bijelih labudova, P(sljede¢i bijel) = 0.9990
Ali jedan crni labud mijenja sve!

Nakon crnog labuda:
Vidjeli: 1000 bijelih, 1 crni
P(sljede¢i bijel) = 0.9980
P(sljede¢i crni) = 0.0020

Filozofska pouka:
Indukcija ne daje sigurnost, vel racionalne stupnjeve vjerovanja.
Vjerojatnost kvantificira naSu neizvjesnost o buduénosti.

Monty Hall problem ilustrira kako nasa intuicija cesto grijesi kod uvjetnih vjerojatnosti:

1 import random
2

3 class MontyHall:

4 """Simulacija Monty Hall problema."""

5

6 def igraj(self, strategija="promijeni"):

7 """Tgra jednu rundu Monty Hall tgre.

8

9 strategija: 'ostani' tli 'promijeni’

10 e

11 # Postavi 1gTu

12 vrata = [1, 2, 3]

13 auto = random.choice(vrata)

14

15 # Igrac bira

16 izbor = random.choice(vrata)

17

18 # Voditelj otwara vrata s kozom

19 moguca_vrata = [v for v in vrata if v != izbor and v != auto]
20 voditelj_otvara = random.choice(moguca_vrata) if moguca_vrata else \
21 [v for v in vrata if v != izbor][0]
22

23 # Primijeni strategiju

24 if strategija == "promijeni":

25 preostala = [v for v in vrata if v != izbor and v != voditelj_otvaral
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26 konacni_izbor = preostalal0]
27 else: # ostani

28 konacni_izbor = izbor

29

30 return konacni_izbor == auto

31

32 def simuliraj(self, n_igara=10000):
33 ""Simulira viSe igara s obje strategije."""
34 rezultati = {

35 "ostani": O,

36 "promijeni": O

37 }

38

39 for _ in range(n_igara):

40 if self.igraj("ostani"):

41 rezultati["ostani"] += 1
42 if self.igraj("promijeni"):
43 rezultati["promijeni"] += 1
44

45 return rezultati, n_igara

46

47 # Simulacija

48 mh = MontyHall()

49 rezultati, n = mh.simuliraj(10000)

50

51 print("Monty Hall Problem - Simulacija")

52 print ("="%32)

53 print ("\nPostavka:")

54 print(" 3 vrata: iza jednih je automobil, iza drugih dvoje koze")
55 print(" 1. Birate vrata")

56 print(" 2. Voditelj otvara druga vrata s kozom")
57 print(" 3. MoZete promijeniti izbor ili ostati")
58

59 print(f"\nSimulacija {n:,} igara:\n")

60

61 for strategija, pobjede in rezultati.items():

62 postotak = (pobjede / n) * 100

63 print(f"Strategija {strategija.upper()}:")

64 print(f" Pobjede: {pobjede:,} / {n:,}")

65 print(f" Postotak pobjede: {postotak:.1f}’\n")
66

67 # Bayesova analiza

68 print("Bayesova analiza:")

69 print("="x*18)

70 print("\nPoletne vjerojatnosti:")

71 print(" P(auto na vratima 1) = 1/3")
72 print(" P(auto na vratima 2) = 1/3")
73 print(" P(auto na vratima 3) = 1/3")
74

75 print("\nBirate vrata 1. Voditelj otvara vrata 3 (koza).")
76

77 print ("\nAZurirane vjerojatnosti:")

78 print(" P(auto na 1 | voditelj otvorio 3) = 1/3")
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print ("
print ("

2/311)
P(auto na 3 | voditelj otvorio 3) = 0")

P(auto na 2 | voditelj otvorio 3)

print("\nObjasnjenje:")

print ("
print ("
print ("
print ("
print ("
print ("
print ("
print ("

Voditelj ZNA gdje je auto i MORA otvoriti kozu.")
Njegovo otvaranje daje informaciju!")
n)
Ako je auto na vratima 1: voditelj bira izmedu 2 i 3 (P=1/2)")
Ako je auto na vratima 2: voditelj MORA otvoriti 3 (P=1)")
Ako je auto na vratima 3: voditelj MORA otvoriti 2 (P=1)")
n
)

Cinjenica da je otvorio 3 favorizira vrata 2!")

print("\nZakljucak: UVIJEK se isplati promijeniti izbor!")

Output

Monty Hall Problem - Simulacija

Postavka:
3 vrata: iza jednih je automobil, iza drugih dvoje koze
1. Birate vrata

2. Voditelj otvara druga vrata s kozom
3. MozZete promijeniti izbor ili ostati

Simulacija 10,000 igara:

Strategija OSTANI:
Pobjede: 3,328 / 10,000
Postotak pobjede: 33.3%

Strategija PROMIJENI:
Pobjede: 6,718 / 10,000
Postotak pobjede: 67.2%

Bayesova analiza:

PoCetne vjerojatnosti:

P(auto na vratima 1) = 1/3
P(auto na vratima 2) = 1/3
P(auto na vratima 3) = 1/3

Birate vrata 1. Voditelj otvara vrata 3 (koza).

AZurirane vjerojatnosti:
P(auto na 1 | voditelj otvorio 3) = 1/3
P(auto na 2 | voditelj otvorio 3)
P(auto na 3 | voditelj otvorio 3)

2/3
0
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Objasnjenje:
Voditelj ZNA gdje je auto i MORA otvoriti kozu.
Njegovo otvaranje daje informaciju!

Ako je auto na vratima 1: voditelj bira izmedu 2 i 3 (P=1/2)
Ako je auto na vratima 2: voditelj MORA otvoriti 3 (P=1)
Ako je auto na vratima 3: voditelj MORA otvoriti 2 (P=1)

Cinjenica da je otvorio 3 favorizira vrata 2!

Zakljucak: UVIJEK se isplati promijeniti izbor!

Postoje razlicite filozofske interpretacije sto vjerojatnost zapravo znaci:

1. Klasi¢na (Laplace): Omjer povoljnih i moguéih ishoda
2. Frekventisticka (von Mises): Granicna relativna frekvencija
3. Propenzitetna (Popper): Objektivna tendencija

4. Subjektivna/Bayesova (de Finetti): Stupanj racionalnog vjerovanja

Svaka interpretacija ima filozofske implikacije za prirodu sluc¢ajnosti, determinizma i znanja.

def filozofske_interpretacije():

"""Demonstrira razlicite filozofske interpretacije vjerojatnostsi."""

print ("Filozofske interpretacije vjerojatnosti")

print ("="x40)

# 1. Klasicéna

print("\n1l. KLASICNA INTERPRETACIJA (Laplace)")

print (" 'Vjerojatnost je omjer povoljnih i jednakovjerojatnih ishoda'")
print(" \n Primjer: Kocka")

povoljni = 3 # parni brojevi: 2, 4, 6

moguéi = 6

p_klasiéna = povoljni / moguéi

print(f"  P(paran broj) = {povoljni}/{moguéi} = {p_klasiéna:.3f}")

print(" \n Problem: Pretpostavlja jednakovjerojatnost (cirkularnost)")

# 2. Frekventisticka
print("\n2. FREKVENTISTICKA INTERPRETACIJA (von Mises)")
print (" 'Vjerojatnost je granilna relativna frekvencija'")

print ( n n )
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random.seed (42)
for n in [100, 1000, 10000, 100000]:
parni = sum(1 for _ in range(n) if random.randint(1l, 6) 7 2 == 0)
frekvencija = parni / n
print(f" Bacanja: {n}, Parni: {parni}, Frekvencija: {frekvencija:.3f}")
print(" — Konvergira prema 0.500")

print(" \n Problem: Sto s jedinstvenim dogadajima?")

# 3. Propenzitetna
print("\n3. PROPENZITETNA INTERPRETACIJA (Popper)")

print (" 'Vjerojatnost je objektivna tendencija sustava'")
print (" ")

print(" Kocka ima propenzitet 0.5 za paran broj")

print(" zbog svoje fizilke strukture.")

print(" \n Problem: Kako mjeriti propenzitet?")

# 4. Subjektivna
print("\n4. SUBJEKTIVNA INTERPRETACIJA (de Finetti)")

print (" 'Vjerojatnost je stupanj racionalnog vjerovanja'')
print ( n " )
print(" Moje vjerovanje:")

print(" P(kiSa sutra) = 0.30 (na temelju prognoze)")

print ( ] n )

print (" Koherentnost: Moja vjerovanja moraju zadovoljiti")
print (" aksiome vjerojatnosti inae mogu biti 'Dutch booked'")
print(" \n Problem: Subjektivnost vs. objektivnost")

# Filozofske implikacije
print("\nFilozofske implikacije:")
print ("="%24)

print ("\nDETERMINIZAM vs. INDETERMINIZAM:")
print(" - Je li vjerojatnost samo naSa neznanja (epistemicka)?")

print(" - Ili je svijet inherentno sluéajan (ontoloska)?")

print ("\nPROBLEM REFERENTNE KLASE:")
print(" - Jesam 1i '35-godiSnjak', 'Hrvat', 'filozof'?")

print(" - Razliite klase daju razliite vjerojatnosti!")
print ("\nPRINCIP INDIFERENCIJE:")
print(" - Bez informacija, dodjeli jednake vjerojatnosti?")

print(" - Bertrandov paradoks pokazuje probleme")

print("\n> \"Bog ne igra kocke\" - Einstein")

print ("> \"Einstein, prestani govoriti Bogu Sto da radi\" - Bohr")

filozofske_interpretacije()
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Output

Filozofske interpretacije vjerojatnosti

1. KLASICNA INTERPRETACIJA (Laplace)
'Vjerojatnost je omjer povoljnih i jednakovjerojatnih ishoda'

Primjer: Kocka
P(paran broj) = 3/6 = 0.500

Problem: Pretpostavlja jednakovjerojatnost (cirkularnost)

2. FREKVENTISTICKA INTERPRETACIJA (von Mises)
'Vjerojatnost je granicna relativna frekvencija'

Bacanja: 100, Parni: 49, Frekvencija: 0.490
Bacanja: 1000, Parni: 510, Frekvencija: 0.510
Bacanja: 10000, Parni: 5057, Frekvencija: 0.506
Bacanja: 100000, Parni: 50215, Frekvencija: 0.502
— Konvergira prema 0.500

Problem: Sto s jedinstvenim dogadajima?

3. PROPENZITETNA INTERPRETACIJA (Popper)
'Vjerojatnost je objektivna tendencija sustava'

Kocka ima propenzitet 0.5 za paran broj
zbog svoje fizicke strukture.

Problem: Kako mjeriti propenzitet?

4. SUBJEKTIVNA INTERPRETACIJA (de Finetti)
'Vjerojatnost je stupanj racionalnog vjerovanja'

Moje vjerovanje:
P(kiSa sutra) = 0.30 (na temelju prognoze)

Koherentnost: Moja vjerovanja moraju zadovoljiti
aksiome vjerojatnosti inace mogu biti 'Dutch booked'

Problem: Subjektivnost vs. objektivnost

Filozofske implikacije:

DETERMINIZAM vs. INDETERMINIZAM:
- Je 1i vjerojatnost samo nasSa neznanja (epistemicka)?
- I1i je svijet inherentno slucajan (ontoloska)?

PROBLEM REFERENTNE KLASE:
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- Jesam 1i '35-godisnjak', 'Hrvat', 'filozof'?
- Razlicite klase daju razlicite vjerojatnosti!

PRINCIP INDIFERENCIJE:
- Bez informacija, dodjeli jednake vjerojatnosti?
- Bertrandov paradoks pokazuje probleme

> "Bog ne igra kocke" - Einstein
> "Einstein, prestani govoriti Bogu Sto da radi" - Bohr

Za produbljivanje razumijevanja vjerojatnosti kao prosirenja logike kroz prakti¢ne Python
zadatke:

Fuzzy logika

Implementirajte fuzzy logicke operatore gdje istinite vrijednosti mogu biti bilo koji broj izmedu
0 i 1. Definirajte f.ukasiewicz, Godel i product t-norme. Pokazite kako se klasi¢na logika
dobiva kao granic¢ni slucaj.

Cox-Jaynesovi teoremi

Dokazite da svaki sustav koji zadovoljava razumne uvjete za stupnjeve vjerovanja mora biti
izomorfan s teorijom vjerojatnosti. Implementirajte alternativni sustav i pokazite kako se
svodi na vjerojatnost.

Dutch book argument

Simulirajte kladenje gdje agent s nekoherentnim vjerovanjima (koja krse aksiome vjerojatnosti)
uvijek gubi novac. Vizualizirajte kako koherentnost stiti od sigurnog gubitka.

Dempster-Shafer teorija

Implementirajte teoriju dokaza koja generalizira vjerojatnost dopustajuéi "ne znam" odgovore.
Pokazite kombiniranje dokaza i rad s intervalima vjerojatnosti.

Paradoks spavajucée ljepotice

Simulirajte ovaj paradoks samolociranja u vremenu. Analizirajte sukob izmedu "halfer" i
"thirder" pozicija. Povezite s antropijskim principom.
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Kvantna vjerojatnost

Implementirajte Born rule i pokazite kako kvantne amplitude daju vjerojatnosti. Demonstri-
rajte narusavanje Bell-ovih nejednakosti klasi¢cnom vjerojatnoséu.

Algoritamska vjerojatnost

Implementirajte Solomonoff-ovu indukciju koriste¢i Kolmogorovljevu slozenost. Pokazite kako
kraéi programi imaju vec¢u apriornu vjerojatnost.

Kauzalno zakljucivanje

Implementirajte Pearl-ove kauzalne grafove. Pokazite razliku izmedu korelacije i kauzalnosti.
Simulirajte Simpson-ov paradoks.

Maksimalna entropija

Implementirajte princip maksimalne entropije za izbor vjerojatnosnih distribucija. Pokazite
kako ogranicenja odreduju optimalnu distribuciju.

Vjerojatnosno programiranje

Stvorite jednostavan vjerojatnosni programski jezik gdje varijable mogu biti distribucije.
Implementirajte inferenciju kroz MCMUC ili variational Bayes.

Svaki zadatak postupno gradi razumijevanje vjerojatnosti kao generalizacije logike, omogucéava-
judi studentima da istraze dublje veze izmedu logike, vjerojatnosti i racionalnog zakljucivanja.

Kroz ovu implementaciju istrazili smo teoriju vjerojatnosti kao prirodno prosirenje logike
sudova:

1. Generalizacija istinitosti - od L, T do [0, 1]

[\

. Kolmogorovljevi aksiomi kao temelj matematicke teorije

w

. Bayesovo zakljucivanje za azuriranje vjerovanja

S

. Filozofske implikacije za racionalnost i odluc¢ivanje

Pascal je anticipirao modernu teoriju odlu¢ivanja pokazujué¢i kako matematicki pristupiti
neizvjesnosti:
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"Razum nas ne moze odluciti izmedu krséanstva i ateizma, ali morate birati kako
Cete zivjeti" - Pascal

Vjerojatnost premoséuje jaz izmedu dciste logike i nesigurnog svijeta iskustva. Ona ne daje
apsolutnu istinu, ali omoguéava racionalno navigiranje kroz neizvjesnost.
Kroz prakti¢no programiranje otkrivamo da je vjerojatnost vise od matematickog alata - ona je

jezik za izrazavanje stupnjeva vjerovanja, kvantificiranje neizvjesnosti i donosenje racionalnih
odluka u svijetu gdje je potpuno znanje nedostizno.

"Zivot je umijeée izvlacenja dovoljnih zaklju¢aka iz nedovoljnih premisa’ - Samuel
Butler

Teorija vjerojatnosti je upravo to umijece, formalizirano u elegantnom matematickom okviru.
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Poglavlje 8

Bayesov svijet

8.1 Uvjetna vjerojatnost i priroda znanja

U ovom poglavlju istrazujemo Bayesov teorem - mozda najvazniju formulu u epistemologiji,
koja mijenja nase razumijevanje znanja, znanosti i racionalnog vjerovanja.

"Kada ¢injenice mijenjaju moje misljenje, ja ga promijenim. Sto Vi &inite, gospo-
dine?" - John Maynard Keynes

Thomas Bayes (1701-1761), prezbiterijanski sveéenik i matematicar, ostavio nam je revo-
lucionarni pristup razumijevanju kako azurirati vjerovanja na temelju dokaza. Njegov rad,
objavljen posthumno 1763., postavlja temelje za razumijevanje znanja kao dinamickog procesa.

Uvjetna vjerojatnost P(A|B) predstavlja vjerojatnost suda A uz pretpostavku da je sud B
istinit.

P(A|B) = P(lf(g)B)

Ova formula kodira fundamentalnu epistemolosku ideju: znanje mijenja vjerojatnosti.

"Svo znanje degenerira u vjerojatnost' - David Hume

class UvjetnaVjerojatnost:

mwmn

"""Implementira uvjetnu vjerojatnost s epistemoloSkom interpretacijom.
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def __init__(self, naziv=""):
self .naziv = naziv

self.vjerojatnosti = {}

def postavi(self, sud, vjerojatnost):
"""Postavlja vjerojatnost suda."""

self .vjerojatnostil[sud] = vjerojatnost

def uvjetna(self, A, B):
nnnpeSuna P(A/B) = P(A AN B) / P(B)."""
p_a_i_b = self.vjerojatnosti.get((A, B), 0)
p_b = self.vjerojatnosti.get(B, 0)

if p_b == 0:
return None # Nedefinirana

return p_a_i_b / p_b

def epistemoloski_opis(self, A, B, p_uvjetna):
"""Dgje epistemoloSku interpretaciju uvjetne vjerojatnosti."""
if p_uvjetna is None:
return "Nedefinirana - nema znanja iz ovog uvjeta."
elif p_uvjetna > self.vjerojatnosti.get(A, 0):
return f"Dokaz '{B}' potvrduje '{A}'."
elif p_uvjetna < self.vjerojatnosti.get(A, 0):
return f"Dokaz '{B}' oslabljuje '{A}'."
else:

return f"Dokaz '{B}' je neutralan za '{A}'."

# Primjer: Znanstvena teorija % eksperiment
print ("Uvjetna vjerojatnost - Epistemoloski primjer")
print ("="%45)

print ("\nKontekst: Znanstveno istrazivanje\n")

uv = UvjetnaVjerojatnost("Znanstvena metoda")

# Postavi vjerojatnostt
uv.postavi("teorija", 0.3) # Apriorna vjerojatnost teorije
uv.postavi("eksperiment", 0.4) # Vjerojatnost pozitivnog eksperimenta

uv.postavi(("teorija", "eksperiment"), 0.25) # Konjunkcija

print ("Poletne vjerojatnosti:")

print(f" P(teorija istinita) = {uv.vjerojatnosti['teorija'l]:.2f}")

print(f" P(pozitivan eksperiment) = {uv.vjerojatnostil['eksperiment']:.2f}")

print(f" P(teorija istinita A pozitivan eksperiment) = {uv.vjerojatnosti[('teorija’',

— 'eksperiment')]:.2f}")

print("\nUvjetne vjerojatnosti:\n")

# P(eksperiment [ teorija)
p_eks_ako_teorija = uv.uvjetna('eksperiment", "teorija")
print("1. P(pozitivan eksperiment | teorija istinita)")

print(f" = P(teorija A eksperiment) / P(teorija)")
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print(f" = {uv.vjerojatnosti[('teorija', 'eksperiment')]:.2f} /

— {uv.vjerojatnosti['teorija']:.2f} = {p_eks_ako_teorija:.3f}")
print(f" \n Interpretacija: Ako je teorija istinita, eksperiment")
print(f" e biti pozitivan u {p_eks_ako_teorija*100:.1f}J, slucajeva.")

# P(teorija | eksperiment)

p_teorija_ako_eks = uv.uvjetna("teorija", "eksperiment")

print("\n2. P(teorija istinita | pozitivan eksperiment)")

print(f" = P(teorija A eksperiment) / P(eksperiment)")

print(f" = {uv.vjerojatnosti[('teorija', 'eksperiment')]:.2f} /

— {uv.vjerojatnosti['eksperiment']:.2f} = {p_teorija_ako_eks:.3f}")
print(f" \n Interpretacija: Nakon pozitivnog eksperimenta,")

print(f" vjerojatnost da je teorija istinita raste na {p_teorija_ako_eks*100:.1f}%.")

print ("\nEpistemoloska pouka:")
print (" Dokaz ne &ini teoriju sigurnom, veé povecava')

print(" stupanj racionalnog vjerovanja u nju.")

Output

Uvjetna vjerojatnost - EpistemoloSki primjer

Kontekst: Znanstveno istraZivanje

Poletne vjerojatnosti:
P(teorija istinita) = 0.30
P(pozitivan eksperiment) = 0.40
P(teorija istinita A pozitivan eksperiment) = 0.25

Uvjetne vjerojatnosti:

1. P(pozitivan eksperiment | teorija istinita)
= P(teorija A eksperiment) / P(teorija)
= 0.25 / 0.30 = 0.000

Interpretacija: Ako je teorija istinita, eksperiment
¢e biti pozitivan u 0.0% sluajeva.

2. P(teorija istinita | pozitivan eksperiment)
= P(teorija A eksperiment) / P(eksperiment)
= 0.25 / 0.40 = 0.625

Interpretacija: Nakon pozitivnog eksperimenta,
vjerojatnost da je teorija istinita raste na 62.5%.

Epistemoloska pouka:
Dokaz ne ¢ini teoriju sigurnom, vel povecava
stupanj racionalnog vjerovanja u nju.
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Bayesov teorem omogucava inverziju uvjetnih vjerojatnosti:

gdje je:

P(E|H) - P(H)

P(HIE) = == 5

o H - hipoteza (teorija, vjerovanje)

E - evidencija (dokaz, opazanje)
P(H) - prior (apriorno vjerovanje)
P(H|E) - posterior (aposteriorno vjerovanje)

P(E|H) - likelihood (izglednost dokaza)

Ova formula opisuje racionalno ucenje - kako azurirati vjerovanja na temelju novih dokaza.

import numpy as np

import matplotlib.pyplot as plt

class BayesovTeorem:

"""Implementacija 1 vizualizactja Bayesovog teorema."""

def

def

__init__(self):

self .povijest_azuriranja = []

bayes(self, prior, likelihood, evidencija):

"""Primjenjuje Bayesov teorem.

Args:
prior: P(H)
likelihood: P(E/H)
evidenctija: P(E)

Returns:

posterior: P(H|E)
mmn
if evidencija ==

raise ValueError("P(E) ne moZe biti 0!")
posterior = (likelihood * prior) / evidencija
self.povijest_azuriranja.append ({

'prior': prior,
'likelihood': likelihood,
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'evidencija': evidencija,
'posterior': posterior

b
return posterior

def bayes_omjer(self, priorl, prior2, likelihoodl, likelihood2):
"""Rgcéuna Bayesov omjer za dvije hipoteze."""
prior_omjer = priorl / prior2 if prior2 > O else float('inf')
likelihood_omjer = likelihoodl / likelihood2 if likelihood2 > 0 else float('inf')

posterior_omjer = prior_omjer * likelihood_omjer

return {
'prior_omjer': prior_omjer,
'likelihood_omjer': likelihood_omjer,

'posterior_omjer': posterior_omjer

# Demonstractja
print ("Bayesov teorem - Izvod i znaenje")
print ("="%34)

print ("\nMATEMATICKI IZVOD:\n")

print("1. Definicija uvjetne vjerojatnosti:")
print(" P(HIE) = P(H A E) / P(E)")

print (" P(E|H) P(H A E) / P(H")
print("\n2. Iz druge jednadzbe:")

print (" P(H A E) = P(EIH) - P(H)")
print("\n3. UvrStavanjem u prvu:")

print(" P(HI|E) = P(E|H) - P(H) / P(E)")

print ("\nEPISTEMOLOSKO ZNACENJE:\n")

print (" P(EIH) - P(H)")

print ("P(H|E) = -————-——————- ")

print (" P(E)")

print ("\nt 0 t ™)

print("Posterior Likelihood Prior Normalizacija")

print("\ne Prior P(H): Sto sam vjerovao prije dokaza")
print("e Likelihood P(E|H): Koliko hipoteza predvida dokaz")

print("e Posterior P(H|E): Sto trebam vjerovati nakon dokaza")

print ("\nALTERNATIVNI OBLIK (usporedba hipoteza):\n")
print("P(H;[E) P(EIH:1) - P(H{)™)

print("P(H2|E) P(EIH2) - P(H2)™)

print ("\nOmjer posteriornih = Omjer likelihooda x Omjer priornih")

print ("\nFILOZOFSKE IMPLIKACIJE:\n")
implikacije = [
"Znanje je stupnjevito, ne binarno",
"UCenje je azuriranje, ne zamjena",

"Dokazi ne govore sami - trebaju prior",
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"Racionalni agent mijenja miSljenje postupno"
]
for i, impl in enumerate(implikacije, 1):

print (£"{i}. {impll}")

Output

Bayesov teorem - Izvod i znacenje

MATEMATICKI IZVQOD:

1. Definicija uvjetne vjerojatnosti:
P(HIE) = P(H A E) / P(E)
P(EIH) = P(H A E) / P(H)

2. Iz druge jednadzbe:
P(H A E) = P(EIH) - P(H)

3. UvrsStavanjem u prvu:
P(H|IE) = P(EIH) - P(H) / P(E)

EPISTEMOLOSKO ZNACENJE:

P(EIH) - P(H)

Posterior Likelihood Prior Normalizacija

o Prior P(H): Sto sam vjerovao prije dokaza
e Likelihood P(E|H): Koliko hipoteza predvida dokaz
o Posterior P(H|E): Sto trebam vjerovati nakon dokaza

ALTERNATIVNI OBLIK (usporedba hipoteza):

P(H;|E) P(EIH;) - P(H;)

P(H|E) P(E|Hy) - P(Hs)

Omjer posteriornih = Omjer likelihooda x Omjer priornih
FILOZOFSKE IMPLIKACIJE:

. Znanje je stupnjevito, ne binarno

. UCenje je azuriranje, ne zamjena

. Dokazi ne govore sami - trebaju prior
. Racionalni agent mijenja miSljenje postupno

Sw N e
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Bayesov pristup revolucionira epistemologiju:

o Tradicionalna epistemologija: Znanje = opravdano istinito vjerovanje (JTB)

o Bayesova epistemologija: Znanje = racionalno azurirano vjerovanje

"Mijenjanje misljenja je dokaz razmisljanja" - preuredeni Bayesov princip

class BayesovaEpistemologija:

"""Modelira epistemoloSki proces kroz Bayesovo azZuriranje.

def

def

def

__init__(self, hipoteza, prior):
self .hipoteza = hipoteza
self.prior = prior
self.trenutno_vjerovanje = prior

self.povijest = [("poletno", prior)]

promatraj_dokaz(self, dokaz, likelihood_true, likelihood_false):

"""AZurira vjerovanje na temelju movog dokaza.

Args:
dokaz: opis dokaza
likelihood_true: P(dokaz/hipoteza)

likelihood_false: P(dokaz/—hipoteza)

wmn

# Racunaj P(dokaz)

wmn

p_dokaz = (likelihood_true * self.trenutno_vjerovanje +

likelihood_false * (1 - self.trenutno_vjerovanje))

# Bayesovo azZuriranje

novo_vjerovanje = (likelihood_true * self.trenutno_vjerovanje) / p_dokaz

promjena = novo_vjerovanje - self.trenutno_vjerovanje

self.trenutno_vjerovanje = novo_vjerovanje

self.povijest.append((dokaz, novo_vjerovanje))

return {
'novo_vjerovanje': novo_vjerovanje,
'promjena': promjena,

'p_dokaz': p_dokaz

epistemoloski_status(self):

"""Vraca epistemolodki status hipoteze.
v = self.trenutno_vjerovanje

if v < 0.01:

return "Prakticki opovrgnuto"

wn
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elif v < 0.1:

return "Vrlo nevjerojatno"
elif v < 0.4:

return "Nevjerojatno"
elif v < 0.6:

return "Neizvjesno"
elif v < 0.9:

return "Vjerojatno"
elif v < 0.99:

return "Vrlo vjerojatno"
else:

return "Prakticki sigurno"

# Simulactija znanstvenog istraZivanja
print ("Bayesova epistemologija - AZuriranje znanja")
print ("="*44)

print ("\nScenarij: Znanstvenik istraZuje novu teoriju\n")

# PocCetno stanje

episteme = BayesovaEpistemologija("Nova teorija", prior=0.1)
print ("Poletno stanje:")

print(f" Prior P(teorija) = {episteme.prior:.3f}")

print(£" Skepticizam: Visok ({(l-episteme.prior)*100:.1£f}%)")

# Serija eksperimenata

eksperimenti = [
("POZITIVAN", 0.8, 0.3), # Pozitivan rezultat
("POZITIVAN", 0.8, 0.3), # Jo3 jedan pozitivan
("NEGATIVAN", 0.2, 0.7), # Negativan rezultat
("POZITIVAN", 0.8, 0.3), # Opet pozitivan
("POZITIVAN", 0.8, 0.3), # I jos jedan

for i, (rezultat, lik_true, lik_false) in enumerate(eksperimenti, 1):
print (£"\nEKSPERIMENT {il}:")
print(f" Rezultat: {rezultatl}")

if rezultat == "POZITIVAN":
print(£" Likelihood P(pozitivan|teorija) = {lik_true:.2f}")
print(f" P(pozitivan|—teorija) = {lik_false:.2f}")

else:
print(f" Likelihood P(negativan|teorija) = {lik_true:.2f}")
print(f" P(negativan|—teorija) = {lik_false:.2f}")

# AZuriraj vjerovanje

rezultat_azuriranja = episteme.promatraj_dokaz(
f"Eksperiment {i}: {rezultat}",
lik_true,
1lik_false

print(f" \n Bayesovo aZuriranje:")

if i ==
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print (f" P(teorijaldokaz;) = {lik_true:.2f} x {episteme.povijest[-2][1]:.2f} / "
f"{rezultat_azuriranja['p_dokaz']:.2f} =
— {rezultat_azuriranja['novo_vjerovanje']:.3f}")

else:

print(f" P(teorijal{'dokaz;' if i==2 else 'dokaz;,dokazy' if i==3 else

— 'dokaz;,dokazs,dokazs' if i==4 else 'svi dokazi'}) ="
£"{1ik_true:.2f} x {episteme.povijest[-2][1]:.2f} / "
f"{rezultat_azuriranjal['p_dokaz']:.2f} =

— {rezultat_azuriranja['novo_vjerovanje']:.3f}")

print(f" \n Novo vjerovanje: {rezultat_azuriranjal['novo_vjerovanje']*100:.1£}%")

print(f" Promjena: {rezultat_azuriranjal['promjena'l#*100:+.1f} postotnih bodova")

# Analiza
print ("\nEpistemoloska analiza:")
print ("="%23)

print("\nPutanja vjerovanja: ", end="")
for i, (opis, vjerovanje) in enumerate(episteme.povijest):
if i > 0:
print(" — ", end="")
print (f"{vjerovanje*100:.1f}),", end="")
print )

print ("\nKljucne tocke:")

print(" e Znanje se akumulira postupno")

print(" e Negativni dokazi takoder informiraju")
print(" e Nikad ne dostiZemo potpunu sigurnost")

print(" e Racionalni agent mijenja miSljenje s dokazima")

print ("\nFinalno stanje:")
print(f" Vjerovanje u teoriju: {episteme.trenutno_vjerovanje*x100:.1£}%")
print(f" Status: {episteme.epistemoloski_status()} ", end="")
if episteme.trenutno_vjerovanje > 0.5:
print("(viSe vjerojatno nego ne)")
else:

print("(viSe nevjerojatno nego vjerojatno)")

Output

Bayesova epistemologija - AZuriranje znanja

Scenarij: Znanstvenik istraZuje novu teoriju

PoCetno stanje:
Prior P(teorija) = 0.100
Skepticizam: Visok (90.0%)

EKSPERIMENT 1:
Rezultat: POZITIVAN
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Likelihood P(pozitivan|teorija) = 0.80
P(pozitivan|—teorija) = 0.30

Bayesovo aZuriranje:
P(teorijaldokaz;) = 0.80 x 0.10 / 0.35 = 0.229

Novo vjerovanje: 22.9%
Promjena: +12.9 postotnih bodova

EKSPERIMENT 2:
Rezultat: POZITIVAN
Likelihood P(pozitivan|teorija) = 0.80
P(pozitivan|—teorija) = 0.30

Bayesovo aZuriranje:
P(teorijaldokaz;) = 0.80 x 0.23 / 0.41 = 0.441

Novo vjerovanje: 44.1Y%
Promjena: +21.3 postotnih bodova

EKSPERIMENT 3:
Rezultat: NEGATIVAN
Likelihood P(negativan|teorija) = 0.20
P(negativan|—teorija) = 0.70

Bayesovo aZuriranje:
P(teorijaldokaz;,dokazs) = 0.20 x 0.44 / 0.48 = 0.184

Novo vjerovanje: 18.47
Promjena: -25.7 postotnih bodova

EKSPERIMENT 4:
Rezultat: POZITIVAN
Likelihood P(pozitivan|teorija) = 0.80
P(pozitivan|—teorija) = 0.30

Bayesovo aZuriranje:
P(teorijaldokaz;,dokazy,dokazs) = 0.80 x 0.18 / 0.39 = 0.376

Novo vjerovanje: 37.6%
Promjena: +19.2 postotnih bodova

EKSPERIMENT 5:
Rezultat: POZITIVAN
Likelihood P(pozitivan|teorija) = 0.80
P(pozitivan|—teorija) = 0.30

Bayesovo aZuriranje:
P(teorijalsvi dokazi) = 0.80 x 0.38 / 0.49 = 0.616
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Novo vjerovanje: 61.6%
Promjena: +24.0 postotnih bodova

EpistemolosSka analiza:

Putanja vjerovanja: 10.0% — 22.9% — 44.1}, — 18.4%, — 37.6%, — 61.6%

Kljucne tocke:
e Znanje se akumulira postupno
e Negativni dokazi takoder informiraju
e Nikad ne dostiZemo potpunu sigurnost
e Racionalni agent mijenja miSljenje s dokazima

Finalno stanje:
Vjerovanje u teoriju: 61.6Y%
Status: Vjerojatno (viSe vjerojatno nego ne)

Bayesov pristup osvjetljava klasi¢ne debate u filozofiji znanosti:

Popper vs. Bayes

e Popper: Znanosti se bavi falsifikacijom - trazi opovrgavanje

e Bayes: Znanost postupno azurira vjerojatnosti - trazi najbolju hipotezu

Problem indukcije

"Nema dovoljno opazanja bijele boje koje bi dokazalo da su svi labudovi bijeli, ali
jedno opazanje crnog labuda to opovrgava' - Karl Popper

Bayesov pristup: Crni labud drasti¢no smanjuje vjerojatnost, ali ne na nulu!

1 class FilozofijaZnanosti:

2 """Usporeduje Popperov i Bayesov pristup znanstvenoj metodi."""
3

4 def __init__(self):

5 self .popper_status = "nije opovrgnuta"

6 self.bayes_vjerovanje = {}

7

8 def popper_test(self, hipoteza, opazanje, konzistentno):

9 """Popperov pristup - falstifikacija."""



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

166 POGLAVLJE 8. BAYESOV SVLJET

if not konzistentno:
self.popper_status = "OPOVRGNUTA"
return False

return True # Nije opouvrgnuta (ali nije ni poturdena!)

def bayes_test(self, hipoteze, opazanje, likelihoods):
"""Bayesov pristup - aZuriranje vjerojatmostz."""
# Racunaj P(opazanje)
p_opazanje = sum(likelihoods[h] * self.bayes_vjerovanje[h]

for h in hipoteze)

if p_opazanje ==

return self.bayes_vjerovanje

# AzZuriraj sve hipoteze
nova_vjerovanja = {}
for h in hipoteze:

nova_vjerovanjal[h] = (likelihoods[h] * self.bayes_vjerovanje[h]) / p_opazanje

self.bayes_vjerovanje = nova_vjerovanja

return nova_vjerovanja

# Simulacija: Problem bijelih labudova
print("Filozofija znanosti - Popper vs. Bayes")
print ("="*39)

print ("\nHipoteza: 'Svi labudovi su bijeli'\n")
fz = FilozofijaZnanosti()

# POPPEROV PRISTUP

print ("POPPEROV PRISTUP (Falsifikacija):")

print ("-"%35)

# 1000 bijelih labudova

for i in [1, 2, 3, "...", 1000]:
if 1 == "...":
print(£"... (nakon 999 bijelih labudova)")
else:

status = fz.popper_test("svi bijeli", "bijeli", True)
print (f"OpaZanje {i}: Bijeli labud — Hipoteza NIJE OPOVRGNUTA")

print (£"\nStatus: Hipoteza {fz.popper_status} (ali nije ni potvrdena!)")

# Crni labud!
print (f"\nOpaZanje 1001: CRNI LABUD — Hipoteza OPOVRGNUTA! x")

fz.popper_test("svi bijeli", "crni", False)

print ("\nPopperov zakljuéak: Hipoteza je falsificirana.")

print ("Tisuéu potvrda ne dokazuje teoriju, jedna falsifikacija je ru8i.")

# BAYESOV PRISTUP
print ("\nBAYESOV PRISTUP (AZuriranje vjerojatnosti):")
print ("-"x44)
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# PocCetna vjerovanja
fz.bayes_vjerovanje = {
"svi_bijeli": 0.5,
"vecina_bijeli": 0.5
1

print (f"PoCetno vjerovanje: P(svi bijeli) = {fz.bayes_vjerovanje['svi_bijeli']*100:.1£}/\n")

# Likelihoods za bijeli labud
lik_bijeli = {
"svi_bijeli": 1.0, # Ako su svi bijeli, sigurno cemo vidjett bijelog

"vecina_bijeli": 0.9 # Ako je veéina bijela, 907 3Sanse za bijelog

# Simuliraj opaZanja
brojevi_opazanja = [10, 100, 500, 1000]
for n in brojevi_opazanja:

# Resetiraj za svaki test

fz.bayes_vjerovanje = {"svi_bijeli": 0.5, "vecina_bijeli": 0.5}

for _ in range(n):

fz.bayes_test(["svi_bijeli", "vecina_bijeli"], "bijeli", lik_bijeli)

print(f£"Nakon {n} bijelih: P(hipoteza) = {fz.bayes_vjerovanje['svi_bijeli']*100:.1£}%")

# Crnt labud!

print ("\nOpaZanje 1001: CRNI LABUD!")

1lik_crni = {
"svi_bijeli": 0.0, # Nemoguce ako su svi bijeli!
"vecina_bijeli": 0.1 # Moguce ako nmeki nisu bijelt

}

print(f"Likelihood P(crnil|svi bijeli) = {lik_crni['svi_bijeli']:.3f}")

print(£"Likelihood P(crnilneki crni) = {lik_crni['vecina_bijeli']:.3f}")

fz.bayes_test(["svi_bijeli", "vecina_bijeli"], "crni", lik_crni)
print (f"\nNakon crnog labuda: P(hipoteza) = {fz.bayes_vjerovanje['svi_bijeli']*100:.1£}%")

print (f"Alternativa P(vec¢ina bijeli) = {fz.bayes_vjerovanje['vecina_bijeli']*100:.1£}%")

print("\nBayesov zakljulak: Prebacujemo vjerovanje na fleksibilniju hipotezu.")

# Usporedba
print ("\nUSPOREDBA PRISTUPA:")
print ("="%20)

print ("\nPopper:")

print("  Jasan kriterij (opovrgnuto/nije)")
print(" ' NaglaSava kriticko testiranje")
print(" X Binaran pristup (sve ili nista)")

print(" X Ne govori o stupnju potvrde")

print ("\nBayes:")
print("  Stupnjevito znanje")

print(" v Kvantificira nesigurnost")
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116 print(" ' Omoguéava usporedbu hipoteza")

117 print(" X Ovisi o prioru")

118 print(" X SloZeniji racun")

119

120 print("\nSinteza: Popperova falsifikacija je specijalan slucaj")

121 print (" Bayesovog aZuriranja s likelihood = 0")

Output

Filozofija znanosti - Popper vs. Bayes

Hipoteza: 'Svi labudovi su bijeli'

POPPEROV PRISTUP (Falsifikacija):

Opazanje 1: Bijeli labud — Hipoteza NIJE OPOVRGNUTA

OpaZanje 2: Bijeli labud — Hipoteza NIJE OPOVRGNUTA

OpaZanje 3: Bijeli labud — Hipoteza NIJE OPOVRGNUTA
(nakon 999 bijelih labudova)

OpaZanje 1000: Bijeli labud — Hipoteza NIJE OPOVRGNUTA

Status: Hipoteza nije opovrgnuta (ali nije ni potvrdena!)
OpaZanje 1001: CRNI LABUD — Hipoteza OPOVRGNUTA! X

Popperov zakljucak: Hipoteza je falsificirana.
Tisuéu potvrda ne dokazuje teoriju, jedna falsifikacija je ruSi.

BAYESOV PRISTUP (AZuriranje vjerojatnosti):

Poletno vjerovanje: P(svi bijeli) = 50.0%

Nakon 10 bijelih: P(hipoteza) = 74.1%

Nakon 100 bijelih: P(hipoteza) = 100.0%
Nakon 500 bijelih: P(hipoteza) = 100.0%
Nakon 1000 bijelih: P(hipoteza) = 100.0%

OpaZzanje 1001: CRNI LABUD!
Likelihood P(crnilsvi bijeli) = 0.000
Likelihood P(crnilneki crni) = 0.100

Nakon crnog labuda: P(hipoteza) = 0.0%
Alternativa P(veéina bijeli) = 100.0%

Bayesov zakljucak: Prebacujemo vjerovanje na fleksibilniju hipotezu.

USPOREDBA PRISTUPA:
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Popper:
v/ Jasan kriterij (opovrgnuto/nije)
v/ NaglasSava kriticko testiranje
X Binaran pristup (sve ili niSta)
X Ne govori o stupnju potvrde

Bayes:
v/ Stupnjevito znanje
v/ Kvantificira nesigurnost
v/ Omogucava usporedbu hipoteza
X 0Ovisi o prioru
X SloZeniji racun

Sinteza: Popperova falsifikacija je specijalan slucaj
Bayesovog azZuriranja s likelihood = 0

Najkontroverzniji aspekt Bayesove epistemologije je izbor priora:

e Subjektivni prior: Osobno vjerovanje

e Objektivni prior: Princip indiferencije, maksimalna entropija

e Informativni prior: Na temelju prethodnog znanja

"Prior je mjesto gdje se subjektivnost uvlac¢i u objektivnu znanost" - kriticari

Bayesa

class ProblemPriora:

"""IstraZuje epistemoloSke implikacije izbora priora."""

def __init__(self):
self.agenti = {}

def stvori_agenta(self, ime, prior):
"""Styara epistemoloskog agenta s danim priorom."""
self.agenti[ime] = {
'prior': prior,
'trenutno': prior,

'povijest': [prior]

def azuriraj_sve(self, likelihood_h, likelihood_ne_h):
"""Syi agenti promatraju isti dokaz."""
rezultati = {}
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for ime, agent in self.agenti.items():

p_trenutno = agent['trenutno']

# Bayesovo azuriranje
p_dokaz = likelihood_h * p_trenutno + likelihood_ne_h * (1 - p_trenutno)
p_novo = (likelihood_h * p_trenutno) / p_dokaz if p_dokaz > O else p_trenutno

agent ['trenutno'] = p_novo

agent['povijest'] .append(p_novo)

rezultati[ime] = {
'prije': p_trenutno,
'poslije': p_novo,

'promjena': p_novo - p_trenutno

return rezultati

def mjeri_konvergenciju(self):
"""Mjeri koliko su se vjerovanja pribliZila."""
trenutna_vjerovanja = [a['trenutno'] for a in self.agenti.values()]

return max(trenutna_vjerovanja) - min(trenutna_vjerovanja)

# Demonstractja

print ("Problem priora - Epistemoloska kontroverza')

print ("="*43)

print("\nScenarij: Tri znanstvenika procjenjuju istu hipotezu")

print (" nakon identiénih dokaza\n")
pp = ProblemPriora()

# Razlicitt priori
pp.stvori_agenta("Optimist", 0.8)
pp.stvori_agenta("Neutralac", 0.5)

pp.stvori_agenta("Skeptik", 0.1)

print ("POCETNI PRIORI:")
for ime, agent in pp.agenti.items():
prior_opis = "(visoko vjerovanje)" if agent['prior']l > 0.6 else \
"(princip indiferencije)" if agent['prior'] == 0.5 else \
"(nisko vjerovanje)"

print(f" {ime:12} P(H) = {agent['prior']:.2f} {prior_opis}")

# Serija dokaza

dokazi = [

("Pozitivan", 0.9, 0.2),
("Pozitivan", 0.9, 0.2),
("Negativan", 0.1, 0.8),
("Pozitivan", 0.9, 0.2),
("Pozitivan", 0.9, 0.2),

for i, (tip, lik_h, lik_ne_h) in enumerate(dokazi, 1):
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print (£"\nDOKAZ {i}: {tip} (P(E|IH)={1lik_h}, P(E|—-H)={1ik_ne_h})")

rezultati = pp.azuriraj_sve(lik_h, 1lik_ne_h)

print("Nakon dokaza:")

for ime, rez in rezultati.items():

print(f" {ime:12} {rez['prije'l:.2f} — {rez['poslije']:.2f} "

f"({rez['promjena'] :+.2f})")

# Analiza konvergencije
print ("\nANALIZA KONVERGENCIJE:")
print ("="x23)

pocetna_razlika = max(a['prior'] for a in pp.agenti.values()) - \

min(a['prior'] for a in pp.agenti.values())

finalna_razlika = pp.mjeri_konvergenciju()

print (£"\nPoletna razlika (max-min): {pocetna_razlika:.2f}")

print(£"Finalna razlika (max-min): {finalna_razlika:.2f}")

print ("\nFinalna vjerovanja:")

for ime, agent in pp.agenti.items():

print(£"

{ime:10} {agent['trenutno']*100:.1£}%")

print ("\nEpistemoloske implikacije:")

print ("
print ("
print ("
print ("

e Priori utjelu, ali njihov utjecaj slabi s dokazima")

e Dovoljno dokaza vodi konvergenciji'")

e Razli¢iti putovi do (pribliZno) istog zakljucka")

o Objektivnost emerge iz subjektivnih poletaka")

print ("\nFILOZOFSKI PROBLEM:")

print ("
print ("
print ("
print ("
print ("
print ("
print ("

Koji prior je 'pravi'? Postoji li objektivan prior?")

\n Pristupi:")

i,
2.
3.
4.

Princip indiferencije (Laplace): P=0.5 bez informacija")
Jeffreysov prior: Invarijantan na reparametrizaciju ")
Maksimalna entropija: Najmanje informativna distribucija")

Empirijski Bayes: Prior iz podataka")

\n Zakljuéak: Prior je neizbjeZan, ali ne fatalan!")

Output

Problem priora - EpistemoloSka kontroverza

Scenarij: Tri znanstvenika procjenjuju istu hipotezu

POCETNI PRIORI:
Optimist P(H)
Neutralac P(H)
Skeptik P(H)

nakon identic¢nih dokaza

0.80 (visoko vjerovanje)
0.50 (princip indiferencije)
0.10 (nisko vjerovanje)
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DOKAZ 1: Pozitivan (P(E|H)=0.9, P(E|—-H)=0.2)
Nakon dokaza:

Optimist 0.80 — 0.95 (+0.15)
Neutralac 0.50 — 0.82 (+0.32)
Skeptik 0.10 — 0.33 (+0.23)

DOKAZ 2: Pozitivan (P(E|H)=0.9, P(E|—-H)=0.2)
Nakon dokaza:

Optimist 0.95 — 0.99 (+0.04)
Neutralac 0.82 — 0.95 (+0.13)
Skeptik 0.33 — 0.69 (+0.36)

DOKAZ 3: Negativan (P(E|H)=0.1, P(E|—-H)=0.8)
Nakon dokaza:

Optimist 0.99 — 0.91 (-0.08)
Neutralac 0.95 — 0.72 (-0.24)
Skeptik 0.69 — 0.22 (-0.47)

DOKAZ 4: Pozitivan (P(E|H)=0.9, P(E|—-H)=0.2)
Nakon dokaza:

Optimist 0.91 — 0.98 (+0.07)
Neutralac 0.72 — 0.92 (+0.20)
Skeptik 0.22 — 0.56 (+0.34)

DOKAZ 5: Pozitivan (P(E|H)=0.9, P(E|—-H)=0.2)
Nakon dokaza:

Optimist 0.98 — 1.00 (+0.02)
Neutralac 0.92 — 0.98 (+0.06)
Skeptik 0.56 — 0.85 (+0.29)

ANALIZA KONVERGENCIJE:

Poletna razlika (max-min): 0.70
Finalna razlika (max-min): 0.14

Finalna vjerovanja:
Optimist  99.5%
Neutralac 98.1%
Skeptik 85.1%

EpistemoloSke implikacije:
e Priori utjecu, ali njihov utjecaj slabi s dokazima
e Dovoljno dokaza vodi konvergenciji
e RazliCiti putovi do (pribliZno) istog zakljucka
e Objektivnost emerge iz subjektivnih pocletaka

FILOZOFSKI PROBLEM:
Koji prior je 'pravi'? Postoji 1i objektivan prior?
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Pristupi:

1. Princip indiferencije (Laplace): P=0.5 bez informacija
2. Jeffreysov prior: Invarijantan na reparametrizaciju

3. Maksimalna entropija: Najmanje informativna distribucija
4. Empirijski Bayes: Prior iz podataka

Zakljucak: Prior je neizbjeZan, ali ne fatalan!

Occamova ostrica: "Entitete ne treba umnozavati bez potrebe"

Bayesov pristup prirodno implementira ovaj princip kroz Bayesov faktor:

P(E|Hy) P(Hi)
P(E|H2) P(Hz)

BFig =

Jednostavnije hipoteze imaju veéu priornu vjerojatnost i manju fleksibilnost u objasnjavanju

podataka.

class OccamovaOstrica:

"""Implementira Occamovu oStricu kroz Bayesov faktor."""

def __init__(self):
self .hipoteze = {}

def dodaj_hipotezu(self, naziv, kompleksnost, prior=None):

"""Dodaje hipotezu s danom kompleksnoScu.

Prior se automatskti racuna prema kompleksnosti ako nije dan.
mnmnn
if prior is Nonme:

# Occamov princip: jednostavnije hipoteze imaju velti prior

prior = 1.0 / (2 ** kompleksnost)

self .hipoteze[naziv] = {
'kompleksnost': kompleksnost,
'prior': prior,

'posterior': prior

def bayesov_faktor(self, hl, h2, likelihoodl, likelihood2):
"""Racuna Bayesov faktor tzmedu dvije hipoteze."""

prior_omjer = self.hipoteze[hl]['prior'] / self.hipoteze[h2]['prior']

likelihood_omjer = likelihoodl / likelihood2 if likelihood2 > 0O else float('inf')

bf = likelihood_omjer * prior_omjer
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28
29 return {

30 'prior_omjer': prior_omjer,

31 'likelihood_omjer': likelihood_omjer,

32 'bayesov_faktor': bf

33 }

34

35 def interpretacija_bf(self, bf):

36 """Interpretira Bayesov faktor prema Jeffreys skalz."""
37 if bf < 1:

38 return "Dokaz protiv Hi"

39 elif bf < 3:

40 return "Slab dokaz za Hi"

41 elif bf < 10:

42 return "Umjeren dokaz za Hp"

43 elif bf < 100:

44 return "Jak dokaz za H;"

45 else:

46 return "Odlucujuéi dokaz za Hy"

47

48 # Demonstracija

49 print("Occamova oStrica kroz Bayesov faktor")

50 print("="*37)

51 print("\nScenarij: ObjasSnjenje niza brojeva [2, 4, 6, 8, 10]\n")

52

53 0o = OccamovaOstrica()

54

55 # Dvije hipoteze razlicite sloZenosti

56 print ("HIPOTEZE:")

57 print(" H; (jednostavna): 'Parni brojevi do 10'")

58 print (" Parametri: 1 (samo parnost)")

59 0o.dodaj_hipotezu("H1_jednostavna", kompleksnost=1, prior=0.67)

60

61 print (" ")

62 print(" Hs (sloZena): 'Brojevi koji zadovoljavaju x*-12x+20<0 ili x=2k, ke€N'")
63 print (" Parametri: 5 (polinomski koeficijenti + parnost)")

64 0o.dodaj_hipotezu("H2_slozena", kompleksnost=5, prior=0.33)

65

66 print ("\nPRIORNE VJEROJATNOSTI (Occamov princip):")

67 print(f" P(H;) = {oo.hipoteze['H1_jednostavna']['prior']:.2f} (preferiramo jednostavnost)")
68 print(f" P(Hz) = {oo.hipoteze['H2_slozena']['prior']:.2f} (penaliziramo sloZenost)")
69

70 prior_omjer = oo.hipoteze['H1_jednostavna']['prior'] / oo.hipoteze['H2_slozena']['prior']
71 print(f" \n Prior omjer: P(H;)/P(Hz) = {prior_omjer:.2f}")

72

73 # Test predvidanja

74 print ("\nTEST 1: Predvidanje sljedeeg broja")

75 print(" H; predvida: 12 (sljedeéi parni)")

76 print(" Ho predvida: 12 ili 7.3 (fleksibilnija)")

77 print(" \n OpaZanje: 12")

78

79 # Likelihoods

80 1lik_hl = 1.0 # H1 savrSeno predvida 12
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81 1lik_h2 = 0.5 # H2 daje 50/ Sanse za 12
82

83 print(£f" P(12|H;)
84 print(f" P(12|Hz)
85

86 bf_rezultat = oo.bayesov_faktor("H1_jednostavna", "H2_slozena", lik_hl, 1lik_h2)
87 print(f" \n Likelihood omjer: {bf_rezultat['likelihood_omjer']:.2f}")

{1ik_h1:.2f} (savrSeno predvidanje)")
{1ik_h2:.2f} (jedan od moguéih)")

88 print(f" Bayesov faktor: BFi2 = {bf_rezultat['likelihood_omjer']:.2f} x {prior_omjer:.2f} =
— {bf_rezultat['bayesov_faktor']:.2f}")

89 print(f" \n Interpretacija: Dokazi {bf_rezultat['bayesov_faktor']:.0f}:1 u korist H;")

90

91 # Drugi test

92 print ("\nTEST 2: Jo$ jedno predvidanje")

93 print(" OpaZanje: 14")

94 print(f" P(14[H;) 1.00")

95 print(f" P(14|H;) = 0.50")

96

97 # Kumulativnt BF

98 kumulativni_bf = bf_rezultat['bayesov_faktor'] * 2 # jos jedan faktor 2
99 print(f" \n Kumulativni BF;2 = {kumulativni_bf:.2f}")

100 print(f" \n Interpretacija: Dokazi {kumulativni_bf:.0f}:1 u korist H;")
101

102 # Filozofska analiza

103 print ("\nFILOZOFSKA ANALIZA:")

104 print("="*20)

105 print("\nZasto Bayes preferira jednostavnost?\n")

106

107 print("1. PRIOR KOMPONENTA:")

108 print (" Jednostavnije hipoteze su a priori vjerovatnije")
109 print("  (manje parametara = vela gustoéa vjerojatnosti)")
110

111 print("\n2. LIKELIHOOD KOMPONENTA:")

112 print("  SloZene hipoteze 'razmazuju' vjerojatnost")

113 print(" na viSe moguénosti — niZi likelihood po ishodu")
114

115 print("\n3. AUTOMATSKA PENALIZACIJA:")

116 print("  Prefleksibilne teorije se same kaZnjavaju")

117 print (" jer mogu objasniti previSe — slabo predvidaju")
118

119 print ("\nJEFFREYS-0OVA SKALA za interpretaciju BF:")

120 skala = [

121 ("BF < 1", "Dokaz protiv H;"),

122 ("1 < BF < 3", "Slab dokaz za Hi"),

123 ("3 < BF < 10", "Umjeren dokaz za H;"),
124 ("BF > 10", "Jak dokaz za H"),

125 ("BF > 100", "OdluCujuéi dokaz za H;")
126 ]

127 for raspon, opis in skala:

128 print(f" {raspon:11}: {opis}")

129

130 print(£"\nNa§ slucaj: BF = {kumulativni_bf:.2f} — {oo.interpretacija_bf (kumulativni_bf)}")
131

132 print("\n> \"Priroda je jednostavna i ne umnoZava uzroke bez potrebe\" - Newton")
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133 print ("> Bayesov faktor to kvantificira!")

Output

Occamova oStrica kroz Bayesov faktor

Scenarij: Objasnjenje niza brojeva [2, 4, 6, 8, 10]

HIPOTEZE:
H; (jednostavna): 'Parni brojevi do 10'
Parametri: 1 (samo parnost)

Hy (sloZzena): 'Brojevi koji zadovoljavaju x?-12x+20<0 ili x=2k, keN'
Parametri: 5 (polinomski koeficijenti + parnost)

PRIORNE VJEROJATNOSTI (Occamov princip):
P(H;) = 0.67 (preferiramo jednostavnost)
P(Hy) = 0.33 (penaliziramo sloZzenost)

Prior omjer: P(H;)/P(Hy) = 2.03

TEST 1: Predvidanje sljedeCeg broja
H; predvida: 12 (sljedeéi parni)
Hy predvida: 12 ili 7.3 (fleksibilnija)

Opazanje: 12
P(12|H;) = 1.00 (savrSeno predvidanje)
P(12|Hp) = 0.50 (jedan od moguéih)

Likelihood omjer: 2.00
Bayesov faktor: BFjp = 2.00 x 2.03 = 4.06

Interpretacija: Dokazi 4:1 u korist H;

TEST 2: JoS jedno predvidanje
Opazanje: 14
P(14|H;) = 1.00
P(14|Hy) 0.50

Kumulativni BFjp = 8.12
Interpretacija: Dokazi 8:1 u korist Hj

FILOZOFSKA ANALIZA:

ZaSto Bayes preferira jednostavnost?

1. PRIOR KOMPONENTA:
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Jednostavnije hipoteze su a priori vjerovatnije
(manje parametara = vela gustoéa vjerojatnosti)

2. LIKELIHOOD KOMPONENTA:
SloZene hipoteze 'razmazuju' vjerojatnost
na viSe moguénosti — niZi likelihood po ishodu

3. AUTOMATSKA PENALIZACIJA:
Prefleksibilne teorije se same kaZnjavaju
jer mogu objasniti previSe — slabo predvidaju

JEFFREYS-0VA SKALA za interpretaciju BF:
BF < 1 : Dokaz protiv H;
1 < BF < 3 : Slab dokaz za H;
3 < BF < 10: Umjeren dokaz za H;
BF > 10 : Jak dokaz za H;
BF > 100 : 0dlucujuéi dokaz za H;

Nas sluc€aj: BF = 8.12 — Umjeren dokaz za H;

> "Priroda je jednostavna i ne umnozava uzroke bez potrebe" - Newton
> Bayesov faktor to kvantificira!

Dutch Book teorem: Ako vasa vjerovanja krse aksiome vjerojatnosti, netko moze konstruirati

niz oklada gdje sigurno gubite novac.

Ovo daje pragmaticko opravdanje Bayesovog pristupa - nekoherentna vjerovanja vode u

sigurni gubitak!

class DutchBook:

"""Demonstrira Dutch Book argument protiv nekoherentnih vjerovanja."""

def __init__(self, vjerovanja):

wmn

vjerovanja: dict s vjerojatnostima za Tazlicite sudove

mmn

self.vjerovanja = vjerovanja

def provjeri_koherentnost(self):
"""Proyjerava krse li vjerovanja aksiome vjerojatnosti."""

problemi = []

# Provjert menegativnost
for sud, p in self.vjerovanja.items():
if p<Oorp>1:
problemi.append(f"{sud}: P={p} nije u [0,1]")
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# Provjeri aditivnost za disjunkciju (ako postoji)
if 'A' in self.vjerovanja and 'B' in self.vjerovanja and 'A_ili_B' in

— self.vjerovanja:

p_a = self.vjerovanjal['A']
p_b
p_a_ili_b = self.vjerovanjal['A_ili_B']

self .vjerovanja['B']

# P(AV B) < P(4) + P(B)
if p_a_ili_b > p_a + p_b:
problemi.append(£"P(AVB)={p_a_ili_b} > P(A)+P(B)={p_a+p_b}")

# P(ANV B) > maz(P(4), P(B))
if p_a_ili_b < max(p_a, p_b):
problemi.append (£"P(AVB)={p_a_ili_b} < max(P(A),P(B))={max(p_a, p_b)}")

return len(problemi) == 0, problemi

def konstruiraj_dutch_book(self):
"""Konstruira skup oklada koji garantira gubitak."""
if 'A' not in self.vjerovanja or 'B' not in self.vjerovanja or 'A_ili_B' not in
— self.vjerovanja:

return None

p_a = self.vjerovanjal['A']
p_b = self.vjerovanjal['B']

p_a_ili_b = self.vjerovanja['A_ili B']

oklade = []

# Oklada 1: Kladi se na A po "fer" cijeni
oklade.append ({

'tip': 'ZA',

'sud': 'A',

'cijena': p_a * 100,

'isplata': 100
b

# Oklada 2: Kladi se ma B po "fer" cijeni
oklade.append ({

'tip': 'ZA',

'sud': 'B',

'cijena': p_b * 100,

'isplata': 100
b

# Oklada 3: Kladi se PROTIV (A ili B)
oklade.append ({
'tip': 'PROTIV',
'sud': 'A_ili B',
'prima': p_a_ili_b * 100,
'placa_ako_istina': 100

b
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return oklade

# Demonstractja
print ("Dutch Book Argument - Cijena nekoherentnosti')
print ("="*46)

# Nekoherentan agent
nekoherentan = DutchBook ({

'A': 0.6,

'B': 0.5,

'A_ili B': 0.7 # PrekrsSaj! Trebalo bi biti barem 0.6
1))

print ("\nAGENT 1: Nekoherentan")
print("Vjerovanja:")

for sud, p in nekoherentan.vjerovanja.items():

simbol = "V" if "ili" in sud else ""
prikaz = sud.replace("_ili_", " VvV ")
print(f" P({prikaz}) = {p:.2f}", end="")
if sud == 'A_ili_B':

print (" KRSI AKSIOME!")
else:

print ()

koherentan_min = max(nekoherentan.vjerovanja['A'], nekoherentan.vjerovanjal['B'])
koherentan_max = min(1.0, nekoherentan.vjerovanjal['A'] + nekoherentan.vjerovanja['B'])
print(f" \n Trebalo bi biti: P(A V B) > max({nekoherentan.vjerovanja['A']:.2f},

— {nekoherentan.vjerovanja['B']:.2f}) = {koherentan_min:.2f}")

print(f" i P(A V B) < {nekoherentan.vjerovanja['A']l:.2f} +

— {nekoherentan.vjerovanja['B']:.2f} = {nekoherentan.vjerovanjal['A'] +

< nekoherentan.vjerovanjal['B']:.2f} (ali < 1)")

print(f" Koherentan raspon: [{koherentan_min:.2f}, {koherentan_max:.2f}]")

# Koherentan agent
koherentan = DutchBook ({

'A': 0.6,

'B': 0.5,

'A_ili_B': 0.8 # Koherentno!
1))

print ("\nAGENT 2: Koherentan")
print("Vjerovanja:")

for sud, p in koherentan.vjerovanja.items():

prikaz = sud.replace("_ili_", " V ")
print(f" P({prikaz}) = {p:.2f}", end="")
if sud == 'A_ili B':

print("  Zadovoljava aksiome")
else:

print ()

# Konstruiraj Dutch Book
print ("\nDUTCH BOOK PROTIV NEKOHERENTNOG AGENTA:")
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print ("="*41)

oklade = nekoherentan.konstruiraj_dutch_book()

print("\nKladioniar konstruira sljedeée oklade:\n")

for i, oklada in enumerate(oklade, 1):
if okladal['tip'] == 'ZA':
print(£"Oklada {i}: Agent se kladi ZA '{oklada['sud']l}'")
print(f" Fer cijena (prema agentu): {oklada['cijena']:.1f}€")
print (f" Dobitak ako {okladal['sud']}: {okladal['isplata']l}€, Gubitak ako
— —{oklada['sud']l}: -{okladal['cijena']:.0f}€")
else:
prikaz = okladal['sud'].replace("_ili_", " VvV ")
print(£"Oklada {i}: Agent se kladi PROTIV '{prikazl}'")
print(f" Agent prima: {okladal['prima']:.1f}€")
print(f" Mora platiti {okladal['placa_ako_istina'l}€ ako {prikaz}")
print ()

# Analiza ishoda

print ("ANALIZA ISHODA:")
print ("="*16)

print ("\nMoguéi ishodi:")

ishodi = [
("AAB", True, True),
("AA—B", True, False),
("-AAB", False, True),
("-AA—B", False, False)
]
for naziv, a_istina, b_istina in ishodi:

profit = 0
detalji = []

# Oklada 1 (na A)

if a_istina:
profit += 100 - oklade[0O]['cijena']
detalji.append("+100")

else:
profit -= oklade[0]['cijena']
detalji.append(f"-{oklade[0] ['cijena']:.0f}")

# Oklada 2 (na B)

if b_istina:
profit += 100 - oklade[1]['cijena']
detalji.append("+100")

else:
profit -= oklade[1]['cijena']
detalji.append(f"-{oklade[1]['cijena']:.0f}")

# Oklada 3 (protiv A 4li B)
if a_istina or b_istina:
profit += oklade[2] ['prima'] - 100
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detalji.append("-100")

else:
profit += oklade[2]['prima']
detalji.append("+0")

print(f" {naziv:8} {' '.join(detalji):15} = {profit:+.0f}€ — Agent {'gubi' if profit <

< 0 else 'dobiva'} {abs(profit):.0f}€")
print("\nAgent UVIJEK gubi novac! (Dutch Book)")

# PokuSaj protiv koherentnog
print ("\nPOKUSAJ PROTIV KOHERENTNOG AGENTA:")
print ("="%36)

print("\nIste oklade s koherentnim agentom:")

print(f" Oklada 3 sada: Agent prima {koherentan.vjerovanja['A_ili_B']*100:.0f}€ (ne 70€)")

print ("\nMoguc¢i ishodi:")

for naziv, a_istina, b_istina in ishodil[::2]: # Samo neki ishodi za krackéu

profit = 0
detalji = []

if a_istina:
profit += 100 - 60
detalji.append("+100")
else:
profit -= 60
detalji.append("-60")

if b_istina:
profit += 100 - 50
detalji.append("+100")
else:
profit -= 50
detalji.append("-50")

if a_istina or b_istina:
profit += 80 - 100
detalji.append("-100")
else:
profit += 0
detalji.append("+0")

print(£f" {naziv:8} {' '.join(detalji):15} = {profit:+.0f}€")

print ("\nKoherentan agent moZe i dobiti i izgubiti.")

print("Nema sigurnog gubitka!")

print ("\nEPISTEMOLOSKA PORUKA:")
print ("="*22)

print ("\ne Nekoherentna vjerovanja vode u sigurni gubitak")

print("e Racionalnost zahtijeva poStivanje aksioma vjerojatnosti")

print("e Bayesov pristup garantira koherentnost")

print("e Pragmaticko opravdanje epistemologije!")
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223 print ("\n> \"Koherentnost nije sve, ali bez nje sve je nista\" - de Finetti")

Output

Dutch Book Argument - Cijena nekoherentnosti

AGENT 1: Nekoherentan

Vjerovanja:
P(A) = 0.60
P(B) = 0.50

P(A V B) = 0.70 KRSI AKSIOME!

Trebalo bi biti: P(A V B) > max(0.60, 0.50) = 0.60
i P(AV B) <0.60 +0.50=1.10 (ali < 1)
Koherentan raspon: [0.60, 1.00]

AGENT 2: Koherentan

Vjerovanja:
P(A) = 0.60
P(B) = 0.50

P(A V B) = 0.80 v Zadovoljava aksiome

DUTCH BOOK PROTIV NEKOHERENTNOG AGENTA:

Kladionicar konstruira sljedele oklade:

Oklada 1: Agent se kladi ZA 'A'
Fer cijena (prema agentu): 60.0€
Dobitak ako A: 100€, Gubitak ako —A: -60£€

Oklada 2: Agent se kladi ZA 'B'
Fer cijena (prema agentu): 50.0€
Dobitak ako B: 100€, Gubitak ako —B: -50£€

Oklada 3: Agent se kladi PROTIV 'A V B'
Agent prima: 70.0€
Mora platiti 100€ ako A V B

ANALIZA ISHODA:

Moguéi ishodi:

ANB +100 +100 -100 = +60€ — Agent dobiva 60€
AN—B +100 -50 -100 = -40€ — Agent gubi 40€
—ANB -60 +100 -100 = -40€ — Agent gubi 40€

—AA—-B -60 -50 +0 = -40€ — Agent gubi 40€

Agent UVIJEK gubi novac! (Dutch Book)
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POKUSAJ PROTIV KOHERENTNOG AGENTA:

Iste oklade s koherentnim agentom:
Oklada 3 sada: Agent prima 80€ (ne 70€)

Moguéi ishodi:
ANB +100 +100 -100 = +70€
—ANB -60 +100 -100 = -30€

Koherentan agent moZe i dobiti i izgubiti.
Nema sigurnog gubitka!

EPISTEMOLOSKA PORUKA:

e Nekoherentna vjerovanja vode u sigurni gubitak

e Racionalnost zahtijeva poStivanje aksioma vjerojatnosti
e Bayesov pristup garantira koherentnost

e Pragmaticko opravdanje epistemologije!

> "Koherentnost nije sve, ali bez nje sve je nisSta" - de Finetti

Za produbljivanje razumijevanja Bayesove epistemologije kroz prakticne zadatke:

Goodmanov paradoks (grue/bleen)

Implementirajte problem "zeleno-plavih" smaragda. Pokazite kako razli¢iti priori o prirod-
nim/neprirordnim predikatima utje¢u na induktivno zakljucivanje.

Problem starih dokaza

Simulirajte situaciju gdje teorija objasnjava ve¢ poznate ¢injenice. Kako Bayesov pristup
tretira dokaze koje znamo prije teorije?

Quine-Duhemova teza

Pokazite kako se negativan eksperiment moze pripisati razli¢itim hipotezama u teorijskoj
mrezi. Implementirajte Bayesovo azuriranje za mrezu povezanih hipoteza.



184 POGLAVLJE 8. BAYESOV SVIJET

Sleeping Beauty problem

Implementirajte ovaj paradoks samolociranja. Analizirajte sukob izmedu "halfer" i "thirder"
pozicija kroz Bayesov okvir.

Kuhnove znanstvene revolucije

Modelirajte promjenu paradigme kao nagli skok u posteriornim vjerojatnostima. Kada
akumulirani dokazi dovode do "revolucije"?

Solomonoffova indukcija

Implementirajte univerzalnu indukciju koriste¢i Kolmogorovljevu slozenost kao prior. Pokazite
kako kraéi opisi imaju veéu apriornu vjerojatnost.

Akaike informacijski kriterij

Usporedite AIC s Bayesovim faktorom za selekciju modela. Pokazite trade-off izmedu slozenosti
i toc¢nosti.

Epistemicka logika

Implementirajte modalne operatore znanja i vjerovanja. Pokazite kako se Bayesovo azuriranje
uklapa u formalnu epistemologiju.

Kauzalno zakljucivanje

Implementirajte Pearl-ove do-operatore. Pokazite razliku izmedu opazajne i intervencijske
evidencije.

Socijalna epistemologija

Simulirajte mrezu agenata koji dijele dokaze. Istrazite kako se konsenzus formira kroz Bayesovo
azuriranje.

Svaki zadatak istrazuje dublje veze izmedu vjerojatnosti, znanja i racionalnog zakljucivanja.
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Kroz ovu implementaciju istrazili smo kako Bayesov teorem revolucionira nase razumijevanje
znanja i znanosti:

1. Znanje kao stupnjevito vjerovanje - ne binarna istina
2. Ucenje kao azuriranje - ne zamjena vjerovanja
3. Racionalnost kao koherentnost - pragmaticko opravdanje

4. Znanost kao konvergencija - razli¢iti putovi do istine

Bayesov pristup mijenja fundamentalna epistemoloska pitanja:

"Pitanje nije 'Sto je istina?’ veé "Koliko trebam vijerovati?’" - E.T. Jaynes

Ova promjena perspektive ima duboke implikacije:

o Filozofija znanosti: Od falsifikacije do stupnjeva potvrde
» Epistemologija: Od JTB (justified true belief) do racionalnog azuriranja

e Racionalnost: Od logicke dedukcije do vjerojatnosnog zakljuc¢ivanja

Kroz prakti¢no programiranje otkrivamo da Bayesov teorem nije samo matematicka formula,
ve¢ normativna teorija racionalnog vjerovanja - pokazuje kako bi racionalni agent trebao
mijenjati svoja uvjerenja suocen s dokazima.

"Bayesov teorem je za neizvjesnost ono Sto je aritmetika za brojanje" - John
Maynard Keynes

U svijetu nesavrsenog znanja i nepotpunih informacija, Bayesova epistemologija nudi rigorozan
okvir za navigiranje kroz neizvjesnost - ne obeéava istinu, ali garantira racionalnost.



186 POGLAVLJE 8. BAYESOV SVILJET




Poglavlje 9

Goodmanovi svijetovi: Problem in-
dukcije i strojno ucenje

9.1 Novi problem indukcije kroz prizmu racunalnih znanosti

Nelson Goodman je 1955. godine formulirao novi problem indukcije koji pokazuje temeljnu
poteskocu u razlikovanju valjanih od nevaljanih induktivnih zakljucaka. Ovaj problem ima
duboke implikacije za moderno strojno ucenje.

"Cinjenica da se smaragd moze jednako dobro opisati kao ’zelen’ ili kao ’gruen’
otkriva da svaki skup opazanja podrzava beskona¢no mnogo hipoteza." - Nelson
Goodman

U ovoj biljeznici istrazujemo kako se Goodmanova zagadka manifestira u kontekstu strojnog
ucenja kroz No-Free-Lunch teoreme.

Prije nego $to uronimo u Goodmanov novi problem, razmotrimo klasicni Humeov problem
indukcije:

Opazeni slucajevi AN Opéi zakljucak

Induktivno zakljuc¢ivanje pokusava iz konacnog broja opazanja izvesti opceniti zakon. To
je temelj znanosti, ali filozofski gledano - nema logicke nuznosti da ¢e se buduc¢a opazanja
ponasati kao prosla.

1 from dataclasses import dataclass

187
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2 from datetime import datetime, timedelta

3 import random

5 @dataclass

6 class OpaZanje:

7 """Predstavlja jedno empirijsko opazZanje."""

8 objekt: str

9 svojstvo: str

10 vrijeme: datetime

11

12 def __repr__(self):

13 return f"{self.objekt}: {self.svojstvo} (vrijeme: {self.vrijeme.date()})"

14
15 # Generiraj opazZanja smaragda

16 def generiraj_opaZzanja(n=5, svojstvo="zelen"):

17 """Generira niz opaZanja smaragda."""

18 opazanja = []

19 pocetak = datetime(2020, 1, 1)

20

21 for i in range(n):

22 vrijeme = poletak + timedelta(days=random.randint(i*200, (i+1)*200))
23 opazanja.append(OpaZanje(f"Smaragd {i+1}", svojstvo, vrijeme))

24

25 return opaZanja

26
27 # Klasicéna indukcija

28 opazanja_zeleni = generiraj_opazanja(5, "zelen")

29

30 print("Klasiéna indukcija:")

31 print ("="*20)

32 print("OpaZanja smaragda:")

33 for op in opazanja_zeleni:

34 print(£" {op}")

35 print("\nInduktivni zakljucak: Svi smaragdi su zeleni")

Output

Klasic¢na indukcija:

OpaZanja smaragda:
Smaragd 1: zelen (vrijeme: 2020-03-17)
Smaragd 2: zelen (vrijeme: 2021-01-21)
Smaragd 3: zelen (vrijeme: 2021-06-04)
Smaragd 4: zelen (vrijeme: 2022-03-01)
Smaragd 5: zelen (vrijeme: 2022-07-22)

Induktivni zakljucak: Svi smaragdi su zeleni
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Goodman uvodi novi predikat "grue" (kombinacija "green" i "blue"):

grue(z)

zelen(x) ako je z opazen prije tg

plav(z) ako je z opazen nakon tg

gdje je to neki bududéi trenutak (npr. 1. sijecnja 2100.).

Paradoks: Sva dosadasnja opazanja zelenih smaragda jednako dobro potvrduju hipotezu

"svi smaragdi su zeleni" kao i hipotezu "svi smaragdi su grueni"!

class GruePredikat:

"""Implementacija Goodmanovog 'grue' predikata."""

def __init__(self, kritiéni_trenutak):

self.t0 = kritic¢ni_trenutak

def je_grue(self, objekt, vrijeme_opaZanja):

HHHPT'O’UjeT'a,Ua je b Ob]ekt

if vrijeme_opaZanja < self.tO:

# Prije t0: grue =

zelen

return objekt.svojstvo == "zelen"

else:

# Nakon t0: grue = plav

return objekt.svojstvo == "plav"

def predvida(self, vrijeme):

S0 predvida grue hipoteza za dano vrijeme.

if vrijeme < self.tO:
return "zelen"
else:

return "plav"

# Definiraj kritiéni trenutak
t0 = datetime(2100, 1, 1)

grue_predikat = GruePredikat (t0)

print ("Goodmanov problem indukcije:")

print ("="%29)

print(£"Kritiéni trenutak to: {t0.date()}")

print ("\nProvjera hipoteza za pro$la opaZanja:")

print ("-"%38)

# Testiraj obje hipoteze na istim podacima

for op in opaZanja_zeleni[:3]:

# PrikaZi prva 3

print (f"{op.objekt} ({op.vrijeme.date()}):")

print(f" OpaZeno: {op.svojstvol}")

'grue’ u danom trenutku."""

mwmn
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38
39 # Hipoteza 1: Svi smaragdi su zeleni
40 hl_istina = op.svojstvo == "zelen"
41 print(f" H1 (zeleni): {'T' if hl_istina else 'l'} (predvida: zelen)")
42
43 # Hipoteza 2: Svi smaragdi su gruent
44 h2_predvidanje = grue_predikat.predvida(op.vrijeme)
45 h2_istina = op.svojstvo == h2_predvidanje
46 print(£f" H2 (grueni): {'T' if h2_istina else 'l'} (predvida: {h2_predvidanje} -

— {'prije' if op.vrijeme < tO else 'nakon'} to)")
a7 print()
48
49 print("Rezultat: Obje hipoteze jednako dobro objaSnjavaju sva opazanja!")
50 print(f"\nPredvidanja za buduénost (nakon {tO.date()}):")
51 print ("-"*46)
52 print(" H1 (svi zeleni): smaragdi ¢e biti zeleni")

53 print(" H2 (svi grueni): smaragdi ¢e biti plavi")

Output

Goodmanov problem indukcije:

Kriti¢ni trenutak tg: 2100-01-01

Provjera hipoteza za prosSla opazanja:
Smaragd 1 (2020-03-17):
OpaZeno: zelen
H1 (zeleni): T (predvida: zelen)
H2 (grueni): T (predvida: zelen - prije tgp)

Smaragd 2 (2021-01-21):
OpazZeno: zelen
H1 (zeleni): T (predvida: zelen)
H2 (grueni): T (predvida: zelen - prije tg)

Smaragd 3 (2021-06-04):
OpaZeno: zelen
H1 (zeleni): T (predvida: zelen)
H2 (grueni): T (predvida: zelen - prije tg)

Rezultat: Obje hipoteze jednako dobro objasSnjavaju sva opazanja!

Predvidanja za budu¢nost (nakon 2100-01-01):

H1 (svi zeleni): smaragdi €e biti zeleni
H2 (svi grueni): smaragdi €e biti plavi
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Goodmanov argument pokazuje da za svaki skup opazanja postoji beskona¢no mnogo

jednako dobro podrzanih hipoteza. Mozemo konstruirati "grue;", "grues", ...

kritiénim trenucima:

zelen(x) ako je z opazen prije ¢,
grue, (z) = : .
plav(z) ako je z opazen nakon t,

sa razli¢itim

def stvori_grue_hipotezu(kritiéni_trenutak, naziv):
"""Stvara grue hipotezu s danim kritiénim trenutkom."""
class GrueHipoteza:
def __init__(self):
self.t0 = kriticni_trenutak

self .naziv = naziv

def predvida(self, vrijeme):

return "zelen" if vrijeme < self.tO else "plav"

def provjeri(self, opaZanje):
predvidanje = self.predvida(opaZanje.vrijeme)

return opazZanje.svojstvo == predvidanje

return GrueHipoteza()

# Stvort vide alternativnih hipoteza
hipoteze = {
"standard": type('StandardHipoteza', (), {
'naziv': 'standard',
'predvida': lambda self, t: "zelen",
'provjeri': lambda self, op: op.svojstvo == "zelen"
bHO,
"grue_2030": stvori_grue_hipotezu(datetime (2030, 1, 1), "grue_2030"),
, 1), "grue_2050"),
, 1), "grue_2100"),
, 1), "grue_2200"),

"grue_2050": stvori_grue_hipotezu(datetime (2050,
"grue_2100": stvori_grue_hipotezu(datetime (2100,
"grue_2200": stvori_grue_hipotezu(datetime (2200,

print ("Beskonaénost alternativnih hipoteza:")
print ("="%37)

print("\nZa iste podatke moZemo konstruirati mnostvo hipoteza:\n")

# PrikaZti predvidanja svake hipoteze
test_vremena = [datetime(2050, 6, 15), datetime(2150, 6, 15)]

for naziv, hipoteza in hipoteze.items():
if naziv == "standard":
print(f"Hipoteza '{naziv}': Svi smaragdi su uvijek zeleni")
else:

t0_godina = int(naziv.split('_')[1])
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42 print (f"Hipoteza '{naziv}': grueni s prijelazom {tO_godina}-01-01")
43
44 for t in test_vremena:
45 print(f" Predvidanje za {t.year}: {hipoteza.predvida(t)l}")
46 print()

47

48 # Provjerti konzistentnost s postojeéim opazZanjima
49 print("Provjera konzistentnosti s opaZanjima:")
50 print("-"*40)

51

52 for naziv, hipoteza in hipoteze.items():

53 rezultati = [hipoteza.provjeri(op) for op in opaZanja_zeleni]
54 simboli = "".join(['T"' if r else 'l' for r in rezultatil)

55 tocnih = sum(rezultati)

56 print(f"{naziv}: {simboli} ({toénih}/{len(rezultati)} tocnih)")

57

58 print("\nSve hipoteze su jednako dobro podrZane postojeéim podacima!")

Output

Beskonacnost alternativnih hipoteza:

Za iste podatke mozZemo konstruirati mnoStvo hipoteza:

Hipoteza 'standard': Svi smaragdi su uvijek zeleni
Predvidanje za 2050: zelen
Predvidanje za 2150: zelen

Hipoteza 'grue_2030': grueni s prijelazom 2030-01-01
Predvidanje za 2050: plav
Predvidanje za 2150: plav

Hipoteza 'grue_2050': grueni s prijelazom 2050-01-01
Predvidanje za 2050: plav
Predvidanje za 2150: plav

Hipoteza 'grue_2100': grueni s prijelazom 2100-01-01
Predvidanje za 2050: zelen
Predvidanje za 2150: plav

Hipoteza 'grue_2200': grueni s prijelazom 2200-01-01
Predvidanje za 2050: zelen
Predvidanje za 2150: zelen

Provjera konzistentnosti s opaZanjima:
standard: TTTTT (56/5 to¢nih)
grue_2030: TTTTT (5/5 to&nih)
grue_2050: TTTTT (5/5 to¢nih)
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grue_2100: TTTTT (5/5 to&nih)
grue_2200: TTTTT (5/5 to¢nih)

Sve hipoteze su jednako dobro podrZane postojeéim podacima!

No-Free-Lunch (NFL) teoremi pokazuju da je Goodmanov problem duboko ukorijenjen u
strojnom ucenju. Teorem kaze:

> GP(L,f)=05

fer
gdje je:
e L - bilo koji algoritam ucenja

e F - skup svih mogudih ciljnih funkcija

e GP - generalizacijska performansa

Znacenje: Prosjecna performansa bilo kojeg algoritma ucenja preko svih moguéih problema
jednaka je slu¢ajnom pogadanju!

import itertools

class BooleanConcept:

"""Predstavlja Booleovu funkciju kao koncept za ucenje."""

def __init__(self, truth_table, naziv=""):
self.tablica = truth_table

self .naziv = naziv

def evaluiraj(self, ulaz):
"""Evyaluira funkciju za dant ulaz."""

return self.tablica.get(ulaz, False)

def konzistentan_s(self, skup_ucenja):
"""Provjerava je li koncept konzistentan sa skupom za ucenje."""
for ulaz, izlaz in skup_uéenja.items():
if self.evaluiraj(ulaz) != izlaz:
return False

return True

# Definiraj skup za ulenje (parcijalna tablica istinitosti)

skup_ucenja = {



23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

75

POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO
194 UCENJE

(False, False): False,
(False, True): True,
(True, False): True,

# (True, True) nije u skupu za ucenje!

# Konstruiraj dva razlicita koncepta konzistenina s podacima
# Koncept 1: XOR
xor_tablica = {

(False, False): False,

(False, True): True,

(True, False): True,

(True, True): False # XOR

# Koncept 2: OR

or_tablica = {
(False, False): False,
(False, True): True,
(True, False): True,
(True, True): True # OR

koncepti = [
BooleanConcept (xor_tablica, "XOR funkcija"),

BooleanConcept (or_tablica, "OR funkcija")

print ("No-Free-Lunch demonstracija:")
print ("="*29)
print )

# PrikaZi skup za ucenje
print("Skup za uéenje: ", end="")
print (n{u B end=" u)

for i, (ulaz, izlaz) in enumerate(skup_uéenja.items()):

if i > 0:

print(", ", end="")
ulaz_str = £"({'T' if ulaz[0] else 'L'}, {'T' if ulaz[1] else 'L'})"
izlaz_str = '[' if izlaz else 'l'

print (f"{ulaz_str}: {izlaz_str}", end="")
print (Il}ll)

testni = (True, True)
print (f"Testni primjer: ({'T' if testni[0] else 'L'}, {'T' if testni[l] else 'L'}) = ?")
print )

print("Moguéi koncepti konzistentni s podacima:")
print ("-"*42)

for i, koncept in enumerate(koncepti, 1):

print (£"Koncept {i}: {koncept.nazivl}")
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76 # Predvidanje za testni primjer
77 pred = koncept.evaluiraj(testni)
78 print(f" Predvidanje za ({'T' if testni[0] else 'L'}, {'T' if testni[1] else 'L'}):

— {'T' if pred else 'Ll'}")

79

80 # Prikazi cijelu tablicu

81 print(" Tablica:")

82 for ulaz in [(False, False), (False, True), (True, False), (True, True)]:
83 izlaz = koncept.evaluiraj(ulaz)

84 ulaz_str = f"({'T' if ulaz[0] else 'L'}, {'T"' if ulaz[1] else 'L'})"
85 izlaz_str = '[' if izlaz else '|'

86 oznaka = " V" if ulaz in skup_uenja else ""

87 print (£" {ulaz_str} — {izlaz_str}{oznakal}")

88 print ()

89
90 print("Oba koncepta su jednako valjana za dane podatke!")

91 print("Ali daju razlicita predvidanja za nevidene primjere.")

Output

No-Free-Lunch demonstracija:

Skup za uéenje: {(L, L1): L, (L, T): T, (T, 1L): T}%
Testni primjer: (T, T) =7

Moguéi koncepti konzistentni s podacima:
Koncept 1: XOR funkcija
Predvidanje za (T, T): L

Tablica:
(L, b - 1L v
(L, ™ =TV
(T, LD - TV
(r, T)y —- 1L

Koncept 2: OR funkcija
Predvidanje za (T, T): T

Tablica:
(L, L) - LV
(L, T =TV
(T, L) - T Vv
(T, T) - T

Oba koncepta su jednako valjana za dane podatke!
Ali daju razlicdita predvidanja za nevidene primjere.
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NFL teoremi pokazuju da za svaki koncept C' koji algoritam ucenja dobro nauci, postoji
"savijeni" koncept C” koji ée biti loSe naucen:

C(z) ako z € SkupUcenja

C'(z) = o
-C(z) ako z ¢ SkupUcenja

Ovo je direktna analogija s Goodmanovim "grue" predikatom!

import numpy as np

def stvori_savijeni_koncept(originalni_koncept, skup_ulenja):

wmn

"""Stvara 'savijeni' koncept koji se slaZe na skupu ucenja ali ne gemeralizira.

class SavijeniKoncept:
def __init__(self):
self.originalni = originalni_koncept

self .memorija = skup_ucenja

def predvida(self, primjer):
# Ako je primjer u skupu ucenja, koristi originalnu funkciju
for x_mem, _ in self.memorija:
if np.allclose(primjer, x_mem):

return self.originalni(primjer)

# Inace, vrati suprotno od originalne funkcije

return not self.originalni(primjer)

return SavijeniKoncept ()

# Definiraj jednostavan linearni koncept
def linearni_koncept(x):
"ihjednostavan linearnt klasifikator: z[0] + z[1] > 1"""

return x[0] + x[1] > 1

# Generiraj skup za ucenje
np.random. seed (42)
skup_uéenja_ml = []
for _ in range(6):

x = np.random.rand(2)

y = linearni_koncept (x)

skup_uéenja_ml.append((x, y))

# Stvori savijeni koncept

savijeni = stvori_savijeni_koncept(linearni_koncept, skup_uenja_ml)

print ("Konstrukcija 'savijenih' koncepata:")
print ("="%36)
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print ("\nOriginalni koncept C: jednostavna linearna granica")
print (f"Skup za uéenje: {len(skup_ulenja_ml)} primjera")

print )

# Testiraj na skupu za ulenje

print ("Performanse na skupu za ucenje:")
print ("-"x32)

toénih C = 0

toc¢nih_C_prime = 0

for x, y in skup_ucenja_ml:
pred_C = linearni_koncept (x)

pred_C_prime = savijeni.predvida(x)

print (f"Primjer ({x[0]:.1f}, {x[1]:.1f}) — ", end="")

print(f"OCekivano: {'T' if y else 'L'}, ", end="")

print(f"C: {'T"' if pred C else 'l'} {'v'' if pred C == y else 'X'}, ", end="")
print(f"C': {'T' if pred_C_prime else 'L'} {'V'' if pred_C_prime == y else 'X'}")

if pred_C == y:
to¢nih_C += 1
if pred_C_prime == y:

toénih_C_prime += 1

print (£"\nToénost na skupu za uenje:")
print(f" Koncept C: {100 * to&nih_C / len(skup_ulenja_ml):.1f}%")
print(f" Koncept C': {100 * toénih_C_prime / len(skup_uéenja_ml):.1£f}")

# Testiraj ma movim primjerima
print ("\nPerformanse na testnom skupu:")
print ("-"x30)

testni_skup = [np.random.rand(2) for _ in range(5)]
to¢nih_test_C = 0

toc¢nih_test_C_prime = 0

for x_test in testni_skup:
y_pravi = linearni_koncept(x_test) # "Prava" oznaka
pred_C = linearni_koncept(x_test)

pred_C_prime = savijeni.predvida(x_test)

print(£"Test ({x_test[0]:.1f}, {x_test[1]:.1f}) — ", end="")
print(£"C: {'T' if pred_C else 'L'}, ", end="")
print(f"C': {'T' if pred_C_prime else 'L '}", end="")
if pred_C '= pred_C_prime:
print (" (razliéito!)")
else:

print )

if pred_C == y_pravi:
tocénih_test_C += 1
if pred_C_prime == y_pravi:

toc¢nih_test_C_prime += 1
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94 print(£"\nToénost na testnom skupu:")

95 print(f" Koncept C: {100 * tolnih_test_C / len(testni_skup):.1f}}, (dobar)")
96 print(f" Koncept C': {100 * tolnih_test_C_prime / len(testni_skup):.1f}} (los!)")

97 print("\nC' je 'savijen' - slaZe se s C na skupu za ulenje,")

98 print("ali se ponaSa suprotno na novim primjerima!")

Output

Konstrukcija 'savijenih' koncepata:
Originalni koncept C: jednostavna linearna granica
Skup za ucenje: 6 primjera
Performanse na skupu za uclenje:
Primjer (0.4, 1.0) — Oc&ekivano: T, C: T v/, C': T
Primjer (0.7, 0.6) — OC&ekivano: T, C: T v, C': T
Primjer (0.2, 0.2) — Oc&ekivano: L, C: L v/, C': L
Primjer (0.1, 0.9) — O0&ekivano: 1, C: L v/, C': L
Primjer (0.6, 0.7) — O0c&ekivano: T, C: T v/, C': T
Primjer (0.0, 1.0) — O¢ekivano: 1, C: L v/, C': L
Toénost na skupu za ucenje:

Koncept C: 100.0%

Koncept C': 100.0%
Performanse na testnom skupu:
Test (0.8, 0.2) — C: T, C': L (razli&ito!)
Test (0.2, 0.2) — C: 1, C': T (razlicito!)
Test (0.3, 0.5) — C: 1, C': T (razli&ito!)
Test (0.4, 0.3) — C: 1, C': T (razlicito!)
Test (0.6, 0.1) — C: L, C': T (razli&ito!)
Tocnost na testnom skupu:

Koncept C: 100.0% (dobar)

Koncept C': 0.0% (lo§!)
C' je 'savijen' - slaZe se s C na skupu za ucenje,
ali se ponaSa suprotno na novim primjerima!

SNENENENENEN
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Induktivni bias kao nuZnost

NFL teoremi i Goodmanov problem pokazuju da induktivni bias nije nedostatak veé
nuznost svakog sustava ucenja. Bez pretpostavki o prirodi problema, ucenje je nemoguce.

Razlic¢iti algoritmi imaju razlic¢ite induktivne pristranosti:

o Linearna regresija: pretpostavlja linearnu vezu

Stabla odlucivanja: pretpostavljaju hijerarhijsku strukturu

o Neuronske mreze: pretpostavljaju kompozicionalnost

e k-NN: pretpostavlja lokalnu glatkoéu

def najblizi_susjed(toCka, skup_uéenja):
"""Jednostavan 1-NN klasifikator.”"""
min_udaljenost = float('inf')

najbliza_oznaka = None

for x, y in skup_ucenja:
udaljenost = np.sqrt((toékal0] - x[0])**2 + (tockall] - x[1])*%2)
if udaljenost < min_udaljenost:
min_udaljenost = udaljenost

najbliza_oznaka = y
return najbliZa_oznaka
def xor_funkcija(x):
"""XOR funkcija: istinito ako je tocno jedan ulaz > 0.5."""

return (x[0] > 0.5) != (x[1] > 0.5)

# Generiraj XOR podatke

xor_podaci = [
(np.array([0.1, 0.1]), False),
(np.array([0.1, 0.9]), True),
(np.array([0.9, 0.1]), True),
(np.array([0.9, 0.9]), False),
(np.array([0.3, 0.3]), False),
(np.array([0.3, 0.7]), True),
(np.array([0.7, 0.3]), True),
7, O

(np.array([0. .71), False),

# Definiraj razlicite algoritme s razlicitim biasima
algoritmi = [

("Linearna granica (bias: linearnost)",

lambda x: x[0] + x[1] > 1),
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("NajbliZi susjed (bias: lokalna glatkoca)",
lambda x: najbliZi_susjed(x, xor_podaci)),
("XOR funkcija (bias: toéno odgovara problemu)",
xor_funkcija),

("Uvijek T (bias: konstantnost)",

lambda x: True),

print("Utjecaj induktivnog biasa:")

print ("="*27)

print (f"\nPodatkovni skup: {len(xor_podaci)} tolaka koje Zine XOR uzorak")
print ("\nRazliciti algoritmi s razliéitim biasima:")

print ("-"x43)

test_tocke = [np.array([0.5, 0.5]), np.array([0.2, 0.8])]

for i, (naziv, algoritam) in enumerate(algoritmi, 1):
print(£"\n{i}. {nazivl}")

# Testiraj na nekoliko tocaka
for tocka in test_tocke:
pred = algoritam(tocka)
print(f" Predvidanje za ({tockal[0]:.1f}, {to&ka[1]:.1f}): {'T' if pred else 'L'}")

# Izracunaj tocnost
to¢nih = sum(l for x, y in xor_podaci if algoritam(x) == y)
toénost = 100 * tolnih / len(xor_podaci)

print(£" To¢nost na XOR podacima: {to&nost:.1f}J")

# Komentar
if toCnost > 90:
print(" — SavrSen jer ima pravi bias")
elif tocnost > 60:
print(" — Bolji, ali jo8 uvijek ogranicen")
else:
if "linearnost" in mnaziv:
print(" — Los za XOR zbog krivog biasa")
else:

print(" — LoS zbog previSe jednostavnog biasa'")

print ("\nZakljucak: Uspjeh uéenja ovisi o podudaranju")

print("izmedu induktivnog biasa i stvarnog problema!")

Output

Utjecaj induktivnog biasa:

Podatkovni skup: 8 tolaka koje Cine XOR uzorak

Razlic¢iti algoritmi s razliditim biasima:
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1. Linearna granica (bias: linearnost)
Predvidanje za (0.5, 0.5): L
Predvidanje za (0.2, 0.8): L
To¢nost na XOR podacima: 25.0%

— LoS za XOR zbog krivog biasa

2. Najblizi susjed (bias: lokalna glatkoca)
Predvidanje za (0.5, 0.5): L
Predvidanje za (0.2, 0.8): T
To¢nost na XOR podacima: 100.0%

— SavrSen jer ima pravi bias

3. XOR funkcija (bias: tolno odgovara problemu)
Predvidanje za (0.5, 0.5): L
Predvidanje za (0.2, 0.8): T
To¢nost na XOR podacima: 100.0%
— SavrSen jer ima pravi bias

4. Uvijek T (bias: konstantnost)
Predvidanje za (0.5, 0.5): T
Predvidanje za (0.2, 0.8): T
To¢nost na XOR podacima: 50.0%

— Lo8 zbog previSe jednostavnog biasa

Zakljucak: Uspjeh ucenja ovisi o podudaranju
izmedu induktivnog biasa i stvarnog problema!

Projektibilnost vs. neprojektibilnost

Goodman razlikuje projektibilne i neprojektibilne predikate:

e Projektibilni: "zelen', "okrugao", "tezi od 1lkg"

e Neprojektibilni: "grue’, "gruen s prijelazom 2100."

Ali sto ¢ini predikat projektibilnim? Goodman sugerira da je to stvar ukorijenjenosti
(entrenchment) u nasem jeziku i praksi.

Implikacije za AI i AGI

1. Nema univerzalnog algoritma ucenja - svaki mora imati bias

2. Prijelaz od podataka na znanje zahtijeva pretpostavke
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3. Ljudska inteligencija mozda uspijeva jer ima evolucijski oblikovane biase

4. AGI sustavi moraju rijesiti problem izbora pravog biasa

import random

class Agent:

"""Agent s odredenim induktivnim biasom."""

def __init__(self, bias_tip):
self.bias = bias_tip

self .fitness = 0

def predvida(self, x):
"""Predvidanje ovisno o biasu."""
if self.bias == "linearni":
return x[0] + x[1] > 1
elif self.bias == "kvadratni":
return x[0]**2 + x[1]*x2 > 0.5
elif self.bias == "neutralni":
return random.choice([True, False])

elif self.bias == "slozeni_1":

return (x[0] > 0.5) != (x[1] > 0.5) # PribliZno XOR

elif self.bias == "sloZeni_2":
return abs(x[0] - x[1]) > 0.3
elif self.bias == "kvadratni_modificiran":

return (x[0] - 0.5)**2 + (x[1] - 0.5)*%2 < 0.3

else:

return False

def evaluiraj(self, test_podaci):
"""Eyaluira agenta na test podacima."""
tocnih = 0
for x, y in test_podaci:
if self.predvida(x) ==
to¢nih += 1
self .fitness = toénih / len(test_podaci)

return self.fitness

def evolucija_biasa(generacije=20, veliéina_populacije=20):

""rSimulira evoluciju tnduktivnog biasa. """

# Mogucét biast

biasi = ["linearni", "kvadratni", "neutralni',

"sloZeni_1", "sloZeni_2", "kvadratni_modificiran"]

# Stvort pocletnu populaciju

populacija = [Agent(random.choice(biasi)) for

# Test podact (XOR problem)
test_podaci = [
(np.array([0.2, 0.2]), False),

in range(veliéina_populacije)]
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print("Simulacija evolucije induktivnog biasa:")
print ("="x41)

print(f"\nInicijalna populacija: {velilina_populacije} agenata s razliéitim biasima")

print ("Okolis: jednostavan XOR svijet")
print("\nEvolucija kroz generacije:")

print ("-"%27)

povijest = []

for gen in range(generacije):
# Evaluiraj sve agente
for agent in populacija:

agent.evaluiraj(test_podaci)

# Sortiraj po fitness-u

populacija.sort(key=lambda a: a.fitness, reverse=True)

# Zapisivanje najboljih
if gen % 5 == 0 or gen == generacije - 1:
najbolji = populacijal[0]
print(f"Generacija {gen+1}: Najbolji bias = {najbolji.bias} "
f£"({najbolji.fitness*100:.1f}), tocnosti)")

# Selekcija i reprodukcija (elitizam + turnir)

nova_populacija = populacijal:5] # ZadrzZi najboljih 5

while len(nova_populacija) < veliina_populacije:
# Turnirska selekcija
turnir = random.sample(populacijal:10], 2)

pobjednik = max(turnir, key=lambda a: a.fitness)

# Stvori novog agenta s moguéom mutacijom

if random.random() < 0.1: # 10/ Sanse za mutaciju
novi_bias = random.choice(biasi)

else:

novi_bias = pobjednik.bias

nova_populacija.append(Agent (novi_bias))

populacija = nova_populacija
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102
103 # Finalna statistika
104 print ("\nDistribucija biasa u finaliznoj populaciji:")
105 print ("-"x45)
106
107 bias_count = {}
108 for agent in populacija:
109 bias_count [agent.bias] = bias_count.get(agent.bias, 0) + 1
110
111 for bias, count in sorted(bias_count.items(), key=lambda x: x[1], reverse=True):
112 postotak = 100 * count / velifina_populacije
113 print (£"{bias}: {postotak:.1f}")
114
115 print("\nZakljulak: Evolucija prirodno selektira biase")
116 print("koji odgovaraju strukturi okolisa!")

117
118 # Pokrent simulaciju

119 evolucija_biasa()

Output

Simulacija evolucije induktivnog biasa:

Inicijalna populacija: 20 agenata s razlicitim biasima
OkoliS: jednostavan XOR svijet

Evolucija kroz generacije:

Generacija 1: Najbolji bias = kvadratni (83.3%, to&nosti)
Generacija 6: Najbolji bias = sloZeni_1 (100.0% tolnosti)
Generacija 11: Najbolji bias = sloZeni_1 (100.0% tocnosti)
Generacija 16: Najbolji bias = sloZeni_1 (100.0% to&nosti)
Generacija 20: Najbolji bias = sloZeni_1 (100.0% tocnosti)

Distribucija biasa u finaliznoj populaciji:
sloZeni_1: 95.0%
sloZeni 2: 5.0%

ZakljucCak: Evolucija prirodno selektira biase
koji odgovaraju strukturi okoliSa!

Kako se nositi s Goodmanovim problemom u praksi?

1. Regularizacija - ogranicava slozenost hipoteza
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2. Krizna validacija - testira generalizaciju
3. Occamova ostrica - preferira jednostavnije hipoteze
4. Domensko znanje - koristi ljudsko znanje o problemu

5. Ansambl metode - kombinira razli¢ite biase

1 def occamova_oStrica(hipoteze):
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def

"""Odabire najjednostavniju hipotezu."""
# Definiraj sloZenost kao broj parametara/prijelaza
slozenosti = {}
for naziv, hip in hipoteze.items():
if naziv == "standard":
slozenosti[naziv]l = 1 # Najjednostavnija
else:
# Grue hipoteze imaju dodatni parametar (vrijeme prijelaza)

sloZenosti[naziv] = 2

# Odabert hipotezu s majmanjom sloZenoScéu
najjednostavnija = min(sloZenosti.items(), key=lambda x: x[1])

return najjednostavnijal[0], sloZenosti

bayesov_pristup(hipoteze, opaZanja, priori):
"""Koristi Bayesovo zakljucivanje s priorima."""

posteriori = {}

for naziv, hip in hipoteze.items():
# Likelihood - sve hipoteze objasnjavaju podatke jednako dobro
likelihood = 1.0 # Pojednostavljeno

# Posterior proporcionalan je prior * likelihood

posteriori[naziv] = priori[naziv] * likelihood

# Normaliziraj
ukupno = sum(posteriori.values())
for naziv in posteriori:

posteriori[naziv] /= ukupno

# Odaberi hipotezu s najveéim posteriorom
najbolja = max(posteriori.items(), key=lambda x: x[1])

return najbolja[0], posteriori

ansambl_metoda(hipoteze, teZine):
"""Kombinira predvidanja viSe hipoteza."""

test_vremena = [

datetime (2025, 1, 1),
datetime (2040, 1, 1),
datetime (2060, 1, 1),
datetime(2110, 1, 1)
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predvidanja

= {r

for t in test_vremena:

glasovi

= {"zelen": 0, "plav": 0}

for naziv, hip in hipoteze.items():

pred = hip.predvida(t)

glasovi[pred] += teZine[naziv]

predvidanjalt.year] = glasovi

return predvidanja

# Demonstractija

print("Praktiéna rjeSenja za Goodmanov problem:")

print ("="*41)

print ("\nTest razliitih pristupa na 'grue' problemu:")

# Pripremt hipoteze

test_hipoteze =

"standard":

"grue_2030":
"grue_2050":
"grue_2100":

{

hipoteze["standard"],
hipoteze["grue_2030"],
hipoteze["grue_2050"],
hipoteze["grue_2100"]

# 1. Bez regularizacije

print("\nl. Bez

regularizacije (prihvacéa sve hipoteze):")

print(f"  Razmatrane hipoteze: {', '.join(test_hipoteze.keys())}")
print(" Odabrana: standard (proizvoljan izbor)")
print (" Problem: Nema kriterija za izbor!")

# 2. Occamova oStrica

print("\n2. Occamova oStrica (preferira jednostavnije):")

najbolja_occam,

sloZzenosti = occamova_oStrica(test_hipoteze)

print("  SloZenost hipoteza:")

for naziv, sloz
komentar =

print(£"

in sorted(sloZenosti.items(), key=lambda x: x[1]):

" (najjednostavnija)" if sloz == 1 else ""

{naziv}: {sloz}{komentarl}")

print(f"  Odabrana: {najbolja_occam}")

print(" Razlog: NajniZa sloZenost")

# 3. Bayesov pristup

print("\n3. Bayesov pristup (koristi priore):")

priori = {

"standard":

"grue_2030":
"grue_2050":
"grue_2100":

}
najbolja_bayes,

print("  Prior

for naziv, p in

0.7, # Visok prior za standardnu hipotezu
0.1,
0. il
0.1

posteriori = bayesov_pristup(test_hipoteze, opaZanja_zeleni, priori)

vjerojatnosti:")

priori.items():
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print (£" {naziv}: {p:.3f}")
print(" Posterior (nakon opaZanja):")
for naziv, p in posteriori.items():

print(£" {naziv}: {p:.3f}")
print(f"  Odabrana: {najbolja_bayesl}")

print(" Razlog: Najvisi posterior")

# 4. Ansambl metoda
print("\n4. Ansambl metoda (kombinira hipoteze):")
tezine = {
"standard": 0.7,
"grue_2030": 0.1,
"grue_2050": 0.1,
"grue_2100": 0.1
}
ansambl_pred = ansambl_metoda(test_hipoteze, tezine)
print("  TeZinski prosjek predvidanja:")
for godina, glasovi in ansambl_pred.items():
ukupno = sum(glasovi.values())
postotak_zelen = 100 * glasovi["zelen"] / ukupno
postotak_plav = 100 * glasovi["plav"] / ukupno
print(f"  Za {godinal}: {postotak_zelen:.1f}) zeleno, {postotak_plav:.1f}} plavo")

print(" Predvidanje: Ponderirana kombinacija")

print("\nZakljucak: Prakticna rjeSenja koriste dodatne")

print ("kriterije izvan Eiste logike za izbor hipoteza.")

Output

Prakticna rjeSenja za Goodmanov problem:

Test razlicitih pristupa na 'grue' problemu:

1. Bez regularizacije (prihvaca sve hipoteze):
Razmatrane hipoteze: standard, grue_2030, grue_2050, grue_2100
Odabrana: standard (proizvoljan izbor)
Problem: Nema kriterija za izbor!

2. Occamova oStrica (preferira jednostavnije):
SloZenost hipoteza:
standard: 1 (najjednostavnija)

grue_2030: 2
grue_2050: 2
grue_2100: 2

Odabrana: standard
Razlog: NajniZa sloZenost

3. Bayesov pristup (koristi priore):
Prior vjerojatnosti:
standard: 0.700
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grue_2030: 0.100
grue_2050: 0.100
grue_2100: 0.100

Posterior (nakon opaZanja):
standard: 0.700
grue_2030: 0.100
grue_2050: 0.100
grue_2100: 0.100

Odabrana: standard

Razlog: NajviSi posterior

. Ansambl metoda (kombinira hipoteze):

TeZinski prosjek predvidanja:

Za 2025: 100.0% zeleno, 0.0% plavo
Za 2040: 90.0% zeleno, 10.0% plavo
Za 2060: 80.0% zeleno, 20.0% plavo
Za 2110: 70.0% zeleno, 30.0% plavo
Predvidanje: Ponderirana kombinacija

Zakljucak: Prakticna rjeSenja koriste dodatne
kriterije izvan Ciste logike za izbor hipoteza.

Kroz ovu biljeznicu istrazili smo duboku vezu izmedu Goodmanovog novog problema

indukcije i No-Free-Lunch teorema u strojnom ucenju:

Kljuc¢ni uvidi:

dobro podrzanih hipoteza

. Beskonacnost hipoteza: Za svaki skup podataka postoji beskona¢no mnogo jednako

Nuznost biasa: Bez induktivnog biasa, ucenje je nemoguce - to nije bug veé feature!

NFL kao formalizacija: No-Free-Lunch teoremi su matematicka formalizacija Good-

manovog filozofskog argumenta

Evolucija i bias: Ljudska sposobnost ucenja mozda uspijeva zbog evolucijski oblikovanih

biasa

izbora medu hipotezama

Filozofske implikacije:

. Prakticna rjeSenja: Regularizacija, Occamova oStrica i Bayesov pristup nude nacine

Goodmanov problem pokazuje da ¢ista logika nije dovoljna za induktivno zakljuc¢ivanje.
Trebamo dodatne kriterije - jednostavnost, priore, domensko znanje - koji nisu ¢isto logicki.
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Implikacije za AI:

Svaki sustav umjetne inteligencije mora rijesiti Goodmanov problem implicitnim ili eksplicitnim
izborom induktivnog biasa. Nema univerzalnog algoritma ucenja - uspjeh ovisi o
podudaranju izmedu biasa algoritma i strukture problema.

Kao $to Goodman zakljucuje:

"Valjanost induktivnog zakljucka nije stvar logike veé stvar povijesti uporabe
predikata."

Mozda je klju¢ uspjesnog strojnog ucenja u tome da naucimo kako odabrati prave biase za
prave probleme - lekcija koju evolucija uci ve¢ milijunima godina.
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Dodatak A

Uvod u Python za studente filozofije
i ostalih ne-tehnickih grupa

A.1 Zasto bi se filozof zanimao za programiranje?

Na prvi pogled, svijet filozofije i svijet programiranja mogu se ¢initi kao dva potpuno odvojena
svemira. Jedan se bavi vjeénim pitanjima o smislu, postojanju i vrijednostima, dok se drugi
bavi preciznim uputama za strojeve. Medutim, ispod povrsine, ova dva svijeta dijele duboke i
iznenadujuce veze. Logika, temeljni alat filozofske analize, ujedno je i srce svakog racunalnog
programa. Nacin na koji strukturiramo argumente, definiramo pojmove i izvodimo zakljucke
u filozofiji ima svoj odraz u nacinu na koji pisemo kod.

Ucenje programskog jezika Python, stoga, za studenta filozofije nije samo stjecanje tehnicke
vjestine, vec¢ i prilika za istrazivanje poznatih koncepata iz nove perspektive. Kroz Python,
apstraktni pojmovi poput varijabli, uvjeta i petlji postaju konkretni alati s kojima mozete
raditi, eksperimentirati i stvarati.

Ovo poglavlje je osmisljeno kao blagi uvod u Python, posebno prilagoden studentima huma-
nistickih i drustvenih znanosti. Neé¢emo se baviti slozenim matematickim problemima niti
dubokim tehnickim detaljima. Umjesto toga, fokusirat ¢emo se na osnove jezika, koristeéi
primjere koji su vam bliski: analizu teksta, rad s rije¢ima i recenicama, te istrazivanje ideja
kroz kod. Koristit ¢emo se Jupyter biljeznicama, interaktivnim okruzenjem koje omoguéuje
pisanje koda, teksta i vizualizacija na jednom mjestu, ¢ineé¢i ucenje intuitivnim i zabavnim.

Dok budete prolazili kroz ovo poglavlje, poticem vas da ne gledate na kod samo kao na niz
naredbi, ve¢ kao na novi nacin izrazavanja i strukturiranja misli. Mozda cete otkriti da vam
ucenje programiranja moze pomod¢i da postanete precizniji u svom filozofskom promisljanju,
jasniji u svom izrazavanju i kreativniji u svom pristupu problemima. Dobrodosli u svijet
Pythonal

A.2 Osnovni pojmovi: Varijable, tipovi podataka i izrazi
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U filozofiji, ¢esto koristimo simbole ili nazive kako bismo predstavili slozene ideje. Na primjer,
u logici, slovo P moze predstavljati propoziciju "Svi ljudi su smrtni". Na slican nacin, u
Pythonu koristimo varijable kao imenovane spremnike za pohranu podataka.

Definicija A.1. Varijabla je imenovani prostor u memoriji koji sluzi za pohranu
vrijednosti. Ime varijable (identifikator) koristimo kako bismo pristupili pohranjenoj
vrijednosti.

Varijablu mozete zamisliti kao oznaku koju pridruzujete nekoj vrijednosti. Operator dodjele,
znak jednakosti (=), koristi se za dodjeljivanje vrijednosti varijabli.

Dodjeljivanje vrijednosti varijablama.

1 pozdrav = "Zdravo, svijete!"
2 godinarodenjakanta = 1724
3 pipriblizno = 3.14159

U ovom primjeru, pozdrav, godinarodenjakanta i pipriblizno su nazivi varijabli. Jednom
kada definiramo varijablu, mozemo je koristiti u daljnjem kodu, na primjer za ispis njezine
vrijednosti pomocéu ugradene funkcije print ().

1 print (pozdrav)
2 print(godinarodenjakanta)

Zdravo, svijete! 1724

U filozofiji, razlikujemo razli¢ite vrste pojmova: konkretne, apstraktne, pojedinacne, opce.

Sli¢no tome, u Pythonu, svaka vrijednost pripada odredenom tipu podataka. Osnovni tipovi
podataka koje ¢emo za pocetak koristiti su:

String (str): Niz znakova, odnosno tekstualni podaci. Stringovi se uvijek piSu unutar
navodnika (jednostrukih " ili dvostrukih ""). Primjeri: "Sokrat", ’Platonova Drzava’.

Integer (int): Cijeli brojevi, bez decimalnog dijela. Primjeri: 42, -399, 2025.

Float (float): Brojevi s pomi¢nim zarezom (decimalni brojevi). Primjeri: 3.14, 9.81,
-0.5.

e Boolean (bool): Logicka ili istinitosna vrijednost. Moze imati samo dvije vrijednosti:
True (istina) ili False (laz).

Python je dinamicki tipiziran jezik, Sto znaéi da ne moramo unaprijed deklarirati tip varijable.
Interpretator automatski prepoznaje tip podatka kada dodijelimo vrijednost. Tip varijable
mozemo provjeriti pomoéu ugradene funkcije type ().
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Provjera tipova podataka.

filozof = "Aristotel"
godinarodenja = -384
visinaumetrima = 1.7
jeliziv = False

print (type(filozof))
print (type(godinarodenja))
print (type(visinaumetrima))

1
2
3
4
5
6
7
8
9 print (type(jeliziv))

<class ’str’> <class ’int’> <class ’float’> <class ’bool’>

U logici, kombiniramo propozicije pomocu veznika (A, V,—) kako bismo stvorili slozenije
izraze. U Pythonu, izrazi su kombinacije vrijednosti, varijabli i operatora koje se izracunavaju
(evaluiraju) kako bi proizvele novu vrijednost.

o Aritmeticki izrazi: Koriste standardne matematicke operatore (+, -, *, /).

1a=10

2b =25

3 zbroj =a+b
4 print(zbroj)

15
o String izrazi: Operator + se moze koristiti za spajanje (konkatenaciju) stringova.

1 ime = "Immanuel"

2 prezime = "Kant"

3 punoime = ime + " " + prezime
4 print(punoime)

Immanuel Kant

A.3 Strukture podataka: Organiziranje misli

Dok osnovni tipovi podataka predstavljaju pojedinacne vrijednosti, strukture podataka
sluze za organiziranje i pohranu vise vrijednosti u jednoj varijabli.
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U filozofskim tekstovima, ¢esto nailazimo na nabrajanja ili nizove ideja, poput Aristotelovih
cetiriju uzroka. U Pythonu, liste su strukture podataka koje nam omogucuju pohranu
uredenog niza elemenata. Elementi liste se navode unutar uglatih zagrada [], odvojeni
zarezima.

Definicija A.2. Lista (1ist) je promjenjiva, uredena kolekcija elemenata. "Uredena'
znaci da elementi zadrzavaju redoslijed kojim su dodani. "Promjenjiva" znac¢i da mozemo
dodavati, uklanjati ili mijenjati elemente nakon sto je lista stvorena.

Kreiranje i pristupanje elementima liste.

1 aristoteloviuzroci = ["materijalni", "formalni", "djelatni", "svrsni"] #
— Popiy Aristotelovih uzroka

2

3 # Pristupanje elementima pomocéu indeksa
4 # Indeksiranje pocinje od 0!

5 prviuzrok = aristoteloviuzrocil[0]

6 treciuzrok = aristoteloviuzroci[2]
7
8
9

print ("Prvi uzrok je:", prviuzrok)
print ("Treéi uzrok je:", treciuzrok)

Prvi uzrok je: materijalni Treci uzrok je: djelatni

Liste su promjenjive. MoZemo im dodavati nove elemente metodom append() ili uklanjati
postoje¢e metodom remove ().

1 aristoteloviuzroci.append("imaginarni") # Dodavanje petog, "imaginarnog"
— uzroka
print(aristoteloviuzroci)

# Uklanjanje "imaginarnog" uzroka
aristoteloviuzroci.remove("imaginarni")
print(aristoteloviuzroci)

(<IN B VU )

[’materijalni’, ’formalni’, ’djelatni’, ’svrdni’, ’imaginarni’] [’materijalni’,
’formalni’, ’djelatni’, ’svrsni’]

U filozofiji, ¢esto definiramo pojmove tako da im pridruzujemo njihove definicije. U Pythonu,
rjecnici (dict) omoguéuju pohranu podataka u obliku parova kljué-vrijednost. Kljucevi
su jedinstveni i koriste se za pristup pripadajué¢im vrijednostima.
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Definicija A.3. Rjecnik (dict) je promjenjiva, neuredena kolekcija parova kljuc-
vrijednost. Svaki klju¢ mora biti jedinstven unutar rjecnika.

Rjecnici se definiraju unutar viticastih zagrada , a parovi kljué-vrijednost odvojeni su dvotoc-
kom.

Kreiranje i koristenje rjecnika.

1 filozofskirjecnik = {

"epistemologija": "grana filozofije koja se bavi znanjem",

"metafizika": "grana filozofije koja se bavi prvim uzrocima i principima
— bica",

"etika": "grana filozofije koja se bavi moralom"

w N

4

8 +

6

7 # Pristupanje vrijednosti pomoéu kljuca

s definicijaetike = filozofskirjecnik["etika"]

9 print(definicijaetike)

10

11 # Dodavanje movog para

12 filozofskirjecnik["logika"] = "znanost o metodama i principima ispravnog
— zakljucivanja"

3 print(filozofskirjecnik["logika"])

=

grana filozofije koja se bavi moralom znanost o metodama i principima ispravnog
zakljuCivanja

A.4 Kontrola toka: Usmjeravanje argumentacije

Programi se ne izvrsavaju uvijek linearno, od prve do zadnje naredbe. Kontrola toka odnosi
se na naredbe koje nam omogucuju da usmjeravamo tijek izvrSavanja programa, donosimo
odluke i ponavljamo operacije.

if, elif., else

U filozofskoj argumentaciji, ¢esto koristimo uvjetne recenice oblika "Ako P, onda @Q". U
Pythonu, uvjetne naredbe nam omoguc¢uju da izvrsimo odredeni dio koda samo ako je
zadovoljen neki uvjet. Uvjet je izraz koji se evaluira kao True ili False.

Koristenje if-else strukture.

tvrdnja = "Sokrat je smrtan"

print("Tvrdnja se odnosi na Sokrata.")

1
2
3 if "Sokrat" in tvrdnja:
4
5| else:
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6 print("Tvrdnja se ne odnosi na Sokrata.")

Tvrdnja se odnosi na Sokrata.
Mozemo koristiti i elif (skradeno od else if) za provjeru vise uzastopnih uvjeta.

godina = 1804

1
2
3 if godina < 476:

4 print ("Anticka filozofija")

5 elif 476 <= godina < 1500:

6 print("Srednjovjekovna filozofija")

i else:

8 print("Moderna i suvremena filozofija")

Moderna i suvremena filozofija

for

Cesto je potrebno ponoviti istu radnju vise puta. Na primjer, analizirati svaku rije¢ u recenici.
U Pythonu, for petlja nam omogucéuje da iteriramo (prolazimo) kroz elemente sekvence
(poput liste ili stringa) i za svaki element izvrsimo odredeni blok koda.

Iteriranje kroz listu pomoc¢u for petlje.

stoickevrline = ["mudrost", "pravednost", "hrabrost", "umjerenost"]

1
2
3 print("Prema stoicima, temeljne vrline su:")
4 for vrlina in stoickevrline:

5

print("- " + vrlina)
Prema stoicima, temeljne vrline su: - mudrost - pravednost - hrabrost -
umjerenost

U ovom primjeru, varijabla vrlina se naziva varijabla petije. U svakom prolasku (iteraciji)
kroz petlju, ona poprima vrijednost sljedeéeg elementa iz liste stoickevrline.

A.5 Funkcije: Modularizacija i ponovna upotreba misli

U filozofiji, kompleksne ideje Cesto razlazemo na manje, razumljivije dijelove. U Pythonu,
funkcije nam omogucéuju da grupiramo niz naredbi u logicku cjelinu koju mozemo pozvati
vise puta. Time se izbjegava ponavljanje koda i programi postaju organiziraniji i laksi za
¢itanje.
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Definicija A.4. F‘unkcija je imenovani blok koda koji izvrsava odredeni zadatak. Moze
primiti ulazne podatke (argumente) i vratiti izlaznu vrijednost.

Funkcije definiramo pomocu kljucne rijeci def.
Definiranje i pozivanje jednostavne funkcije.

def pozdravifilozofa(ime):

mmnn

1
2
3 Ova funkcija ispisuje pozdrav filozofu Cije je ime
4 prolijedeno kao argument.

5 mimn

6

print("Pozdrav, " + ime + "!")
7
8 # Pozivanje funkcije
9 pozdravifilozofa("Platon")
10 pozdravifilozofa("Nietzsche")

Pozdrav, Platon! Pozdrav, Nietzsche!

Tekst unutar trostrukih navodnika odmah nakon definicije funkcije naziva se docstring i sluzi
kao dokumentacija funkcije.

Funkcije mogu vracati vrijednost pomoc¢u naredbe return. Vraéena vrijednost se tada moze
pohraniti u varijablu ili koristiti u daljnjim izrazima.

Funkcija koja vraca vrijednost.

1 def sastaviime(ime, prezime):

2 """Sastavlja puno ime iz dva dijela."""
3 return ime + " " + prezime
4

5 punoimefilozofa = sastaviime("Simone", "de Beauvoir")
6 print(punoimefilozofa)

Simone de Beauvoir

A.6 Primjer iz prakse: Analiza filozofskog teksta

Sada ¢emo primijeniti sve §to smo naucili na konkretnom primjeru: analizi kratkog filozofskog
teksta. Cilj nam je prebrojati koliko se puta svaka rije¢ pojavljuje u poznatoj Descartesovoj
izreci.

Brojanje rijeci u tekstu.
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1 tekst = "Mislim, dakle jesam. Jesam, dakle postojim." # Korak 1: Definiramo
— tekst za analizu
print ("Originalni tekst:", tekst)

# Korak 2: Priprema teksta

# Pretvaramo sva slova u mala slova kako 'Mislim' % 'mislim' me b%i bili
— razlicdite riject

tekstmali = tekst.lower()

# Uklanjamo interpunkcijske znakove

tekstbeztocke = tekstmali.replace('.', '')

tekstcisti = tekstbeztocke.replace(',', '')

10 print("0¢isceni tekst:", tekstcisti)

11

12 # Korak 3: Tokenizactija - razdvajanje teksta u listu rijels
13 rijeci = tekstcisti.split()

14 print("Lista rijeci:", rijeci)

15

16 # Korak 4: Brojanje rijeli pomoclu rjeiénika

17 brojacrijeci = {}

18 for rijec in rijeci:

(SIS VI V]

© w0 N O

19 if rijec in brojacrijeci:

20 # Ako rijec wel postoji u rjecniku, poveéaj brojac za 1

21 brojacrijecilrijec] = brojacrijecilrijec] + 1

22 else:

23 # Ako je ovo prvo pojavljivanje rijeci, dodaj je u rjelnik s
— vrtjednoSéu 1

24 brojacrijecilrijec] = 1

25

26 # Korak 5: Ispis rezultata

27 print ("\nFrekvencija rijeci:")

28 for rijec, broj in brojacrijeci.items():
29 print(f"'{rijec}': {broj}")

Originalni tekst: Mislim, dakle jesam. Jesam, dakle postojim. 0ZCiSc€eni tekst:
mislim dakle jesam jesam dakle postojim Lista rijeci: [’mislim’, ’dakle’,
’jesam’, ’jesam’, ’dakle’, ’postojim’]

Frekvencija rijecCi: ’mislim’: 1 ’dakle’: 2 ’jesam’: 2 ’postojim’: 1

Ovaj primjer integrira varijable, stringove i njihove metode (. lower (), .replace(), .split()),
liste, rje¢nike, for petlju i if-else uvjetnu logiku kako bi se rijesio konkretan problem iz
domene analize teksta.

Vjezbe za poglavlje 1

Vijezba A.1. Kreirajte rjecnik koji sadrzi pet vasih omiljenih filozofa kao kljuceve, a njihove
glavne filozofske ideje ili djela kao vrijednosti. Zatim, koriste¢i for petlju, ispisite svakog
filozofa i njegovu ideju u formatu: Ime Filozofa: Glavna ideja.

Vjezba A.2. Napisite funkciju pod nazivom brojrijeci koja prima jedan argument (string) i
vraca broj rije¢i u tom stringu. (Savjet: metoda split () bi mogla biti korisna). Testirajte
funkciju s nekoliko recenica.

Vjezba A.3. Napisite program koji provjerava pripada li godina odredenom filozofskom raz-
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doblju.

1. Definirajte listu koja sadrzi nekoliko filozofa egzistencijalizma, npr. egzistencijalisti
= ["Sartre", "Camus", "Kierkegaard"].

2. Pitajte korisnika da unese ime filozofa pomocu funkcije input Q).
3. Koristed¢i if naredbu i operator in, provjerite nalazi li se uneseno ime u vasoj listi.

4. Ispisite odgovaraju¢u poruku, npr. Sartre je egzistencijalist. ili Platon nije
egzistencijalist..

A.7 Zakljucak: Sljedeci koraci

Ovo poglavlje pruzilo je kratak pregled osnovnih elemenata programskog jezika Python.
Vidjeli smo kako varijable i tipovi podataka predstavljaju osnovne gradivne blokove, kako
strukture podataka poput lista i rje¢nika organiziraju informacije, kako kontrola toka usmjerava
izvrsavanje programa i kako funkcije omogué¢uju modularnost i ponovnu upotrebu koda.

Kao studenti filozofije, sada imate temelj za daljnje istrazivanje. Sljedeéi koraci mogli bi
ukljucivati:

e Rad s tekstom: Python je izuzetno mocan za analizu teksta. Mozete istraziti kako
brojati rijeci, analizirati sentiment, traziti odredene pojmove u velikim tekstualnim
korpusima (npr. djelima pojedinih filozofa) i jos mnogo toga. Biblioteke poput NLTK
(Natural Language Toolkit) i spaCy otvaraju vrata svijeta racunalne lingvistike.

e Vizualizacija podataka: Pomocu biblioteka kao sto su Matplotlib i Seaborn, mozete
vizualizirati odnose izmedu pojmova, ucestalost rijeci ili druge uvide koje dobijete
analizom teksta, pretvarajuéi apstraktne podatke u jasne grafove.

e Web scraping: Mozete nauciti kako automatski prikupljati tekstualne podatke s web
stranica, na primjer, s filozofskih enciklopedija ili online arhiva.

Najvaznije je da se ne bojite eksperimentirati. Jupyter biljeznice su idealno okruzenje za
to. Pokusajte mijenjati primjere, postavljati si vlastite male probleme i traziti rjesenja.
Programiranje, kao i filozofija, je vjestina koja se razvija kroz praksu, znatizelju i upornost.
Sretno s kodiranjem!
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B.13 Online resursi i repozitoriji

[Git25]

[SEP]

[IEP]
[nLab]
[MetaM]
[Coq]
[Isa]

[Lean)]

Lauc, D. (2025). Logika u kodu: Jupyter biljeznice i primjeri. GitHub repozitorij.
Dostupno na: https://github.com/ffzg-logika/logika-u-kodu

Stanford Encyclopedia of Philosophy. Dostupno na: https://plato.stanford.
edu/

Internet Encyclopedia of Philosophy. Dostupno na: https://iep.utm.edu/
nLab - Mathematics, Physics, Philosophy. Dostupno na: https://ncatlab.org/
Metamath Proof Explorer. Dostupno na: http://us.metamath.org/

The Coq Proof Assistant. Dostupno na: https://coq.inria.fr/

Isabelle Proof Assistant. Dostupno na: https://isabelle.in.tum.de/

Lean Theorem Prover. Dostupno na: https://leanprover.github.io/

Napomena: Ova bibliografija kontinuirano se azurira novim izdanjima i relevantnim radovima.
Za najnovije verzije i dodatne materijale, konzultirajte GitHub repozitorij udzbenika.
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