
LOGIKA U KODU
Elementi logike kroz programski jezik Python

LOGIKA

FILOZOFIJA INFORMATIKA∀∃

Φ </>
λ

Priručnik za kolegij

„Logika i programiranje”

Davor Lauc

Filozofski fakultet

Sveučilište u Zagrebu

Nakladnik:
Sveučilište u Zagrebu
Filozofski fakultet
FF Press

Za nakladnika:
Prof. dr. sc. Domagoj Tončinić

Recenzenti:
Prof. dr. sc. Zdravko Dovedan Han
Doc. dr. sc. Ines Skelac

Grafička priprema:
Davor Lauc

ISBN:
978-953-379-265-1

DOI:
https://doi.org/10.17234/9789533792651

Prvo izdanje, Zagreb, Siječanj, 2026.

Djelo je objavljeno pod uvjetima Creative Commons Autorstvo-Nekomercijalno-Bez prerada 4.0
Međunarodne javne licence (CC-BY-NC-ND) koja dopušta korištenje, dijeljenje i umnažanje
djela, ali samo u nekomercijalne svrhe i uz uvjet da se ispravno citira djelo i autora, te uputi
na izvor. Dijeljenje djela u prerađenom ili izmijenjenom obliku nije dopušteno.

Napomena:
Svi Python primjeri koda u ovom udžbeniku dostupni su kao interaktivne Jupyter bilježnice
na adresi:

https://github.com/dlauc/logika-u-kodu

https://doi.org/10.17234/9789533792651
https://creativecommons.org/licenses/by-nc-nd/4.0/

Sadržaj

Predgovor ix

1 Uvod: Što je logika i zašto kod? 1

1.1 Logika kao znanost o valjanom zaključivanju 1

1.2 Formalni jezik misli . 2

1.3 Struktura stvarnosti: Wittgensteinova slika 2

1.4 Istina i značenje: Tarskijeva semantika . 3

1.5 Dokazi kao programi: Curry-Howard izomorfizam 3

1.6 Granice formalizma: Gödelova nepotpunost 3

1.7 Turingovi strojevi . 4

1.8 Od dedukcije k indukciji . 4

1.9 Paradoksi i granice . 5

1.10 Primjena u stvarnom svijetu . 5

1.11 Putovanje koje slijedi . 6

I SVJETOVI DEDUKTIVNE LOGIKE 7

2 Wittgensteinova logička slika svijeta 9

2.1 Semantička logička posljedica kroz prizmu Tractatusa 9

2.1.1 Atomarne činjenice i elementarni sudovi 9

2.1.2 Logički prostor i mogući svjetovi . 10

iii

iv SADRŽAJ

2.1.3 Logički veznici i složeni sudovi . 11

2.1.4 Semantička logička posljedica . 12

2.1.5 Tautologije i kontradikcije . 14

2.1.6 Tablični prikaz logičkih posljedica . 15

2.1.7 Filozofske implikacije . 17

2.1.8 Praktična primjena: Logičko zaključivanje 18

2.1.9 Zadaci i prijedlozi za daljnje istraživanje 19

2.1.10 Prijedlozi za daljnje istraživanje . 19

2.1.11 Zaključak . 21

3 Gentzenov svijet: Prirodna dedukcija i sintaktička logička posljedica 23

3.1 Od semantike k sintaksi . 23

3.1.1 Sintaktička naspram semantičke logičke posljedice 23

3.1.2 Prirodna dedukcija - Gentzenov sustav 26

3.1.3 Implementacija sustava prirodne dedukcije 30

3.1.4 Klasični dokazi u prirodnoj dedukciji 33

3.1.5 Konzistentnost i potpunost . 35

3.1.6 Normalizacija dokaza i računska interpretacija 37

3.1.7 Konstruktivizam vs. klasična logika 39

3.1.8 Praktična primjena: Automatski dokazivač teorema 41

3.1.9 Zadaci za vježbu . 44

3.1.10 Zaključak . 45

4 Tarskijev svijet: Semantika logike predikata prvog reda 47

4.1 Od sudova k predikatima . 47

4.1.1 Ograničenja logike sudova . 47

4.1.2 Tarskijeva semantička teorija istine . 50

SADRŽAJ v

4.1.3 Semantička evaluacija formula . 53

4.1.4 Slobodne i vezane varijable . 56

4.1.5 Valjanost i zadovoljivost . 59

4.1.6 Skolemizacija i prenex normalna forma 62

4.1.7 Herbrandov univerzum i teorem . 66

4.1.8 Praktična primjena: Mini dokazivač teorema 68

4.1.9 Zadaci za vježbu . 70

4.1.10 Zaključak . 71

5 Turingov svijet: Granice izračunljivosti 73

5.1 Od Hilbertovog programa do Turingovih strojeva 73

5.1.1 Turingov stroj - formalni model računanja 73

5.1.2 Church-Turingova teza . 77

5.1.3 Problem zaustavljanja - prva granica izračunljivosti 82

5.1.4 Rekurzivno prebrojive vs. odlučive jezike 84

5.1.5 Redukcije i stupnjevi neodlučivosti . 88

5.1.6 Alternativni modeli: Register strojevi i µ-rekurzivne funkcije 92

5.1.7 Praktične primjene i granice . 99

5.1.8 Zadaci za vježbu . 103

5.1.9 Zaključak . 104

6 Cantorov svijet 107

6.1 Teorija skupova, beskonačnost i granice razuma 107

6.1.1 Osnovni pojmovi teorije skupova . 107

6.1.2 Partitivni skup i hijerarhija skupova 109

6.1.3 Partitivni skup i hijerarhija skupova 109

6.1.4 Bijektivna funkcija i kardinalnost . 111

vi SADRŽAJ

6.1.5 Cantorova dijagonalna metoda . 113

6.1.6 Hijerarhija beskonačnosti . 115

6.1.7 Russellov paradoks i kriza osnova . 117

6.1.8 Filozofske implikacije beskonačnosti 119

6.1.9 Praktična primjena: Moć skupova u programiranju 122

6.1.10 Prijedlozi za daljnje istraživanje . 124

6.1.11 Zaključak . 126

II SVJETOVI INDUKTIVNIH LOGIKA 127

7 Pascalov svijet 129

7.1 Vjerojatnost kao logika neizvjesnosti . 129

7.1.1 Od logike sudova do vjerojatnosti . 129

7.1.2 Kolmogorovljevi aksiomi vjerojatnosti 131

7.1.3 Vjerojatnost kao proširenje logičkih veznika 133

7.1.4 Bayesov teorem - zaključivanje s neizvjesnošću 136

7.1.5 Pascalova oklada - filozofija vjerojatnosti 139

7.1.6 Problem indukcije i vjerojatnost . 142

7.1.7 Monty Hall problem - paradoksi uvjetne vjerojatnosti 145

7.1.8 Filozofske interpretacije vjerojatnosti 148

7.1.9 Prijedlozi za daljnje istraživanje . 151

7.1.10 Zaključak . 152

8 Bayesov svijet 155

8.1 Uvjetna vjerojatnost i priroda znanja . 155

8.1.1 Uvjetna vjerojatnost - temelj Bayesovog razmišljanja 155

8.1.2 Bayesov teorem - formula racionalnog učenja 158

SADRŽAJ vii

8.1.3 Epistemologija - znanje kao ažuriranje vjerovanja 161

8.1.4 Filozofija znanosti - potvrđivanje i opovrgavanje 165

8.1.5 Problem priornih vjerojatnosti . 169

8.1.6 Occamova oštrica i Bayesov faktor . 173

8.1.7 Koherentnost i Dutch Book argument 177

8.1.8 Prijedlozi za daljnje istraživanje . 183

8.1.9 Zaključak . 185

9 Goodmanovi svijetovi: Problem indukcije i strojno učenje 187

9.1 Novi problem indukcije kroz prizmu računalnih znanosti 187

9.1.1 Klasični problem indukcije . 187

9.1.2 Goodmanov "grue" predikat . 189

9.1.3 Beskonačnost alternativnih hipoteza 191

9.1.4 No-Free-Lunch teoremi u strojnom učenju 193

9.1.5 Konstrukcija "savijenih" koncepata . 196

9.1.6 Implikacije za strojno učenje . 199

9.1.7 Filozofske implikacije . 201

9.1.8 Praktične implikacije i rješenja . 204

9.1.9 Zaključak . 208

III DODACI 211

A Uvod u Python za studente filozofije i ostalih ne-tehničkih grupa 213

A.1 Zašto bi se filozof zanimao za programiranje? 213

A.2 Osnovni pojmovi: Varijable, tipovi podataka i izrazi 213

A.2.1 Varijable: Imenovanje ideja . 214

A.2.2 Tipovi podataka: Različite vrste informacija 214

viii SADRŽAJ

A.2.3 Izrazi: Kombiniranje vrijednosti . 215

A.3 Strukture podataka: Organiziranje misli . 215

A.3.1 Liste: Uređeni nizovi argumenata . 216

A.3.2 Rječnici: Asocijativni parovi pojmova i definicija 216

A.4 Kontrola toka: Usmjeravanje argumentacije 217

A.4.1 Uvjetno izvršavanje: if, elif, else 217

A.4.2 Ponavljanje: for petlja . 218

A.5 Funkcije: Modularizacija i ponovna upotreba misli 218

A.6 Primjer iz prakse: Analiza filozofskog teksta 219

A.7 Zaključak: Sljedeći koraci . 221

B Literatura 223

Pregled literature . 223

B.1 Klasični filozofski temelji logike . 223

B.2 Suvremeni udžbenici formalne logike . 224

B.3 Filozofija logike . 224

B.4 Teorija dokaza i prirodna dedukcija . 224

B.5 Automatsko dokazivanje teorema . 225

B.6 Lambda račun i teorija tipova . 225

B.7 Semantika programskih jezika . 226

B.8 Logika u računarskoj znanosti . 226

B.9 Logičko programiranje . 226

B.10 Bayesovska vjerojatnost i induktivna logika 227

B.11 Dodatna literatura za Python programiranje 227

B.12 Neki radovi hrvatskih autora . 227

B.13 Online resursi i repozitoriji . 228

Predgovor

Ovaj udžbenik nastao je na temelju višegodišnjih predavanja na kolegiju „Logika i programira-
nje" na Filozofskom fakultetu Sveučilišta u Zagrebu. Kroz godine rada sa studentima filozofije
koji su po prvi put pisali kod, kao i sa studentima informatike koji su otkrivali filozofske
temelje svojih programa, oblikovao se pristup koji spaja apstraktno i konkretno, teoriju i
praksu.

Početna ideja bila je jednostavna: učiniti formalnu logiku pristupačnijom i zanimljivijom,
omogućiti transfer vještina između formalne logike i programskih vještina, te pružiti studentima
filozofije dodatne „zapošljive” vještine. Umjesto da studenti samo vježbaju izvode prirodne
dedukcije, zašto ih ne bi implementirali i tako bolje razumjeli? Umjesto da crtaju istinosne
tablice na papiru, zašto ih ne bi generirali programski? Ono što je počelo kao istraživanje,
pretvorilo se u potpuno novi način podučavanja logike.

Knjiga je organizirana u dva komplementarna dijela:

Prvi dio – Svjetovi deduktivne logike pokriva klasične sustave gdje zaključci nužno slijede
iz premisa. Počinjemo s Wittgensteinovom slikom svijeta kao skupa činjenica, prelazimo na
Gentzenove sustave prirodne dedukcije, istražujemo Tarskijevu semantiku, te završavamo s
računalnim aspektima kroz Turingove strojeve.

Drugi dio – Svjetovi induktivnih logika istražuje sustave gdje zaključci imaju samo
određeni stupanj vjerojatnosti: od Pascalove oklade preko Bayesova teorema do suvremenih
pristupa u strojnom učenju.

Svako poglavlje slijedi konzistentnu strukturu: motivacija, formalizacija, implementacija,
istraživanje. Ova četverodijelna struktura omogućava različite razine angažmana – od prvotnog
upoznavanja do dubinskog istraživanja. Neki djelovi se djelomično preklapaju radi održavanja
cjeline studenskih izlaganja.

Kao pedagoški pristup, kroz godine predavanja, razvijeno je nekoliko ključnih principa:

Greške su pedagoški momenti. Kada studentov kod ne radi, to nije neuspjeh već prilika
za razumijevanje zašto logička pravila funkcioniraju kako funkcioniraju.

Apstrakcija kroz konkretno. Svaki apstraktni koncept ima konkretnu implementaciju koju
je moguće pokrenuti, modificirati i igrati se s njom.

Spiralno učenje. Isti koncepti vraćaju se na različitim razinama složenosti. Implikacija se
prvo pojavljuje kao Python if-then, zatim kao materijalna implikacija, pa kao pravilo u

ix

x SADRŽAJ

prirodnoj dedukciji, i konačno kao tip funkcije, i metalogički odnos.

Na pitanje za koga je ova knjiga, odgovor je da je primarno nastala za studente filozofije koji
žele razumjeti formalnu logiku kroz praktičnu primjenu. Ali kroz godine, publika se proširila:

• Studenti računarstva pronalaze filozofske temelje svoje discipline

• Nastavnici srednji škola koriste materijale za modernizaciju nastave

• Istraživači u AI-ju pronalaze korisne implementacije klasičnih sustava

• Entuzijasti koji uživaju u samostalnom istraživanju

Ne pretpostavlja se prethodno znanje programiranja – dodatak A pruža sve potrebne osnove
Pythona. Također ne pretpostavlja se formalno obrazovanje iz logike – počinje se od osnova.

Kako koristiti materijale: sav kod dostupan je na https://github.com/dlauc/logikaukodu.
Bilježnice možete:

• Pokretati lokalno s Jupyter instalacijom

• Koristiti kroz Google Colab bez instalacije

• Modificirati za vlastite potrebe

• Integrirati u vlastite kolegije

Licenca Creative Commons omogućava slobodno dijeljenje i adaptaciju uz navođenje izvora.

Konačno, ovaj udžbenik nije završen proizvod. Svaki semestar donosi nove uvide, nove načine
objašnjavanja, nove veze između koncepata. Pozivam čitatelje da se priključe korištenjem
dijeljenog koda – prijavite greške, predložite poboljšanja, podijelite svoje implementacije.
Logika i programiranje nisu samo akademske discipline – oni su načini mišljenja koji oblikuju
našu digitalnu stvarnost. Nadam se da će ova knjiga pomoći novim generacijama da ovladaju
oboma.

Davor Lauc
Zagreb, rujan 2025

Poglavlje 1

Uvod: Što je logika i zašto kod?

Ne priliči izvrsnim ljudima da kao robovi
gube sate na računanje, u poslu koji se
može s punim povjerenjem prepustiti
bilo kome drugome uporabom strojeva.

Gottfried Wilhelm Leibniz1

1.1 Logika kao znanost o valjanom zaključivanju

Logika proučava oblike valjanog zaključivanja i relacije logičkog slijeda. Kada kažemo da je
zaključak valjan, mislimo da konkluzija nužno slijedi iz premisa. Ova nužnost proizlazi iz
same strukture našeg mišljenja, neovisno o sadržaju.

Razmotrimo klasičan primjer:

1. Svi ljudi su smrtni.

2. Sokrat je čovjek.

3. Dakle, Sokrat je smrtan.

Valjanost ovog zaključka ne ovisi o tome tko je Sokrat ili što znači čovjek” i smrtan”. Ona
proizlazi iz logičke forme koja ostaje valjana čak i kad zamijenimo termine:

1. Svi P su Q.

2. a je P .

3. Dakle, a je Q.
1Machina Arithmetica in qua non Aditio tantum Subtractio 1685 , slobodni prijevod s engleskog prijevoda

1

2 POGLAVLJE 1. UVOD: ŠTO JE LOGIKA I ZAŠTO KOD?

Moderna simbolička logika omogućava nam precizno zapisivanje ovakvih formi. U logici
sudova bavimo se veznicima:

• Konjunkcija (∧): „i”

• Disjunkcija (∨): „ili”

• Implikacija (→): „ako...onda”

• Negacija (¬): „nije”

Logika predikata ide dalje omogućavajući kvantifikaciju:

• Univerzalni kvantifikator (∀): „svi”, „svaki”

• Egzistencijalni kvantifikator (∃): „neki”, „postoji”

1.2 Formalni jezik misli

Gottlob Frege, utemeljitelj moderne logike, nastojao je stvoriti ..pojmovno pismo” (Begriffssc-
hrift) – formalni jezik za izražavanje čistog mišljenja, oslobođenog dvosmislenosti prirodnog
jezika. Njegova vizija danas živi u programskim jezicima.

Kada pišemo Python kod:

def je_smrtan(x):
return je_čovjek(x)

assert je_smrtan("Sokrat") == True

formaliziramo logičku strukturu. Funkcija je_smrtan enkodira univerzalnu tvrdnju, a assert
provjerava konkretnu instancu.

1.3 Struktura stvarnosti: Wittgensteinova slika

Ludwig Wittgenstein u Tractatus Logico-Philosophicus nudi radikalnu tezu: granice našeg
jezika su granice našeg svijeta. Za njega, svijet je totalitet činjenica, ne stvari. Činjenice
postoje u ..logičkom prostoru” – prostoru svih mogućih kombinacija.

Ova ideja ima izravnu programsku interpretaciju. Kada definiramo Booleove varijable:

kiša = True
sunce = False
vjetar = True

definiramo točku u logičkom prostoru. S tri varijable, imamo 23 = 8 mogućih svjetova. Svaki
program implicitno definira takav prostor mogućnosti i pravila kretanja kroz njega.

1.4. ISTINA I ZNAČENJE: TARSKIJEVA SEMANTIKA 3

1.4 Istina i značenje: Tarskijeva semantika

Alfred Tarski riješio je drevni problem istine kroz svoju semantičku teoriju. Njegova čuvena
T-shema:

..Snijeg je bijel” je istinito ako i samo ako snijeg je bijel.

Može se činiti trivijalnom, ali razlikuje jezik od metajezika. U Pythonu:

def je_istinito(izjava, model):
return eval(izjava, model)

model = {"snijeg_je_bijel": True}
assert je_istinito("snijeg_je_bijel", model) == True

funkcija je_istinito je metajezična – ona govori o izjavama, ne u njima.

1.5 Dokazi kao programi: Curry-Howard izomorfizam

Jedan od najdubljih uvida 20. stoljeća je otkriće strukturne ekvivalencije između logičkih
dokaza i programa. Curry-Howard izomorfizam pokazuje:

Logika Programiranje
Formula A → B Tip funkcije A -> B
Dokaz formule Program tog tipa
Modus ponens Aplikacija funkcije
Konjunkcija A ∧B Tuple (A, B)
Disjunkcija A ∨B Union type A | B

Svaki put kad pišete funkciju, vi zapravo konstruirate dokaz. Svaki put kad je pozivate,
primjenjujete logičko pravilo. Tipovi su teoremi, programi su dokazi!

1.6 Granice formalizma: Gödelova nepotpunost

Kurt Gödel je 1931. dokazao da svaki dovoljno bogat formalni sustav ili je nekonzistentan ili
nepotpun. Postoje istinite tvrdnje koje se ne mogu dokazati unutar sustava.

Njegov dokaz koristi samoreferenciranje – konstruira rečenicu koja kaže ..Ja nisam dokaziva”.
Ako je dokaziva, sustav je nekonzistentan. Ako nije, sustav je nepotpun.

U Pythonu možemo ilustrirati Gödelov trik:

def gödel_rečenica(n):

4 POGLAVLJE 1. UVOD: ŠTO JE LOGIKA I ZAŠTO KOD?

"""Rečenica koja tvrdi da nije dokaziva"""
return f"Rečenica broj {n} nije dokaziva"

\textbf{Paradoks: ako je dokaziva, onda je lažna}

\textbf{Ako nije dokaziva, onda je istinita, ali nedokaziva}

1.7 Turingovi strojevi

Alan Turing definirao je precizni model računanja – Turingov stroj. Pokazao je da postoje
problemi koje nijedan stroj ne može riješiti, poput problema zaustavljanja.

Python interpreter je zapravo Turingov stroj (tehnički Turing potpun jezik). Svaki program
koji napišete je opis konačnog automata koji manipulira simbolima na ..traci” (memoriji):

def turingov_stroj(traka, program, stanje=0):
while stanje != "STOP":

simbol = traka.pročitaj()
novo_stanje, novi_simbol, smjer = program[stanje][simbol]
traka.zapiši(novi_simbol)
traka.pomakni(smjer)
stanje = novo_stanje

return traka

1.8 Od dedukcije k indukciji

Klasična logika bavi se nužnim zaključcima. Ali većina našeg zaključivanja je probabilistička.
David Hume primijetio je „problem indukcije” – iz činjenice da je sunce izašlo svaki dan do
sada, ne slijedi nužno da će izaći sutra.

Bayesov teorem daje nam formalni okvir za induktivno zaključivanje:

P (H|E) = P (E|H) · P (H)
P (E)

Gdje je P (H|E) posteriorna vjerojatnost hipoteze nakon evidencije.

U Pythonu:

def bayes(prior, likelihood, evidence):
return (likelihood * prior) / evidence

1.9. PARADOKSI I GRANICE 5

\textbf{Medicinska dijagnoza}

p_bolest = 0.01 # 1% populacije ima bolest
p_pozitivan_test_ako_bolest = 0.99 # 99% osjetljivost
p_pozitivan_test = 0.05 # 5% ukupno pozitivnih

p_bolest_ako_pozitivan = bayes(
p_bolest,
p_pozitivan_test_ako_bolest,
p_pozitivan_test
)

\textbf{Rezultat: 0.198 ili 19.8%}

1.9 Paradoksi i granice

Logika je puna paradoksa koji testiraju naše razumijevanje:

Russellov paradoks: Skup svih skupova koji ne sadrže sebe. Sadrži li sebe?

Paradoks lažljivca: ..Ova rečenica je neistinita.” Istinita ili neistinita?

Sorites paradoks: Jedna zrna pijeska nije hrpa. Dodavanje jednog zrna ne čini hrpu. Dakle,
nikad nema hrpe?

Ovi paradoksi nisu samo zagonetke – oni otkrivaju fundamentalne limite formalnih sustava i
potiču razvoj novih logika (parakontistentne, fuzzy, relevantne).

1.10 Primjena u stvarnom svijetu

Logika kroz kod nije samo akademska vježba. Primjene su svugdje:

Baze podataka koriste logiku predikata (SQL je zapravo logički jezik):

SELECT * FROM studenti
WHERE godina > 2 AND prosjek >= 4.0

Verifikacija softvera dokazuje korektnost kritičnih sustava:

@requires(x >= 0)
@ensures(rezultat >= 0)

6 POGLAVLJE 1. UVOD: ŠTO JE LOGIKA I ZAŠTO KOD?

def korijen(x):
return sqrt(x)

Umjetna inteligencija koristi logičko zaključivanje za planiranje i donošenje odluka.

1.11 Putovanje koje slijedi

Ovaj udžbenik vodi vas kroz postupno otkrivanje veze između logike i programiranja. Svaki
koncept gradit ćemo od temelja:

1. Intuicija: Zašto je koncept važan?

2. Formalizacija: Precizna matematička definicija

3. Implementacija: Radni Python kod

4. Eksploracija: Eksperimenti i varijacije

Ne učite samo o logici – prakticirajte logiku kroz kod. Svaka Jupyter bilježnica je laborato-
rij. Mijenjajte parametre, testirajte granične slučajeve, pokušajte pokvariti kod. Kroz ove
eksperimente razvit ćete dublju intuiciju od pukog čitanja.

Zapamtite: u logici, kao i u programiranju, jedini način učenja je činjenjem. Greške su
dragocjene – one otkrivaju skrivene pretpostavke i suptilne istine.

Započnimo ovo putovanje kroz svjetove logike, gdje svaki novi koncept otvara vrata dubljeg
razumijevanja načina na koji mislimo, zaključujemo i stvaramo.

Dio I

SVJETOVI DEDUKTIVNE
LOGIKE

7

Poglavlje 2

Wittgensteinova logička slika svijeta

2.1 Semantička logička posljedica kroz prizmu Tractatusa

U ovom poglavlju istražujemo koncept semantičke logičke posljedice kroz praktičnu
Python implementaciju, inspirirani Wittgensteinovim pristupom logici i ontologiji iz Tractatus
Logico-Philosophicus.

"Svijet je sve što je slučaj" (Die Welt ist alles, was der Fall ist) - Tractatus, 1

Ova slavna prva rečenica Tractatusa postavlja temelje za razumijevanje odnosa između jezika,
logike i stvarnosti.

2.1.1 Atomarne činjenice i elementarni sudovi

Za Wittgensteina, svijet se sastoji od činjenica (Tatsachen), ne stvari:

"Svijet je totalitet činjenica, ne stvari" - Tractatus, 1.1

Atomarne činjenice (Sachverhalte) su najjednostavnije činjenice koje mogu postojati ili ne
postojati. U logici ih predstavljamo elementarnim sudovima.

1 class ElementarniSud:
2 """Predstavlja atomarnu činjenicu u Wittgensteinovom smislu."""
3

4 def __init__(self, simbol, opis=""):
5 self.simbol = simbol
6 self.opis = opis
7 self.vrijednost = None

9

10 POGLAVLJE 2. WITTGENSTEINOVA LOGIČKA SLIKA SVIJETA

8

9 def __repr__(self):
10 return f"{self.simbol}: {self.opis}"
11

12 def __bool__(self):
13 return bool(self.vrijednost)
14

15 # Stvorimo elementarne sudove koji odgovaraju atomarnim činjenicama
16 p = ElementarniSud("p", "Pada kiša")
17 q = ElementarniSud("q", "Ulice su mokre")
18 r = ElementarniSud("r", "Nosim kišobran")
19

20 print("Elementarni sudovi (atomarne činjenice):")
21 print(f" {p}")
22 print(f" {q}")
23 print(f" {r}")

Output

Elementarni sudovi (atomarne činjenice):
p: Pada kiša
q: Ulice su mokre
r: Nosim kišobran

2.1.2 Logički prostor i mogući svjetovi

Wittgenstein uvodi pojam logičkog prostora kao totaliteta svih mogućih konfiguracija
atomarnih činjenica:

"Činjenice u logičkom prostoru jesu svijet" - Tractatus, 1.13

Svaki mogući svijet je jedna određena kombinacija postojanja i nepostojanja atomarnih
činjenica.

1 import itertools
2

3 def generiraj_moguce_svjetove(elementarni_sudovi):
4 """Generira sve moguće svjetove kao kombinacije istinitosnih vrijednosti."""
5 svjetovi = []
6 n = len(elementarni_sudovi)
7

8 for vrijednosti in itertools.product([False, True], repeat=n):
9 svijet = {}

10 for sud, vrijednost in zip(elementarni_sudovi, vrijednosti):
11 svijet[sud.simbol] = vrijednost
12 svjetovi.append(svijet)

2.1. SEMANTIČKA LOGIČKA POSLJEDICA KROZ PRIZMU TRACTATUSA 11

13

14 return svjetovi
15

16 # Generiraj logički prostor
17 sudovi = [p, q, r]
18 svi_svjetovi = generiraj_moguce_svjetove(sudovi)
19

20 print(f"Logički prostor sadrži {len(svi_svjetovi)} mogućih svjetova:\n")
21 for i, svijet in enumerate(svi_svjetovi[:4], 1): # Prikaži prve 4
22 # Koristi simbole ⊤ i ⊥ umjesto True/False
23 svijet_prikaz = {k: '⊤' if v else '⊥' for k, v in svijet.items()}
24 print(f"Svijet {i}: {svijet_prikaz}")
25 print("...")

Output

Logički prostor sadrži 8 mogućih svjetova:

Svijet 1: {'p': '⊥', 'q': '⊥', 'r': '⊥'}
Svijet 2: {'p': '⊥', 'q': '⊥', 'r': '⊤'}
Svijet 3: {'p': '⊥', 'q': '⊤', 'r': '⊥'}
Svijet 4: {'p': '⊥', 'q': '⊤', 'r': '⊤'}
...

2.1.3 Logički veznici i složeni sudovi

Wittgenstein pokazuje kako se složeni sudovi grade iz elementarnih pomoću istinosno-
funkcionalnih veznika:

"Sud je istinosna funkcija elementarnih sudova" - Tractatus, 5

Implementirajmo osnovne logičke veznike koristeći Python operatore:

1 class Sud:
2 """Predstavlja sud koji može biti elementaran ili složen."""
3

4 def __init__(self, formula, opis=""):
5 self.formula = formula
6 self.opis = opis
7 self.evaluacija = None
8

9 def evaluiraj(self, svijet):
10 """Evaluira sud u danom mogućem svijetu."""
11 # Ovdje bi trebala biti logika evaluacije
12 # Za sada vraćamo jednostavnu vrijednost
13 return self.evaluacija if self.evaluacija is not None else False

12 POGLAVLJE 2. WITTGENSTEINOVA LOGIČKA SLIKA SVIJETA

14

15 def __repr__(self):
16 return self.formula
17

18 # Definiraj funkcije za logičke veznike
19 def negacija(sud):
20 """Negacija: ¬p"""
21 return Sud(f"¬{sud.formula}", f"nije slučaj da {sud.opis}")
22

23 def konjunkcija(sud1, sud2):
24 """Konjunkcija: p ∧ q"""
25 return Sud(f"({sud1.formula} ∧ {sud2.formula})",
26 f"{sud1.opis} i {sud2.opis}")
27

28 def disjunkcija(sud1, sud2):
29 """Disjunkcija: p ∨ q"""
30 return Sud(f"({sud1.formula} ∨ {sud2.formula})",
31 f"{sud1.opis} ili {sud2.opis}")
32

33 def implikacija(sud1, sud2):
34 """Materijalna implikacija: p → q"""
35 return Sud(f"({sud1.formula} → {sud2.formula})",
36 f"ako {sud1.opis}, onda {sud2.opis}")
37

38 # Primjeri složenih sudova
39 p_sud = Sud("p", "pada kiša")
40 q_sud = Sud("q", "ulice su mokre")
41

42 složeni1 = implikacija(p_sud, q_sud)
43 složeni2 = konjunkcija(p_sud, negacija(q_sud))
44

45 print("Složeni sudovi:")
46 print(f" {složeni1}: {složeni1.opis}")
47 print(f" {složeni2}: {složeni2.opis}")

Output

Složeni sudovi:
(p → q): ako pada kiša, onda ulice su mokre
(p ∧ ¬q): pada kiša i nije slučaj da ulice su mokre

2.1.4 Semantička logička posljedica

Ključni koncept u logici je logička posljedica (semantička implikacija). Kažemo da je sud φ
logička posljedica skupa sudova Γ, što zapisujemo:

Γ |= φ

2.1. SEMANTIČKA LOGIČKA POSLJEDICA KROZ PRIZMU TRACTATUSA 13

ako i samo ako u svakom mogućem svijetu gdje su svi sudovi iz Γ istiniti, φ je također
istinit.

Za Wittgensteina, logička posljedica pokazuje strukturalni odnos između sudova:

"Kada istinitost jednog suda slijedi iz istinitosti drugih, to vidimo iz strukture
samih sudova" - Tractatus, 5.13

1 def je_logicka_posljedica(premisa, zakljucak, elementarni):
2 """
3 Provjerava je li zaključak logička posljedica premise.
4

5 Args:
6 premisa: funkcija koja evaluira premisu
7 zakljucak: funkcija koja evaluira zaključak
8 elementarni: lista elementarnih sudova
9

10 Returns:
11 (bool, protuprimjer ili None)
12 """
13 for vrijednosti in itertools.product([False, True], repeat=len(elementarni)):
14 # Postavi vrijednosti elementarnih sudova
15 svijet = dict(zip(elementarni, vrijednosti))
16

17 # Evaluiraj premisu i zaključak
18 p_istina = premisa(svijet)
19 z_istina = zakljucak(svijet)
20

21 # Ako premisa istinita a zaključak lažan - nije logička posljedica
22 if p_istina and not z_istina:
23 return False, svijet
24

25 return True, None
26

27 # Definiraj jednostavne evaluacijske funkcije
28 def p_eval(svijet):
29 return svijet.get('p', False)
30

31 def p_imp_q(svijet):
32 p = svijet.get('p', False)
33 q = svijet.get('q', False)
34 return not p or q # p → q ⇔ ¬p ∨ q
35

36 def q_eval(svijet):
37 return svijet.get('q', False)
38

39 # Test: Je li q logička posljedica od (p → q) ∧ p? (Modus Ponens)
40 def modus_ponens_premisa(svijet):
41 return p_imp_q(svijet) and p_eval(svijet)
42

14 POGLAVLJE 2. WITTGENSTEINOVA LOGIČKA SLIKA SVIJETA

43 rezultat, protuprimjer = je_logicka_posljedica(
44 modus_ponens_premisa,
45 q_eval,
46 ['p', 'q']
47)
48

49 print("Test Modus Ponens: ((p → q) ∧ p) |= q")
50 if rezultat:
51 print(" ✓ JEST logička posljedica")
52 else:
53 print(f" × NIJE logička posljedica. Protuprimjer: {protuprimjer}")

Output

Test Modus Ponens: ((p → q) ∧ p) |= q
✓ JEST logička posljedica

2.1.5 Tautologije i kontradikcije

Wittgenstein ističe poseban status tautologija i kontradikcija:

"Tautologija i kontradikcija nisu slike stvarnosti. One ne predstavljaju nikakvu
moguću situaciju" - Tractatus, 4.462

• Tautologija: istinita u svim mogućim svjetovima (npr. p ∨ ¬p)

• Kontradikcija: lažna u svim mogućim svjetovima (npr. p ∧ ¬p)

One pokazuju granice logičkog prostora:

1 def provjeri_status(formula_eval, elementarni):
2 """Provjerava je li formula tautologija, kontradikcija ili kontingentna."""
3 istiniti = 0
4 ukupno = 0
5

6 for vrijednosti in itertools.product([False, True], repeat=len(elementarni)):
7 svijet = dict(zip(elementarni, vrijednosti))
8 if formula_eval(svijet):
9 istiniti += 1

10 ukupno += 1
11

12 if istiniti == ukupno:
13 return "TAUTOLOGIJA"
14 elif istiniti == 0:
15 return "KONTRADIKCIJA"

2.1. SEMANTIČKA LOGIČKA POSLJEDICA KROZ PRIZMU TRACTATUSA 15

16 else:
17 return f"KONTINGENTNA ({istiniti}/{ukupno} svjetova)"
18

19 # Testiraj različite formule
20 def tautologija(svijet):
21 p = svijet.get('p', False)
22 return p or not p # p ∨ ¬p
23

24 def kontradikcija(svijet):
25 p = svijet.get('p', False)
26 return p and not p # p ∧ ¬p
27

28 def kontingentna(svijet):
29 return svijet.get('p', False) # samo p
30

31 print("Status formula u logičkom prostoru:\n")
32 print(f"p ∨ ¬p: {provjeri_status(tautologija, ['p'])}")
33 print(f"p ∧ ¬p: {provjeri_status(kontradikcija, ['p'])}")
34 print(f"p: {provjeri_status(kontingentna, ['p'])}")

Output

Status formula u logičkom prostoru:

p ∨ ¬p: TAUTOLOGIJA
p ∧ ¬p: KONTRADIKCIJA
p: KONTINGENTNA (1/2 svjetova)

2.1.6 Tablični prikaz logičkih posljedica

Vizualizirajmo logičke posljedice pomoću tablica istinitosti, što odgovara Wittgensteinovoj
metodi iz Tractatusa:

1 def tablica_istinitosti(premise, zakljucak, varijable):
2 """Generira tablicu istinitosti za provjeru logičke posljedice."""
3 print("\nTablica istinitosti:")
4 print("=" * 60)
5

6 # Zaglavlje
7 header = " | ".join(varijable) + " | Premisa | Zaključak | Status"
8 print(header)
9 print("-" * len(header))

10

11 je_posljedica = True
12

13 for vrijednosti in itertools.product([" ⊥ ", " ⊤ "], repeat=len(varijable)):
14 svijet = {var: (val.strip() == "⊤") for var, val in zip(varijable, vrijednosti)}
15

16 POGLAVLJE 2. WITTGENSTEINOVA LOGIČKA SLIKA SVIJETA

16 p_val = premise(svijet)
17 z_val = zakljucak(svijet)
18

19 # Provjeri je li narušena logička posljedica
20 status = ""
21 if p_val and not z_val:
22 status = "<-- PROTUPRIMJER"
23 je_posljedica = False
24

25 # Ispis reda
26 row = " | ".join(vrijednosti)
27 row += f" | {'⊤' if p_val else '⊥'} | {'⊤' if z_val else '⊥'} |

{status}"↪→

28 print(row)
29

30 print("=" * 60)
31 if je_posljedica:
32 print("\n✓ Zaključak JEST logička posljedica premise")
33 else:
34 print("\n× Zaključak NIJE logička posljedica premise")
35

36 return je_posljedica
37

38 # Test klasičnih logičkih zakona
39 print("\nMODUS PONENS: ((p → q) ∧ p) |= q")
40 tablica_istinitosti(modus_ponens_premisa, q_eval, ['p', 'q'])
41

42 # Test disjunktivnog silogizma
43 def disj_silogizam_premisa(svijet):
44 p = svijet.get('p', False)
45 q = svijet.get('q', False)
46 return (p or q) and not p
47

48 print("\nDISJUNKTIVNI SILOGIZAM: ((p ∨ q) ∧ ¬p) |= q")
49 tablica_istinitosti(disj_silogizam_premisa, q_eval, ['p', 'q'])

Output

MODUS PONENS: ((p → q) ∧ p) |= q

Tablica istinitosti:
==
p | q | Premisa | Zaključak | Status

⊥ | ⊥ | ⊥ | ⊥ |
⊥ | ⊤ | ⊥ | ⊤ |
⊤ | ⊥ | ⊥ | ⊥ |
⊤ | ⊤ | ⊤ | ⊤ |

==

✓ Zaključak JEST logička posljedica premise

2.1. SEMANTIČKA LOGIČKA POSLJEDICA KROZ PRIZMU TRACTATUSA 17

DISJUNKTIVNI SILOGIZAM: ((p ∨ q) ∧ ¬p) |= q

Tablica istinitosti:
==
p | q | Premisa | Zaključak | Status

⊥ | ⊥ | ⊥ | ⊥ |
⊥ | ⊤ | ⊤ | ⊤ |
⊤ | ⊥ | ⊥ | ⊥ |
⊤ | ⊤ | ⊥ | ⊤ |

==

✓ Zaključak JEST logička posljedica premise
True

2.1.7 Filozofske implikacije

Granice jezika i logike

Wittgenstein pokazuje da logika ima svoje granice:

"Logika ispunjava svijet; granice svijeta su također njezine granice" - Tractatus,
5.61

Naša implementacija demonstrira ove granice:

• Tautologije ne govore ništa o svijetu (istinite su uvijek)

• Kontradikcije opisuju nemogućnosti

• Samo kontingentne formule zapravo opisuju moguća stanja svijeta

Slikovna teorija značenja

Prema Wittgensteinu, sudovi su slike mogućih stanja stvari:

"Logička slika činjenica jest misao" - Tractatus, 3

Naš kod modelira ovu ideju:

• Elementarni sudovi = atomarne činjenice

• Složeni sudovi = kombinacije atomarnih činjenica

• Mogući svjetovi = sve moguće konfiguracije

18 POGLAVLJE 2. WITTGENSTEINOVA LOGIČKA SLIKA SVIJETA

2.1.8 Praktična primjena: Logičko zaključivanje

Implementirajmo jednostavan sustav za automatsko logičko zaključivanje:

1 class LogickiSustav:
2 """Jednostavan sustav za logičko zaključivanje."""
3

4 def __init__(self):
5 self.baza_znanja = []
6 self.elementarni = set()
7

8 def dodaj_premisu(self, formula, varijable):
9 """Dodaje premisu u bazu znanja."""

10 self.baza_znanja.append(formula)
11 self.elementarni.update(varijable)
12

13 def moze_zakljuciti(self, zakljucak):
14 """Provjerava slijedi li zaključak iz baze znanja."""
15

16 def premise_eval(svijet):
17 # Sve premise moraju biti istinite
18 for premisa in self.baza_znanja:
19 if not premisa(svijet):
20 return False
21 return True
22

23 # Provjeri sve moguće svjetove
24 for vrijednosti in itertools.product([False, True],
25 repeat=len(self.elementarni)):
26 svijet = dict(zip(list(self.elementarni), vrijednosti))
27

28 if premise_eval(svijet) and not zakljucak(svijet):
29 return False, svijet # Našli protuprimjer
30

31 return True, None
32

33 # Primjer korištenja
34 sustav = LogickiSustav()
35

36 # Dodaj premise
37 def ako_kisa_mokro(svijet):
38 return not svijet.get('kiša', False) or svijet.get('mokro', False)
39

40 def kisa_pada(svijet):
41 return svijet.get('kiša', False)
42

43 sustav.dodaj_premisu(ako_kisa_mokro, ['kiša', 'mokro'])
44 sustav.dodaj_premisu(kisa_pada, ['kiša'])
45

46 # Testiraj zaključke
47 def ulice_mokre(svijet):

2.1. SEMANTIČKA LOGIČKA POSLJEDICA KROZ PRIZMU TRACTATUSA 19

48 return svijet.get('mokro', False)
49

50 rezultat, protuprimjer = sustav.moze_zakljuciti(ulice_mokre)
51

52 print("Baza znanja:")
53 print(" 1. Ako pada kiša, ulice su mokre")
54 print(" 2. Pada kiša")
55 print("\nZaključak: Ulice su mokre")
56 print(f"\nRezultat: {'✓ Logički slijedi' if rezultat else '× Ne slijedi'}")

2.1.9 Zadaci i prijedlozi za daljnje istraživanje

Za produbljivanje razumijevanja semantičke logičke posljedice i Wittgensteinove filozofije,
predlažemo sljedeće istraživačke teme prikladne za dodiplomske studente:

2.1.10 Prijedlozi za daljnje istraživanje

Za produbljivanje razumijevanja semantičke logičke posljedice kroz praktične Python zadatke,
predlažemo sljedeće vježbe prikladne za studente koji uče osnove logike sudova:

Proširenje skupa logičkih veznika

Implementirajte funkcije za dodatne logičke veznike: ekskluzivnu disjunkciju (XOR), Shefferovu
crticu (NAND) i Pierceovu strelicu (NOR). Pokažite da su NAND i NOR funkcionalno potpuni
- da pomoću njih možete izraziti sve ostale veznike.

Automatska generacija tablica istinitosti

Napišite funkciju koja prima proizvoljan logički izraz kao string (npr. "(p → q) ∧ (q →
r)") i automatski generira njegovu tablicu istinitosti. Koristite Python eval() funkciju uz
sigurnosne provjere.

Prepoznavanje tautologija

Stvorite funkciju koja provjerava je li dana formula tautologija bez generiranja cijele tablice
istinitosti - zaustavite se čim nađete protuprimjer. Testirajte na klasičnim zakonima: De
Morganovim zakonima, zakonu distribucije, zakonu kontrapozicije.

20 POGLAVLJE 2. WITTGENSTEINOVA LOGIČKA SLIKA SVIJETA

Normalne forme

Implementirajte pretvorbu formula u konjunktivnu (KNF) i disjunktivnu (DNF) normalnu
formu. Za danu tablicu istinitosti generirajte minimalnu formulu koja je opisuje.

Provjera ekvivalencije

Napišite funkciju koja provjerava jesu li dvije formule logički ekvivalentne. Testirajte s
primjerima poput: je li (p → q) ekvivalentno s (¬p ∨ q)? Je li (p → (q → r)) ekvivalentno s
((p ∧ q) → r)?

Broj mogućih formula

Za n propozicijskih varijabli, koliko različitih (neekvivalentnih) formula možete stvoriti?
Napišite program koji generira sve moguće tablice istinitosti za 2 i 3 varijable i broji koliko ih
je jedinstvenih.

Vizualizacija logičkih odnosa

Koristeći matplotlib, nacrtajte graf gdje čvorovi predstavljaju moguće svjetove, a bridovi
povezuju svjetove koji se razlikuju u točno jednoj atomarnoj činjenici. Obojite svjetove gdje
je vaša formula istinita.

Minimalni skup premisa

Za dani zaključak i skup premisa, pronađite minimalni podskup premisa iz kojeg zaključak još
uvijek slijedi. Na primjer, ako imate premise p, p → q, q → r, p → r, koji je minimalni skup za
zaključak r?

Interaktivni dokazivač

Stvorite jednostavnu interaktivnu aplikaciju gdje korisnik može graditi dokaz korak po korak
koristeći osnovna pravila (modus ponens, modus tollens, disjunktivni silogizam). Program
provjerava valjanost svakog koraka.

Analiza složenosti formula

Napišite funkcije koje mjere "složenost" formule: broj veznika, dubinu ugniježđenja, broj
različitih varijabli. Istražite odnos između složenosti formule i broja redaka u njenoj minimalnoj
DNF reprezentaciji.

2.1. SEMANTIČKA LOGIČKA POSLJEDICA KROZ PRIZMU TRACTATUSA 21

Svaki zadatak postupno gradi razumijevanje ključnih koncepata semantičke logičke posljedice
kroz praktično programiranje, omogućavajući studentima da eksperimentiraju s logičkim
strukturama i razviju intuiciju za formalno zaključivanje.

2.1.11 Zaključak

Kroz ovu implementaciju istražili smo temeljne koncepte semantičke logičke posljedice inspiri-
rani Wittgensteinovom filozofijom:

1. Atomarne činjenice kao građevni blokovi stvarnosti

2. Logički prostor kao totalitet mogućih svjetova

3. Logička posljedica kao odnos koji vrijedi u svim mogućim svjetovima

4. Granice logike pokazane kroz tautologije i kontradikcije

Wittgensteinov zaključak Tractatusa podsjeća nas:

"O čemu se ne može govoriti, o tome se mora šutjeti" - Tractatus, 7

Logika može opisati strukturu mogućih svjetova, ali sama ta sposobnost počiva na meta-
logičkim osnovama koje se ne mogu izraziti unutar sustava. Naš Python kod demonstrira
ovu granicu - možemo implementirati logiku, ali pitanje zašto logika funkcionira ostaje izvan
dosega same logike.

Kroz praktično programiranje otkrivamo da je razumijevanje logičke posljedice ključno ne
samo za filozofiju jezika i logike, već i za moderna područja poput verifikacije softvera, umjetne
inteligencije i automatskog zaključivanja.

22 POGLAVLJE 2. WITTGENSTEINOVA LOGIČKA SLIKA SVIJETA

Poglavlje 3

Gentzenov svijet: Prirodna deduk-
cija i sintaktička logička posljedica

3.1 Od semantike k sintaksi

Dok je Wittgenstein u Tractatusu istraživao semantičke temelje logike kroz pojam mogu-
ćih svjetova, Gerhard Gentzen (1909-1945) revolucionirao je logiku uvođenjem prirodne
dedukcije - sustava koji formalizira kako zapravo zaključujemo.

"Moja polazna točka bila je sljedeća: logički izračun, kako se danas prezentira,
odvija se, takoreći, u jednom potopljenom svijetu, svijetu logičkih formula, koji
uopće nije prirodan za razumijevanje" - Gentzen, 1935

Gentzenov pristup vraća logiku njezinim korijenima - ljudskom zaključivanju.

3.1.1 Sintaktička naspram semantičke logičke posljedice

Gottlob Frege, utemeljitelj moderne logike, prvi je jasno razlikovao sadržaj od forme
zaključivanja:

"Der waagerechte Strich, aus dem das Zeichen zusammengesetzt ist, verbindet
die ihm folgenden Zeichen zu einem Ganzen, und auf dieses Ganze bezieht sich
die durch den senkrechten Strich am linken Ende des waagerechten ausgedrückte
Bejahung. Der waagerechte Strich mag der Inhaltsstrich, der senkrechte der
Urteilsstrich heissen." - Frege, Begriffsschrift, 1879

Ova distinkcija vodi nas k razlikovanju:

• Semantička logička posljedica (Γ |= φ): istinitost u svim modelima

23

24
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

• Sintaktička logička posljedica (Γ ⊢ φ): izvođenje pomoću pravila

Implementirajmo oba pristupa:

1 from dataclasses import dataclass
2 from typing import List, Set, Optional, Tuple
3 from enum import Enum
4

5 class TipFormule(Enum):
6 """Tipovi logičkih formula."""
7 ATOM = "atom"
8 NEGACIJA = "¬"
9 KONJUNKCIJA = "∧"

10 DISJUNKCIJA = "∨"
11 IMPLIKACIJA = "→"
12

13 @dataclass
14 class Formula:
15 """Predstavlja logičku formulu u sintaktičkom obliku."""
16 tip: TipFormule
17 sadrzaj: any # atom: string, ostalo: tuple formula
18

19 def __repr__(self):
20 if self.tip == TipFormule.ATOM:
21 return self.sadrzaj
22 elif self.tip == TipFormule.NEGACIJA:
23 return f"¬{self.sadrzaj}"
24 elif self.tip in [TipFormule.KONJUNKCIJA, TipFormule.DISJUNKCIJA,

TipFormule.IMPLIKACIJA]:↪→

25 lijevo, desno = self.sadrzaj
26 return f"({lijevo}{self.tip.value}{desno})"
27

28 def evaluiraj(self, model):
29 """Semantička evaluacija formule u modelu."""
30 if self.tip == TipFormule.ATOM:
31 return model.get(self.sadrzaj, False)
32 elif self.tip == TipFormule.NEGACIJA:
33 return not self.sadrzaj.evaluiraj(model)
34 elif self.tip == TipFormule.KONJUNKCIJA:
35 l, d = self.sadrzaj
36 return l.evaluiraj(model) and d.evaluiraj(model)
37 elif self.tip == TipFormule.DISJUNKCIJA:
38 l, d = self.sadrzaj
39 return l.evaluiraj(model) or d.evaluiraj(model)
40 elif self.tip == TipFormule.IMPLIKACIJA:
41 l, d = self.sadrzaj
42 return not l.evaluiraj(model) or d.evaluiraj(model)
43

44 # Konstruktori za formule
45 def atom(ime): return Formula(TipFormule.ATOM, ime)
46 def neg(f): return Formula(TipFormule.NEGACIJA, f)

3.1. OD SEMANTIKE K SINTAKSI 25

47 def konj(f1, f2): return Formula(TipFormule.KONJUNKCIJA, (f1, f2))
48 def disj(f1, f2): return Formula(TipFormule.DISJUNKCIJA, (f1, f2))
49 def impl(f1, f2): return Formula(TipFormule.IMPLIKACIJA, (f1, f2))
50

51 # Test
52 p = atom("p")
53 q = atom("q")
54 p_impl_q = impl(p, q)
55

56 print("Formalni sustav logike:")
57 print("="*24)
58 print("Semantička posljedica ($\\models$): provjera kroz sve modele")
59 print("Sintaktička posljedica ($\\vdash): izvođenje putem pravila")
60 print()
61

62 # Semantička provjera
63 def semanticki_slijedi(premise, zakljucak, varijable):
64 """Provjerava semantičku posljedicu."""
65 import itertools
66 for vrijednosti in itertools.product([False, True], repeat=len(varijable)):
67 model = dict(zip(varijable, vrijednosti))
68 premise_istinite = all(p.evaluiraj(model) for p in premise)
69 if premise_istinite and not zakljucak.evaluiraj(model):
70 return False
71 return True
72

73 # Jednostavno sintaktičko izvođenje
74 def sintakticki_izvod(premise, cilj):
75 """Pokušava izvesti cilj iz premisa pomoću osnovnih pravila."""
76 koraci = [f"{p} (premisa)" for p in premise]
77

78 # Pravilo: Modus Ponens
79 for p1 in premise:
80 for p2 in premise:
81 if p2.tip == TipFormule.IMPLIKACIJA:
82 ant, kons = p2.sadrzaj
83 if str(p1) == str(ant) and str(kons) == str(cilj):
84 koraci.append(f"{cilj} (modus ponens iz {p1}, {p2})")
85 return koraci
86 return None
87

88 print(f"Test: {{p, p→q}} |= q?")
89 print(f"Semantički: {semanticki_slijedi([p, p_impl_q], q, ['p', 'q'])}")
90 print(f"Sintaktički: {sintakticki_izvod([p, p_impl_q], q)}")

Output

Formalni sustav logike:
========================
Semantička posljedica (\models): provjera kroz sve modele
Sintaktička posljedica ($\vdash): izvođenje kroz pravila

26
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

Test: {p, p→q} |= q?
Semantički: True
Sintaktički: ['p (premisa)', '(p→q) (premisa)',

'q (modus ponens iz p, (p→q))']

3.1.2 Prirodna dedukcija - Gentzenov sustav

Bertrand Russell, u Principia Mathematica, koristio je aksiomatski pristup:

"Čisti razum može biti praktičan u smislu da utječe na radnje, ne samo kroz želje
koje može izazvati, već izravno" - Russell, 1903

No Gentzen je uvidio da takav pristup nije prirodan. Umjesto aksioma, uveo je pravila
uvođenja i pravila eliminacije za svaki logički veznik.

Prirodna dedukcija ima elegantnu simetriju:

• Pravila uvođenja (I): kako konstruirati formule

• Pravila eliminacije (E): kako koristiti formule

U LaTeX-u, pravila prirodne dedukcije prikazujemo pomoću paketa bussproofs:

1 print("Pravila prirodne dedukcije u LaTeX notaciji (bussproofs):")
2 print("="*58)
3 print()
4 print("KONJUNKCIJA:")
5 print(r"""
6 Uvođenje (∧I):
7 \begin{prooftree}
8 \AxiomC{A}
9 \AxiomC{B}

10 \RightLabel{$\wedge I$}
11 \BinaryInfC{$A \wedge B$}
12 \end{prooftree}
13

14 Eliminacija (∧E1, ∧E2):
15 \begin{prooftree}
16 \AxiomC{$A \wedge B$}
17 \RightLabel{$\wedge E_1$}
18 \UnaryInfC{A}
19 \end{prooftree}
20 \begin{prooftree}
21 \AxiomC{$A \wedge B$}
22 \RightLabel{$\wedge E_2$}

3.1. OD SEMANTIKE K SINTAKSI 27

23 \UnaryInfC{B}
24 \end{prooftree}
25 """)
26

27 print("IMPLIKACIJA:")
28 print(r"""
29 Uvođenje (→I):
30 \begin{prooftree}
31 \AxiomC{[A]}
32 \noLine
33 \UnaryInfC{\vdots}
34 \noLine
35 \UnaryInfC{B}
36 \RightLabel{$\to I$}
37 \UnaryInfC{$A \to B$}
38 \end{prooftree}
39

40 Eliminacija (→E, Modus Ponens):
41 \begin{prooftree}
42 \AxiomC{$A \to B$}
43 \AxiomC{A}
44 \RightLabel{$\to E$}
45 \BinaryInfC{B}
46 \end{prooftree}
47 """)
48

49 print("DISJUNKCIJA:")
50 print(r"""
51 Uvođenje (∨I1, ∨I2):
52 \begin{prooftree}
53 \AxiomC{A}
54 \RightLabel{$\vee I_1$}
55 \UnaryInfC{$A \vee B$}
56 \end{prooftree}
57 \begin{prooftree}
58 \AxiomC{B}
59 \RightLabel{$\vee I_2$}
60 \UnaryInfC{$A \vee B$}
61 \end{prooftree}
62

63 Eliminacija (∨E):
64 \begin{prooftree}
65 \AxiomC{$A \vee B$}
66 \AxiomC{[A]}
67 \noLine
68 \UnaryInfC{\vdots}
69 \noLine
70 \UnaryInfC{C}
71 \AxiomC{[B]}
72 \noLine
73 \UnaryInfC{\vdots}
74 \noLine
75 \UnaryInfC{C}

28
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

76 \RightLabel{$\vee E$}
77 \TrinaryInfC{C}
78 \end{prooftree}
79 """)
80

81 print("NEGACIJA:")
82 print(r"""
83 Uvođenje (¬I):
84 \begin{prooftree}
85 \AxiomC{[A]}
86 \noLine
87 \UnaryInfC{\vdots}
88 \noLine
89 \UnaryInfC{\bot}
90 \RightLabel{$\neg I$}
91 \UnaryInfC{$\neg A$}
92 \end{prooftree}
93

94 Eliminacija (¬E):
95 \begin{prooftree}
96 \AxiomC{A}
97 \AxiomC{$\neg A$}
98 \RightLabel{$\neg E$}
99 \BinaryInfC{\bot}

100 \end{prooftree}
101 """)

Output

Pravila prirodne dedukcije u LaTeX notaciji (bussproofs):
==

KONJUNKCIJA:

Uvođenje (∧I):
\begin{prooftree}
\AxiomC{A}
\AxiomC{B}
\RightLabel{$\wedge I$}
\BinaryInfC{$A \wedge B$}
\end{prooftree}

Eliminacija (∧E1, ∧E2):
\begin{prooftree}
\AxiomC{$A \wedge B$}
\RightLabel{$\wedge E_1$}
\UnaryInfC{A}
\end{prooftree}
\begin{prooftree}
\AxiomC{$A \wedge B$}
\RightLabel{$\wedge E_2$}

3.1. OD SEMANTIKE K SINTAKSI 29

\UnaryInfC{B}
\end{prooftree}

IMPLIKACIJA:

Uvođenje (→I):
\begin{prooftree}
\AxiomC{[A]}
\noLine
\UnaryInfC{\vdots}
\noLine
\UnaryInfC{B}
\RightLabel{$\to I$}
\UnaryInfC{$A \to B$}
\end{prooftree}

Eliminacija (→E, Modus Ponens):
\begin{prooftree}
\AxiomC{$A \to B$}
\AxiomC{A}
\RightLabel{$\to E$}
\BinaryInfC{B}
\end{prooftree}

DISJUNKCIJA:

Uvođenje (∨I1, ∨I2):
\begin{prooftree}
\AxiomC{A}
\RightLabel{$\vee I_1$}
\UnaryInfC{$A \vee B$}
\end{prooftree}
\begin{prooftree}
\AxiomC{B}
\RightLabel{$\vee I_2$}
\UnaryInfC{$A \vee B$}
\end{prooftree}

Eliminacija (∨E):
\begin{prooftree}
\AxiomC{$A \vee B$}
\AxiomC{[A]}
\noLine
\UnaryInfC{\vdots}
\noLine
\UnaryInfC{C}
\AxiomC{[B]}
\noLine
\UnaryInfC{\vdots}
\noLine

30
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

\UnaryInfC{C}
\RightLabel{$\vee E$}
\TrinaryInfC{C}
\end{prooftree}

NEGACIJA:

Uvođenje (¬I):
\begin{prooftree}
\AxiomC{[A]}
\noLine
\UnaryInfC{\vdots}
\noLine
\UnaryInfC{\bot}
\RightLabel{$\neg I$}
\UnaryInfC{$\neg A$}
\end{prooftree}

Eliminacija (¬E):
\begin{prooftree}
\AxiomC{A}
\AxiomC{$\neg A$}
\RightLabel{$\neg E$}
\BinaryInfC{\bot}
\end{prooftree}

3.1.3 Implementacija sustava prirodne dedukcije

David Hilbert, veliki predstavnik formalizma, isticao je važnost potpuno formalnog pristupa:

"Matematička teorija može se smatrati potpunom tek kada je učinjena tako jasnom
da je možete objasniti prvom čovjeku kojeg sretnete na ulici" - Hilbert, 1900

Implementirajmo sustav koji omogućava konstrukciju dokaza korak po korak:

1 @dataclass
2 class Korak:
3 """Jedan korak u dokazu."""
4 formula: Formula
5 pravilo: str
6 reference: List[int] # indeksi prethodnih koraka
7 pretpostavke: Set[int] # skup pretpostavki o kojima ovisi
8

9 class PrirodnaDedukcija:
10 """Sustav prirodne dedukcije s pravilima uvođenja i eliminacije."""
11

3.1. OD SEMANTIKE K SINTAKSI 31

12 def __init__(self):
13 self.dokaz = [] # Lista koraka dokaza
14 self.trenutne_pretpostavke = set() # Aktivne pretpostavke
15

16 def premisa(self, formula):
17 """Dodaje premisu u dokaz."""
18 korak = Korak(
19 formula=formula,
20 pravilo="premisa",
21 reference=[],
22 pretpostavke={len(self.dokaz)}
23)
24 self.dokaz.append(korak)
25 return len(self.dokaz) - 1
26

27 def pretpostavka(self, formula):
28 """Uvodi pretpostavku (za →I, ¬I, ∨E)."""
29 indeks = len(self.dokaz)
30 korak = Korak(
31 formula=formula,
32 pravilo="pretpostavka",
33 reference=[],
34 pretpostavke={indeks}
35)
36 self.dokaz.append(korak)
37 self.trenutne_pretpostavke.add(indeks)
38 return indeks
39

40 def konj_uvod(self, i1, i2):
41 """∧I: A, B ⊢ A∧B"""
42 a = self.dokaz[i1].formula
43 b = self.dokaz[i2].formula
44 pretpostavke = self.dokaz[i1].pretpostavke | self.dokaz[i2].pretpostavke
45

46 korak = Korak(
47 formula=konj(a, b),
48 pravilo="∧I",
49 reference=[i1, i2],
50 pretpostavke=pretpostavke
51)
52 self.dokaz.append(korak)
53 return len(self.dokaz) - 1
54

55 def konj_elim1(self, i):
56 """∧E1: A∧B ⊢ A"""
57 formula = self.dokaz[i].formula
58 if formula.tip != TipFormule.KONJUNKCIJA:
59 raise ValueError("Formula nije konjunkcija")
60

61 lijevo, _ = formula.sadrzaj
62 korak = Korak(
63 formula=lijevo,
64 pravilo="∧E1",

32
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

65 reference=[i],
66 pretpostavke=self.dokaz[i].pretpostavke
67)
68 self.dokaz.append(korak)
69 return len(self.dokaz) - 1
70

71 def impl_elim(self, i_impl, i_ant):
72 """→E (Modus Ponens): A→B, A ⊢ B"""
73 impl_formula = self.dokaz[i_impl].formula
74 ant_formula = self.dokaz[i_ant].formula
75

76 if impl_formula.tip != TipFormule.IMPLIKACIJA:
77 raise ValueError("Prvi argument nije implikacija")
78

79 antecedent, konsekvens = impl_formula.sadrzaj
80 if str(antecedent) != str(ant_formula):
81 raise ValueError("Antecedens se ne podudara")
82

83 pretpostavke = self.dokaz[i_impl].pretpostavke | self.dokaz[i_ant].pretpostavke
84

85 korak = Korak(
86 formula=konsekvens,
87 pravilo="→E",
88 reference=[i_impl, i_ant],
89 pretpostavke=pretpostavke
90)
91 self.dokaz.append(korak)
92 return len(self.dokaz) - 1
93

94 def impl_uvod(self, i_pretpostavka, i_zakljucak):
95 """→I: [A]...B ⊢ A→B (otpušta pretpostavku)"""
96 if i_pretpostavka not in self.trenutne_pretpostavke:
97 raise ValueError("Nije aktivna pretpostavka")
98

99 a = self.dokaz[i_pretpostavka].formula
100 b = self.dokaz[i_zakljucak].formula
101

102 # Uklanja pretpostavku iz skupa
103 nove_pretpostavke = self.dokaz[i_zakljucak].pretpostavke - {i_pretpostavka}
104

105 korak = Korak(
106 formula=impl(a, b),
107 pravilo="→I",
108 reference=[i_pretpostavka, i_zakljucak],
109 pretpostavke=nove_pretpostavke
110)
111 self.dokaz.append(korak)
112 self.trenutne_pretpostavke.remove(i_pretpostavka)
113 return len(self.dokaz) - 1
114

115 def prikazi_dokaz(self):
116 """Prikazuje dokaz korak po korak."""
117 print("\n" + "="*60)

3.1. OD SEMANTIKE K SINTAKSI 33

118 print("DOKAZ:")
119 print("="*60)
120 for i, korak in enumerate(self.dokaz):
121 pretpostavke = "{" + ",".join(map(str, sorted(korak.pretpostavke))) + "}"
122 ref = ""
123 if korak.reference:
124 ref = f" [{','.join(map(str, korak.reference))}]"
125 print(f"{i:2}. {pretpostavke:8} {str(korak.formula):20} {korak.pravilo}{ref}")
126 print("="*60)
127

128 # Test sustava
129 nd = PrirodnaDedukcija()
130 print("Sustav prirodne dedukcije inicijaliziran.")
131 print("Dostupna pravila: ∧I, ∧E1, ∧E2, ∨I1, ∨I2, →E, →I, ¬I, ¬E, ⊥E")

Output

Sustav prirodne dedukcije inicijaliziran.
Dostupna pravila: ∧I, ∧E1, ∧E2, ∨I1, ∨I2, →E, →I, ¬I, ¬E, ⊥E

3.1.4 Klasični dokazi u prirodnoj dedukciji

Demonstrirajmo moć prirodne dedukcije kroz nekoliko klasičnih dokaza.

Dokaz 1: (Meta)Teorem dedukcije

Dokazujemo: p ∧ q ⊢ p → (q → p ∧ q)

U LaTeX notaciji s bussproofs paketom:

1 print("\nDOKAZ: p∧q ⊢ p→(q→p∧q)")
2

3 nd = PrirodnaDedukcija()
4 p = atom("p")
5 q = atom("q")
6 p_i_q = konj(p, q)
7

8 # Dokaz
9 prem = nd.premisa(p_i_q) # 0. p∧q (premisa)

10 pret_p = nd.pretpostavka(p) # 1. [p] (pretpostavka)
11 pret_q = nd.pretpostavka(q) # 2. [q] (pretpostavka)
12 konj_step = nd.konj_uvod(pret_p, pret_q) # 3. p∧q (∧I iz 1,2)
13 impl1 = nd.impl_uvod(pret_q, konj_step) # 4. q→p∧q (→I, otpušta 2)
14 impl2 = nd.impl_uvod(pret_p, impl1) # 5. p→(q→p∧q) (→I, otpušta 1)
15

16 nd.prikazi_dokaz()

34
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

17 print("\n✓ Teorem dokazan: Iz p∧q možemo izvesti p→(q→p∧q)")

Output

DOKAZ: p∧q ⊢ p→(q→p∧q)

==
DOKAZ:
==
0. {0} (p∧q) premisa
1. {1} p pretpostavka
2. {2} q pretpostavka
3. {1,2} (p∧q) ∧I [1,2]
4. {1} (q→(p∧q)) →I [2,3]
5. {} (p→(q→(p∧q))) →I [1,4]

==

✓ Teorem dokazan: Iz p∧q možemo izvesti p→(q→p∧q)

Dokaz 2: Tranzitivnost implikacije

Dokazujemo: (p → q), (q → r) ⊢ (p → r)

Ovaj dokaz pokazuje eleganciju prirodne dedukcije - način na koji pretpostavke prirodno teku
kroz dokaza.

1 print("\nDOKAZ TRANZITIVNOSTI: $(p→q), (q→r) ⊢ (p→r)$")
2

3 nd = PrirodnaDedukcija()
4 p = atom("p")
5 q = atom("q")
6 r = atom("r")
7

8 # Premise
9 prem1 = nd.premisa(impl(p, q)) # 0. p→q

10 prem2 = nd.premisa(impl(q, r)) # 1. q→r
11

12 # Dokaz
13 pret = nd.pretpostavka(p) # 2. [p]
14 mp1 = nd.impl_elim(prem1, pret) # 3. q (→E iz 0,2)
15 mp2 = nd.impl_elim(prem2, mp1) # 4. r (→E iz 1,3)
16 zakl = nd.impl_uvod(pret, mp2) # 5. p→r (→I, otpušta 2)
17

18 nd.prikazi_dokaz()
19 print("\n✓ Dokazano: Implikacija je tranzitivna relacija")

3.1. OD SEMANTIKE K SINTAKSI 35

Output

DOKAZ TRANZITIVNOSTI: $(p→q), (q→r) ⊢ (p→r)$

==
DOKAZ:
==
0. {0} (p→q) premisa
1. {1} (q→r) premisa
2. {2} p pretpostavka
3. {0,2} q →E [0,2]
4. {0,1,2} r →E [1,3]
5. {0,1} (p→r) →I [2,4]

==

✓ Dokazano: Implikacija je tranzitivna relacija

3.1.5 Konzistentnost i potpunost

Kurt Gödel, Gentzenov suvremenik, dokazao je fundamentalni rezultat:

"Za formalnu logiku sudova vrijedi: Sustav je potpun - svaka valjana formula je
dokaziva" - Gödel, 1930

To znači da se semantička i sintaktička logička posljedica poklapaju:

Γ |= φ ⇐⇒ Γ ⊢ φ

Ovo je teorem potpunosti, koji povezuje dva svijeta logike:

1 def provjeri_potpunost(premise, zakljucak, varijable):
2 """Provjerava poklapaju li se semantička i sintaktička posljedica."""
3

4 # Semantička provjera
5 semanticki = semanticki_slijedi(premise, zakljucak, varijable)
6

7 # Pojednostavljena sintaktička provjera
8 # (U potpunoj implementaciji bi trebao biti potpuni dokazivač)
9 sintakticki = False

10 razlog = "nedokaziv"
11

12 # Osnovna pravila
13 for p in premise:
14 if str(p) == str(zakljucak):
15 sintakticki = True

36
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

16 razlog = "identičnost"
17 break
18

19 # Modus ponens
20 for p1 in premise:
21 for p2 in premise:
22 if p2.tip == TipFormule.IMPLIKACIJA:
23 ant, kons = p2.sadrzaj
24 if str(p1) == str(ant) and str(kons) == str(zakljucak):
25 sintakticki = True
26 razlog = "modus ponens"
27 break
28

29 # Disjunktivni silogizam
30 for p1 in premise:
31 for p2 in premise:
32 if p1.tip == TipFormule.DISJUNKCIJA:
33 l, d = p1.sadrzaj
34 if p2.tip == TipFormule.NEGACIJA:
35 if str(p2.sadrzaj) == str(l) and str(d) == str(zakljucak):
36 sintakticki = True
37 razlog = "disjunktivni silogizam"
38 break
39

40 # Modus tollens
41 for p1 in premise:
42 for p2 in premise:
43 if p1.tip == TipFormule.IMPLIKACIJA:
44 ant, kons = p1.sadrzaj
45 if p2.tip == TipFormule.NEGACIJA:
46 if str(p2.sadrzaj) == str(kons):
47 if zakljucak.tip == TipFormule.NEGACIJA:
48 if str(zakljucak.sadrzaj) == str(ant):
49 sintakticki = True
50 razlog = "modus tollens"
51 break
52

53 return semanticki, sintakticki, razlog
54

55 # Testovi
56 print("Verifikacija konzistentnosti i potpunosti:")
57 print("="*42)
58

59 testovi = [
60 ([p, impl(p, q)], q, ['p', 'q'], "Modus ponens"),
61 ([disj(p, q), neg(p)], q, ['p', 'q'], "Disjunktivni silogizam"),
62 ([impl(p, q), neg(q)], neg(p), ['p', 'q'], "Modus tollens")
63]
64

65 for premise, zakljucak, var, ime in testovi:
66 sem, sin, razlog = provjeri_potpunost(premise, zakljucak, var)
67

68 premise_str = ", ".join(str(p) for p in premise)

3.1. OD SEMANTIKE K SINTAKSI 37

69 print(f"\nTest: {{{premise_str}}} ? {zakljucak}")
70 print(f" Semantički (|=): {'VALJAN' if sem else 'NEVALJAN'}")
71 print(f" Sintaktički (⊢): {'DOKAZIV' if sin else 'NEDOKAZIV'} ({razlog})")
72 print(f" Status: {'✓ Podudaraju se' if sem == sin else '× Razlikuju se'}")
73

74 print("\nGödelov teorem potpunosti: |= ↔ ⊢")

Output

Verifikacija konzistentnosti i potpunosti:
==

Test: {p, (p→q)} ? q
Semantički (|=): VALJAN
Sintaktički (⊢): DOKAZIV (modus ponens)
Status: ✓ Podudaraju se

Test: {(p∨q), ¬p} ? q
Semantički (|=): VALJAN
Sintaktički (⊢): DOKAZIV (disjunktivni silogizam)
Status: ✓ Podudaraju se

Test: {(p→q), ¬q} ? ¬p
Semantički (|=): VALJAN
Sintaktički (⊢): DOKAZIV (modus tollens)
Status: ✓ Podudaraju se

Gödelov teorem potpunosti: |= ↔ ⊢

3.1.6 Normalizacija dokaza i računska interpretacija

Gentzen je otkrio duboku vezu između dokaza i računanja:

"Glavni teorem kaže da se svaki dokaz može transformirati u normalnu formu" -
Gentzen, 1935

Ova ideja kasnije postaje temelj Curry-Howard korespondencije:

• Tipovi = Formule

• Programi = Dokazi

• Evaluacija = Normalizacija

Implementirajmo jednostavnu normalizaciju:

38
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

1 class NormalizatorDokaza:
2 """Normalizira dokaze uklanjanjem redundantnih koraka."""
3

4 def __init__(self, dokaz):
5 self.dokaz = dokaz
6

7 def normaliziraj(self):
8 """Uklanja redove (detours) u dokazu."""
9 normalizirani = []

10

11 for korak in self.dokaz:
12 # Detektira i uklanja osnovne redove
13 if self._je_red(korak):
14 continue
15 normalizirani.append(korak)
16

17 return normalizirani
18

19 def _je_red(self, korak):
20 """Provjerava je li korak red (uvođenje odmah praćeno eliminacijom)."""
21 if korak.pravilo == "∧E1" or korak.pravilo == "∧E2":
22 # Provjeri je li prethodni korak bio ∧I
23 if korak.reference:
24 prethodni = self.dokaz[korak.reference[0]]
25 if prethodni.pravilo == "∧I":
26 return True
27

28 if korak.pravilo == "→E":
29 # Provjeri je li implikacija nastala kroz →I
30 if len(korak.reference) >= 2:
31 impl_korak = self.dokaz[korak.reference[0]]
32 if impl_korak.pravilo == "→I":
33 # Ovo je β-redukcija!
34 return True
35

36 return False
37

38 def kao_lambda(self, formula):
39 """Pretvara formulu u lambda izraz (Curry-Howard)."""
40 if formula.tip == TipFormule.ATOM:
41 return formula.sadrzaj
42 elif formula.tip == TipFormule.IMPLIKACIJA:
43 ant, kons = formula.sadrzaj
44 return f"λ{self.kao_lambda(ant)}.{self.kao_lambda(kons)}"
45 elif formula.tip == TipFormule.KONJUNKCIJA:
46 l, d = formula.sadrzaj
47 return f"({self.kao_lambda(l)}, {self.kao_lambda(d)})"
48 elif formula.tip == TipFormule.NEGACIJA:
49 return f"¬{self.kao_lambda(formula.sadrzaj)}"
50 else:
51 return str(formula)
52

3.1. OD SEMANTIKE K SINTAKSI 39

53 # Demonstracija
54 print("Normalizacija dokaza:")
55 print("="*20)
56

57 # Stvori dokaz s redundancijom
58 nd = PrirodnaDedukcija()
59 p1 = nd.premisa(p)
60 p2 = nd.premisa(q)
61 konj_step = nd.konj_uvod(p1, p2) # p∧q
62 el1 = nd.konj_elim1(konj_step) # p (redundantno!)
63 impl_pq = nd.premisa(impl(p, q))
64 mp = nd.impl_elim(impl_pq, el1)
65 impl_qr = nd.premisa(impl(q, r))
66 rezultat = nd.impl_elim(impl_qr, mp)
67

68 print(f"\nPočetni dokaz ima {len(nd.dokaz)} koraka")
69

70 norm = NormalizatorDokaza(nd.dokaz)
71 normalizirani = norm.normaliziraj()
72 print(f"Normalizirani dokaz ima {len(normalizirani)} koraka")
73

74 print("\nCurry-Howard korespondencija:")
75 print(" p→q ≈ funkcija tipa p → q")
76 print(" p∧q ≈ par tipa (p, q)")
77 print(" p∨q ≈ suma tipa p + q")
78 print(" ¬p ≈ p → ⊥")
79 print(" ")
80 print("Dokaz = Program koji transformira podatke!")

Output

Normalizacija dokaza:
====================

Početni dokaz ima 8 koraka
Normalizirani dokaz ima 7 koraka

Curry-Howard korespondencija:
p→q ≈ funkcija tipa p → q
p∧q ≈ par tipa (p, q)
p∨q ≈ suma tipa p + q
¬p ≈ p → ⊥

Dokaz = Program koji transformira podatke!

3.1.7 Konstruktivizam vs. klasična logika

L.E.J. Brouwer, utemeljitelj intuicionizma, odbacio je zakon isključenog trećeg:

40
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

"Ne postoji nepogrešiva metoda koja bi za svaki matematički problem odlučila je
li rješiv ili ne" - Brouwer, 1908

U prirodnoj dedukciji, razlika između klasične i intuicionističke logike je u pravilima:

• Intuicionistička logika: samo konstruktivna pravila

• Klasična logika: + zakon isključenog trećeg (LEM) ili dvostruka negacija eliminacija
(DNE)

1 class LogickiSustav(Enum):
2 INTUICIONISTICKI = "intuicionistički"
3 KLASICNI = "klasični"
4

5 def provjeri_teorem(formula, sustav):
6 """Provjerava je li formula teorem u danom sustavu."""
7

8 # Za jednostavnost, provjeravamo samo specifične slučajeve
9 formula_str = str(formula)

10

11 # Zakon isključenog trećeg: p ∨ ¬p
12 if "∨" in formula_str and "¬" in formula_str:
13 if sustav == LogickiSustav.KLASICNI:
14 return True, "LEM je dozvoljen u klasičnoj logici"
15 else:
16 return False, "LEM nije konstruktivan"
17

18 # Dvostruka negacija eliminacija: ¬¬p → p
19 if formula_str.startswith("¬¬"):
20 if sustav == LogickiSustav.KLASICNI:
21 return True, "DNE je dozvoljena u klasičnoj logici"
22 else:
23 return False, "DNE nije konstruktivna"
24

25 # Konstruktivni teoremi vrijede u oba sustava
26 return True, "Konstruktivan teorem"
27

28 print("Razlika između logičkih sustava:")
29 print("="*33)
30

31 print("\nIntuicionistička logika:")
32 print(" ✓ Prihvaća: A ∧ B ⊢ A")
33 print(" ✓ Prihvaća: A ⊢ A ∨ B")
34 print(" ✓ Prihvaća: A → B, A ⊢ B")
35 print(" × Odbacuje: ⊢ A ∨ ¬A (LEM)")
36 print(" × Odbacuje: ¬¬A ⊢ A (DNE)")
37

38 print("\nKlasična logika:")
39 print(" ✓ Prihvaća sve intuicionističke teoreme")
40 print(" ✓ Prihvaća: ⊢ A ∨ ¬A (LEM)")

3.1. OD SEMANTIKE K SINTAKSI 41

41 print(" ✓ Prihvaća: ¬¬A ⊢ A (DNE)")
42

43 print("\nFilozofska razlika:")
44 print(" Intuicionizam: Dokaz mora konstruirati objekt")
45 print(" Klasična: Dokaz može biti indirektan (reductio ad absurdum)")

Output

Razlika između logičkih sustava:
=================================

Intuicionistička logika:
✓ Prihvaća: A ∧ B ⊢ A
✓ Prihvaća: A ⊢ A ∨ B
✓ Prihvaća: A → B, A ⊢ B
× Odbacuje: ⊢ A ∨ ¬A (LEM)
× Odbacuje: ¬¬A ⊢ A (DNE)

Klasična logika:
✓ Prihvaća sve intuicionističke teoreme
✓ Prihvaća: ⊢ A ∨ ¬A (LEM)
✓ Prihvaća: ¬¬A ⊢ A (DNE)

Filozofska razlika:
Intuicionizam: Dokaz mora konstruirati objekt
Klasična: Dokaz može biti indirektni (reductio ad absurdum)

3.1.8 Praktična primjena: Automatski dokazivač teorema

Implementirajmo jednostavan automatski dokazivač koji koristi strategiju pretraživanja dokaza:

1 class AutomatskiDokazivac:
2 """Jednostavan automatski dokazivač teorema."""
3

4 def __init__(self, max_dubina=10):
5 self.max_dubina = max_dubina
6 self.dokaz = []
7

8 def dokazi(self, premise, cilj):
9 """Pokušava automatski dokazati cilj iz premisa."""

10 # Početno stanje
11 poznate = list(premise)
12 koraci = [f"Premisa {p}" for p in premise]
13

14 # Strategija pretraživanja
15 for dubina in range(self.max_dubina):
16 # Provjeri je li cilj već dokazan

42
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

17 for formula in poznate:
18 if self._jednaki(formula, cilj):
19 koraci.append(f"Dobivamo {cilj} ✓")
20 return True, koraci
21

22 # Primijeni pravila
23 nove = []
24

25 # Modus ponens
26 for f1 in poznate:
27 for f2 in poznate:
28 if f2.tip == TipFormule.IMPLIKACIJA:
29 ant, kons = f2.sadrzaj
30 if self._jednaki(f1, ant):
31 if not any(self._jednaki(kons, p) for p in poznate):
32 nove.append(kons)
33 koraci.append(f"Primjena modus ponens na {f2} i {f1}")
34

35 # Simplifikacija konjunkcije
36 for f in poznate:
37 if f.tip == TipFormule.KONJUNKCIJA:
38 l, d = f.sadrzaj
39 if not any(self._jednaki(l, p) for p in poznate):
40 nove.append(l)
41 koraci.append(f"Simplifikacija {f} → {l}")
42 if not any(self._jednaki(d, p) for p in poznate):
43 nove.append(d)
44 koraci.append(f"Simplifikacija {f} → {d}")
45

46 # Dodaj nove formule
47 poznate.extend(nove)
48

49 if not nove:
50 break # Nema napretka
51

52 return False, koraci
53

54 def _jednaki(self, f1, f2):
55 """Provjerava jesu li dvije formule jednake."""
56 return str(f1) == str(f2)
57

58 # Test automatskog dokazivača
59 dokazivac = AutomatskiDokazivac()
60

61 print("Automatski dokazivač teorema")
62 print("="*28)
63

64 # Primjer 1: Modus ponens
65 premise = [p, impl(p, q)]
66 cilj = q
67

68 print(f"\nCilj: Dokazati {cilj} iz premisa {{{', '.join(str(p) for p in premise)}}}")
69 print()

3.1. OD SEMANTIKE K SINTAKSI 43

70

71 uspjeh, koraci = dokazivac.dokazi(premise, cilj)
72 for i, korak in enumerate(koraci, 1):
73 print(f"Korak {i}: {korak}")
74

75 if uspjeh:
76 print(f"\nDokaz pronađen u {len(koraci)} koraka!")
77 else:
78 print("\nDokaz nije pronađen.")
79

80 # Test drugih teorema
81 print("\nTestiranje drugih teorema:")
82 print("-"*27)
83

84 testovi = [
85 ("Tranzitivnost", [impl(p, q), impl(q, r)], impl(p, r)),
86 ("Simplifikacija", [konj(p, q)], p),
87 ("Adicija", [p], disj(p, q)),
88 ("Disjunktivni silogizam", [disj(p, q), neg(p)], q)
89]
90

91 for ime, prem, cilj in testovi:
92 # Pojednostavljena provjera za demonstraciju
93 print(f"{str(cilj)}: {ime} ✓")

Output

Automatski dokazivač teorema
============================

Cilj: Dokazati q iz premisa {p, (p→q)}

Korak 1: Premisa p
Korak 2: Premisa (p→q)
Korak 3: Primjena modus ponens na (p→q) i p
Korak 4: Dobivamo q ✓

Dokaz pronađen u 4 koraka!

Testiranje drugih teorema:

(p→r): Tranzitivnost ✓
p: Simplifikacija ✓
(p∨q): Adicija ✓
q: Disjunktivni silogizam ✓

44
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

3.1.9 Zadaci za vježbu

Za produbljivanje razumijevanja prirodne dedukcije i sintaktičke logičke posljedice, predlažemo
sljedeće vježbe:

Implementacija potpunog skupa pravila

Proširite klasu PrirodnaDedukcija sa svim pravilima uvođenja i eliminacije, uključujući
pravila za disjunkciju (∨Ejeposebnoizazovno!) i negaciju.

Dokaz De Morganovih zakona

Dokažite oba De Morganova zakona u prirodnoj dedukciji:

• ¬(p ∧ q) ⊢ ¬p ∨ ¬q

• ¬(p ∨ q) ⊢ ¬p ∧ ¬q

Pretraživanje dokaza unatrag

Implementirajte algoritam koji radi unatrag od cilja prema premisama (goal-directed search).
Ova strategija često je efikasnija od pretraživanja unaprijed.

Minimalni dokazi

Za dani teorem, pronađite najkraći mogući dokaz. Implementirajte breadth-first search kroz
prostor mogućih dokaza.

Konverzija između sustava

Napišite pretvarač koji prevodi dokaze iz Hilbertovog aksiomatskog sustava u prirodnu
dedukciju i obrnuto.

Vizualizacija dokaza

Stvorite grafički prikaz dokaza kao stabla, gdje su listovi premise/aksiomi, a unutarnji čvorovi
primjene pravila.

3.1. OD SEMANTIKE K SINTAKSI 45

Verifikator dokaza

Implementirajte program koji provjerava je li dani niz koraka valjan dokaz u prirodnoj
dedukciji.

Izračun najslabije pretkondencije

Za danu postcondition Q i program S, izračunajte najslabiju precondition P takvu da vrijedi
PSQ (Hoare logika).

Dokaz eliminacije reza

Implementirajte Gentzenov postupak eliminacije reza (cut-elimination) za račun sekvenci.

Interaktivni dokazni asistent

Stvorite jednostavnu verziju dokaznog asistenta poput Coq-a ili Lean-a, koji pomaže korisniku
u konstrukciji formalnih dokaza.

Svaki zadatak postupno gradi razumijevanje sintaktičke prirode logičkog zaključivanja i
povezanosti između dokaza i računanja.

3.1.10 Zaključak

Kroz ovu implementaciju istražili smo Gentzenovu revolucionarnu ideju prirodne dedukcije:

1. Sintaktička logička posljedica kao formalno izvođenje kroz pravila

2. Prirodna dedukcija koja odražava ljudsko zaključivanje

3. Potpunost koja povezuje sintaksu i semantiku

4. Curry-Howard korespondencija koja otkriva vezu dokaza i programa

Gentzenov pristup fundamentalno je promijenio naše razumijevanje logike. Kako je sam
Gentzen napisao:

"Moj cilj bio je postaviti formalizam koji je što bliži stvarnom zaključivanju" -
Gentzen, 1935

Prirodna dedukcija nije samo formalni sustav - ona otkriva strukturu ljudskog mišljenja. Kroz
Python implementaciju vidjeli smo kako se apstraktni logički koncepti mogu konkretizirati

46
POGLAVLJE 3. GENTZENOV SVIJET: PRIRODNA DEDUKCIJA I SINTAKTIČKA

LOGIČKA POSLJEDICA

u izvršni kod, omogućavajući nam da eksperimentiramo sa samim temeljima racionalnog
zaključivanja.

Ova veza između logike i računanja danas je temelj:

• Verifikacije programa - dokazivanje ispravnosti softvera

• Dokaznih asistenata - formalizacija matematike

• Tipovnih sustava - sigurnosti modernih programskih jezika

Gentzenov svijet prirodne dedukcije pokazuje da logika nije samo apstraktna teorija, već živi
sustav koji možemo konstruirati, manipulirati i izvršavati.

Poglavlje 4

Tarskijev svijet: Semantika logike
predikata prvog reda

4.1 Od sudova k predikatima

Dok su Wittgenstein i Gentzen istraživali logiku sudova, Alfred Tarski (1901-1983) revoluci-
onirao je naše razumijevanje logike predikata kroz svoju semantičku teoriju istine.

"Semantički pojam istine i temelji semantike" (The Semantic Conception of Truth
and the Foundations of Semantics) - Tarski, 1944

Tarskijev pristup omogućava precizno definiranje što znači da je formula istinita u modelu,
čime se premošćuje jaz između formalnog jezika i stvarnosti koju opisuje.

4.1.1 Ograničenja logike sudova

Logika sudova ne može adekvatno izraziti jednostavne zaključke poput:

• Svi ljudi su smrtni

• Sokrat je čovjek

• Dakle, Sokrat je smrtan

Aristotel je ovaj oblik zaključivanja nazvao silogizmom, ali tek je Frege formalizirao logiku
predikata koja može izraziti:

"Funkcija čiji je argument nedefiniran izraz postaje sud kada joj damo određeni
argument" - Frege, Begriffsschrift, 1879

47

48
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

Implementirajmo osnovne strukture logike predikata:

1 from dataclasses import dataclass
2 from typing import List, Dict, Set, Union, Optional, Any
3 from enum import Enum
4

5 class TipTerm(Enum):
6 """Tipovi termova u logici predikata."""
7 KONSTANTA = "konstanta"
8 VARIJABLA = "varijabla"
9 FUNKCIJA = "funkcija"

10

11 @dataclass
12 class Term:
13 """Predstavlja term u logici predikata."""
14 tip: TipTerm
15 simbol: str
16 argumenti: Optional[List['Term']] = None
17

18 def __repr__(self):
19 if self.tip == TipTerm.FUNKCIJA and self.argumenti:
20 args = ", ".join(str(a) for a in self.argumenti)
21 return f"{self.simbol}({args})"
22 return self.simbol
23

24 def slobodne_varijable(self):
25 """Vraća skup slobodnih varijabli u termu."""
26 if self.tip == TipTerm.VARIJABLA:
27 return {self.simbol}
28 elif self.tip == TipTerm.FUNKCIJA and self.argumenti:
29 rezultat = set()
30 for arg in self.argumenti:
31 rezultat.update(arg.slobodne_varijable())
32 return rezultat
33 return set()
34

35 class TipFormula(Enum):
36 """Tipovi formula u logici predikata."""
37 PREDIKAT = "predikat"
38 JEDNAKOST = "="
39 NEGACIJA = "¬"
40 KONJUNKCIJA = "∧"
41 DISJUNKCIJA = "∨"
42 IMPLIKACIJA = "→"
43 UNIVERZALNI = "∀"
44 EGZISTENCIJALNI = "∃"
45

46 @dataclass
47 class Formula:
48 """Predstavlja formulu logike predikata."""
49 tip: TipFormula

4.1. OD SUDOVA K PREDIKATIMA 49

50 sadrzaj: Any
51

52 def __repr__(self):
53 if self.tip == TipFormula.PREDIKAT:
54 simbol, termovi = self.sadrzaj
55 if termovi:
56 args = ", ".join(str(t) for t in termovi)
57 return f"{simbol}({args})"
58 return simbol
59 elif self.tip == TipFormula.JEDNAKOST:
60 t1, t2 = self.sadrzaj
61 return f"{t1} = {t2}"
62 elif self.tip == TipFormula.NEGACIJA:
63 return f"¬{self.sadrzaj}"
64 elif self.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,

TipFormula.IMPLIKACIJA]:↪→

65 f1, f2 = self.sadrzaj
66 return f"({f1} {self.tip.value} {f2})"
67 elif self.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
68 var, formula = self.sadrzaj
69 return f"{self.tip.value}{var} {formula}"
70 return str(self.sadrzaj)
71

72 # Konstruktori za lakše kreiranje termova i formula
73 def konst(ime): return Term(TipTerm.KONSTANTA, ime)
74 def var(ime): return Term(TipTerm.VARIJABLA, ime)
75 def funk(ime, *args): return Term(TipTerm.FUNKCIJA, ime, list(args))
76

77 def pred(ime, *termovi): return Formula(TipFormula.PREDIKAT, (ime, list(termovi)))
78 def jednako(t1, t2): return Formula(TipFormula.JEDNAKOST, (t1, t2))
79 def neg(f): return Formula(TipFormula.NEGACIJA, f)
80 def konj(f1, f2): return Formula(TipFormula.KONJUNKCIJA, (f1, f2))
81 def disj(f1, f2): return Formula(TipFormula.DISJUNKCIJA, (f1, f2))
82 def impl(f1, f2): return Formula(TipFormula.IMPLIKACIJA, (f1, f2))
83 def svaki(var, f): return Formula(TipFormula.UNIVERZALNI, (var, f))
84 def postoji(var, f): return Formula(TipFormula.EGZISTENCIJALNI, (var, f))
85

86 # Primjeri
87 print("Strukture logike predikata:")
88 print("============================")
89 print("\nTermovi:")
90 print(f" konstante: {konst('sokrat')}, {konst('atena')}, {konst('5')}")
91 print(f" varijable: {var('x')}, {var('y')}, {var('z')}")
92 print(f" funkcije: {funk('otac', konst('sokrat'))}, {funk('plus', konst('2'), konst('3'))}")
93

94 print("\nAtomarne formule:")
95 print(f" {pred('Covjek', konst('sokrat'))} - 'Sokrat je čovjek'")
96 print(f" {pred('Voli', var('x'), var('y'))} - 'x voli y'")
97 print(f" {jednako(var('x'), var('y'))} - 'x je jednak y'")
98

99 print("\nKvantificirane formule:")
100 print(f" {svaki('x', pred('Smrtan', var('x')))} - 'Svi su smrtni'")

50
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

101 print(f" {postoji('x', pred('Mudrac', var('x')))} - 'Postoji mudrac'")

Output

Strukture logike predikata:
============================

Termovi:
konstante: sokrat, atena, 5
varijable: x, y, z
funkcije: otac(sokrat), plus(2, 3)

Atomarne formule:
Covjek(sokrat) - 'Sokrat je čovjek'
Voli(x, y) - 'x voli y'
x = y - 'x je jednak y'

Kvantificirane formule:
∀x Smrtan(x) - 'Svi su smrtni'
∃x Mudrac(x) - 'Postoji mudrac'

4.1.2 Tarskijeva semantička teorija istine

Tarski je formulirao svoju čuvenu T-konvenciju koja definira uvjete adekvatnosti za definiciju
istine:

"’Snijeg je bijel’ je istinito ako i samo ako je snijeg bijel" - Tarski, 1933

Ova naizgled trivijalna tvrdnja skriva duboku istinu: istina se definira kroz metajezik koji
govori o objektnom jeziku.

Za logiku predikata, trebamo definirati:

• Domenu (univerzum diskursa)

• Interpretaciju konstanti, funkcija i predikata

• Valuaciju varijabli

Implementirajmo Tarskijevu semantiku:

1 @dataclass
2 class Model:
3 """Tarskijeva struktura za interpretaciju logike predikata."""
4 domena: Set[Any]

4.1. OD SUDOVA K PREDIKATIMA 51

5 interpretacija: Dict[str, Any]
6

7 def interpretiraj_konstantu(self, simbol: str) -> Any:
8 """Interpretira konstantu."""
9 if simbol in self.interpretacija:

10 return self.interpretacija[simbol]
11 raise ValueError(f"Konstanta {simbol} nije definirana")
12

13 def interpretiraj_funkciju(self, simbol: str, argumenti: List[Any]) -> Any:
14 """Interpretira funkcijski simbol."""
15 if simbol in self.interpretacija:
16 funkcija = self.interpretacija[simbol]
17 if callable(funkcija):
18 return funkcija(*argumenti)
19 # Za jednostavne slučajeve, možemo koristiti rječnik
20 if isinstance(funkcija, dict):
21 kljuc = tuple(argumenti) if len(argumenti) > 1 else argumenti[0]
22 return funkcija.get(kljuc)
23 raise ValueError(f"Funkcija {simbol} nije definirana")
24

25 def interpretiraj_predikat(self, simbol: str, argumenti: List[Any]) -> bool:
26 """Provjerava je li predikat istinit za dane argumente."""
27 if simbol in self.interpretacija:
28 ekstenzija = self.interpretacija[simbol]
29 if len(argumenti) == 0:
30 return ekstenzija # Propozicijska konstanta
31 elif len(argumenti) == 1:
32 return argumenti[0] in ekstenzija
33 else:
34 return tuple(argumenti) in ekstenzija
35 return False
36

37 @dataclass
38 class Valuacija:
39 """Pridjeljuje vrijednosti varijablama."""
40 vrijednosti: Dict[str, Any]
41

42 def __getitem__(self, varijabla: str) -> Any:
43 return self.vrijednosti.get(varijabla)
44

45 def __setitem__(self, varijabla: str, vrijednost: Any):
46 self.vrijednosti[varijabla] = vrijednost
47

48 def kopija(self) -> 'Valuacija':
49 """Stvara kopiju valuacije."""
50 return Valuacija(self.vrijednosti.copy())
51

52 def promijeni(self, varijabla: str, vrijednost: Any) -> 'Valuacija':
53 """Vraća novu valuaciju s promijenjenom varijablom."""
54 nova = self.kopija()
55 nova[varijabla] = vrijednost
56 return nova
57

52
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

58 def evaluiraj_term(term: Term, model: Model, valuacija: Valuacija) -> Any:
59 """Evaluira term u modelu s danom valuacijom."""
60 if term.tip == TipTerm.KONSTANTA:
61 return model.interpretiraj_konstantu(term.simbol)
62 elif term.tip == TipTerm.VARIJABLA:
63 return valuacija[term.simbol]
64 elif term.tip == TipTerm.FUNKCIJA:
65 arg_vrijednosti = [evaluiraj_term(arg, model, valuacija)
66 for arg in term.argumenti]
67 return model.interpretiraj_funkciju(term.simbol, arg_vrijednosti)
68 raise ValueError(f"Nepoznat tip terma: {term.tip}")
69

70 # Primjer Tarskijeve strukture
71 filozofi_model = Model(
72 domena={'sokrat', 'platon', 'aristotel'},
73 interpretacija={
74 'sokrat': 'sokrat',
75 'platon': 'platon',
76 'aristotel': 'aristotel',
77 'Filozof': {'sokrat', 'platon', 'aristotel'},
78 'Ucitelj': {('sokrat', 'platon'), ('platon', 'aristotel')},
79 'Smrtan': {'sokrat', 'platon', 'aristotel'},
80 'ucitelj': {'sokrat': 'platon', 'platon': 'aristotel'}
81 }
82)
83

84 val = Valuacija({'x': 'sokrat', 'y': 'platon'})
85

86 print("Tarskijeva struktura (model):")
87 print("==============================")
88 print(f"\nDomena D = {filozofi_model.domena}")
89 print("\nInterpretacija I:")
90 for simbol in ['sokrat', 'platon', 'Filozof', 'Ucitelj', 'Smrtan']:
91 if simbol in filozofi_model.interpretacija:
92 print(f" I({simbol}) = {filozofi_model.interpretacija[simbol]}")
93

94 print("\nValuacija v:")
95 for var1, val_var in val.vrijednosti.items():
96 print(f" v({var1}) = {val_var}")
97

98 print("\nEvaluacija termova:")
99 t1 = konst('sokrat')

100 t2 = var('x')
101 t3 = funk('ucitelj', var('x'))
102

103 print(f" [[{t1}]]^{{M,v}} = {evaluiraj_term(t1, filozofi_model, val)}")
104 print(f" [[{t2}]]^{{M,v}} = {evaluiraj_term(t2, filozofi_model, val)}")
105 print(f" [[{t3}]]^{{M,v}} = {evaluiraj_term(t3, filozofi_model, val)}")

4.1. OD SUDOVA K PREDIKATIMA 53

Output

Tarskijeva struktura (model):
==============================

Domena D = {'platon', 'aristotel', 'sokrat'}

Interpretacija I:
I(sokrat) = sokrat
I(platon) = platon
I(Filozof) = {'platon', 'aristotel', 'sokrat'}
I(Ucitelj) = {('platon', 'aristotel'), ('sokrat', 'platon')}
I(Smrtan) = {'platon', 'aristotel', 'sokrat'}

Valuacija v:
v(x) = sokrat
v(y) = platon

Evaluacija termova:
[[sokrat]]^{M,v} = sokrat
[[x]]^{M,v} = sokrat
[[ucitelj(x)]]^{M,v} = platon

4.1.3 Semantička evaluacija formula

Tarskijeva rekurzivna definicija istine definira kada je formula φ istinita u modelu M s
valuacijom v, što pišemo M, v |= φ:

1. M, v |= P (t1, ..., tn) ako (I(t1), ..., I(tn)) ∈ I(P)

2. M, v |= ¬φ ako M, v ̸|= φ

3. M, v |= φ ∧ ψ ako M, v |= φ i M, v |= ψ

4. M, v |= ∀xφ ako za svaki d ∈ D: M, v[x/d] |= φ

5. M, v |= ∃xφ ako postoji d ∈ D: M, v[x/d] |= φ

Implementirajmo ovu rekurzivnu definiciju:

1 def evaluiraj_formulu(formula: Formula, model: Model, valuacija: Valuacija) -> bool:
2 """Rekurzivno evaluira formulu prema Tarskijevoj definiciji."""
3

4 if formula.tip == TipFormula.PREDIKAT:
5 simbol, termovi = formula.sadrzaj
6 arg_vrijednosti = [evaluiraj_term(t, model, valuacija) for t in termovi]
7 return model.interpretiraj_predikat(simbol, arg_vrijednosti)
8

54
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

9 elif formula.tip == TipFormula.JEDNAKOST:
10 t1, t2 = formula.sadrzaj
11 v1 = evaluiraj_term(t1, model, valuacija)
12 v2 = evaluiraj_term(t2, model, valuacija)
13 return v1 == v2
14

15 elif formula.tip == TipFormula.NEGACIJA:
16 return not evaluiraj_formulu(formula.sadrzaj, model, valuacija)
17

18 elif formula.tip == TipFormula.KONJUNKCIJA:
19 f1, f2 = formula.sadrzaj
20 return (evaluiraj_formulu(f1, model, valuacija) and
21 evaluiraj_formulu(f2, model, valuacija))
22

23 elif formula.tip == TipFormula.DISJUNKCIJA:
24 f1, f2 = formula.sadrzaj
25 return (evaluiraj_formulu(f1, model, valuacija) or
26 evaluiraj_formulu(f2, model, valuacija))
27

28 elif formula.tip == TipFormula.IMPLIKACIJA:
29 f1, f2 = formula.sadrzaj
30 return (not evaluiraj_formulu(f1, model, valuacija) or
31 evaluiraj_formulu(f2, model, valuacija))
32

33 elif formula.tip == TipFormula.UNIVERZALNI:
34 varijabla, podformula = formula.sadrzaj
35 # Provjeri za sve elemente domene
36 for element in model.domena:
37 nova_valuacija = valuacija.promijeni(varijabla, element)
38 if not evaluiraj_formulu(podformula, model, nova_valuacija):
39 return False
40 return True
41

42 elif formula.tip == TipFormula.EGZISTENCIJALNI:
43 varijabla, podformula = formula.sadrzaj
44 # Provjeri postoji li barem jedan element
45 for element in model.domena:
46 nova_valuacija = valuacija.promijeni(varijabla, element)
47 if evaluiraj_formulu(podformula, model, nova_valuacija):
48 return True
49 return False
50

51 raise ValueError(f"Nepoznat tip formule: {formula.tip}")
52

53 def prikazi_evaluaciju(formula: Formula, model: Model, valuacija: Valuacija):
54 """Prikazuje rezultat evaluacije."""
55 rezultat = evaluiraj_formulu(formula, model, valuacija)
56 simbol = "⊤" if rezultat else "⊥"
57 print(f" M, v |= {formula} = {simbol}")
58

59 # Testiranje evaluacije
60 print("Evaluacija formula:")
61 print("===================")

4.1. OD SUDOVA K PREDIKATIMA 55

62

63 print("\nAtomarne formule:")
64 f1 = pred('Filozof', konst('sokrat'))
65 f2 = pred('Ucitelj', konst('sokrat'), konst('platon'))
66 f3 = pred('Ucitelj', konst('platon'), konst('sokrat'))
67

68 prikazi_evaluaciju(f1, filozofi_model, val)
69 prikazi_evaluaciju(f2, filozofi_model, val)
70 prikazi_evaluaciju(f3, filozofi_model, val)
71

72 print("\nSložene formule:")
73 f4 = konj(pred('Filozof', var('x')), pred('Smrtan', var('x')))
74 f5 = impl(pred('Filozof', var('x')), pred('Smrtan', var('x')))
75

76 prikazi_evaluaciju(f4, filozofi_model, val)
77 prikazi_evaluaciju(f5, filozofi_model, val)
78

79 print("\nKvantificirane formule:")
80 f6 = svaki('x', pred('Smrtan', var('x')))
81 f7 = postoji('x', pred('Ucitelj', var('x'), konst('platon')))
82 f8 = svaki('x', impl(pred('Filozof', var('x')), pred('Smrtan', var('x'))))
83 f9 = postoji('x', postoji('y', pred('Ucitelj', var('x'), var('y'))))
84 f10 = svaki('x', postoji('y', pred('Ucitelj', var('x'), var('y'))))
85

86 prikazi_evaluaciju(f6, filozofi_model, val)
87 prikazi_evaluaciju(f7, filozofi_model, val)
88 prikazi_evaluaciju(f8, filozofi_model, val)
89 prikazi_evaluaciju(f9, filozofi_model, val)
90 prikazi_evaluaciju(f10, filozofi_model, val)

Output

Evaluacija formula:
===================

Atomarne formule:
M, v |= Filozof(sokrat) = ⊤
M, v |= Ucitelj(sokrat, platon) = ⊤
M, v |= Ucitelj(platon, sokrat) = ⊥

Složene formule:
M, v |= (Filozof(x) ∧ Smrtan(x)) = ⊤
M, v |= (Filozof(x) → Smrtan(x)) = ⊤

Kvantificirane formule:
M, v |= ∀x Smrtan(x) = ⊤
M, v |= ∃x Ucitelj(x, platon) = ⊤
M, v |= ∀x (Filozof(x) → Smrtan(x)) = ⊤
M, v |= ∃x ∃y Ucitelj(x, y) = ⊤
M, v |= ∀x ∃y Ucitelj(x, y) = ⊥

56
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

4.1.4 Slobodne i vezane varijable

Quine je naglasio važnost razlikovanja slobodnih i vezanih varijabli:

"Biti znači biti vrijednost vezane varijable" (To be is to be the value of a bound
variable) - Quine, 1948

Varijabla je vezana ako je u dosegu kvantifikatora, inače je slobodna.

Formula bez slobodnih varijabli naziva se zatvorena formula ili rečenica.

1 def slobodne_varijable(formula: Formula, vezane: Set[str] = None) -> Set[str]:
2 """Vraća skup slobodnih varijabli u formuli."""
3 if vezane is None:
4 vezane = set()
5

6 if formula.tip == TipFormula.PREDIKAT:
7 _, termovi = formula.sadrzaj
8 slobodne = set()
9 for term in termovi:

10 if term.tip == TipTerm.VARIJABLA and term.simbol not in vezane:
11 slobodne.add(term.simbol)
12 elif term.tip == TipTerm.FUNKCIJA:
13 slobodne.update(term.slobodne_varijable() - vezane)
14 return slobodne
15

16 elif formula.tip == TipFormula.JEDNAKOST:
17 t1, t2 = formula.sadrzaj
18 slobodne = set()
19 if t1.tip == TipTerm.VARIJABLA and t1.simbol not in vezane:
20 slobodne.add(t1.simbol)
21 if t2.tip == TipTerm.VARIJABLA and t2.simbol not in vezane:
22 slobodne.add(t2.simbol)
23 return slobodne
24

25 elif formula.tip == TipFormula.NEGACIJA:
26 return slobodne_varijable(formula.sadrzaj, vezane)
27

28 elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
TipFormula.IMPLIKACIJA]:↪→

29 f1, f2 = formula.sadrzaj
30 return slobodne_varijable(f1, vezane) | slobodne_varijable(f2, vezane)
31

32 elif formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
33 varijabla, podformula = formula.sadrzaj
34 nove_vezane = vezane | {varijabla}
35 return slobodne_varijable(podformula, nove_vezane)
36

37 return set()

4.1. OD SUDOVA K PREDIKATIMA 57

38

39 def vezane_varijable(formula: Formula) -> Set[str]:
40 """Vraća skup vezanih varijabli u formuli."""
41 vezane = set()
42

43 if formula.tip == TipFormula.NEGACIJA:
44 return vezane_varijable(formula.sadrzaj)
45

46 elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
TipFormula.IMPLIKACIJA]:↪→

47 f1, f2 = formula.sadrzaj
48 return vezane_varijable(f1) | vezane_varijable(f2)
49

50 elif formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
51 varijabla, podformula = formula.sadrzaj
52 return {varijabla} | vezane_varijable(podformula)
53

54 return vezane
55

56 def je_zatvorena(formula: Formula) -> bool:
57 """Provjerava je li formula zatvorena (rečenica)."""
58 return len(slobodne_varijable(formula)) == 0
59

60 def substituiraj(formula: Formula, varijabla: str, term: Term) -> Formula:
61 """Substituira term za varijablu u formuli."""
62 if formula.tip == TipFormula.PREDIKAT:
63 simbol, termovi = formula.sadrzaj
64 novi_termovi = []
65 for t in termovi:
66 if t.tip == TipTerm.VARIJABLA and t.simbol == varijabla:
67 novi_termovi.append(term)
68 else:
69 novi_termovi.append(t)
70 return pred(simbol, *novi_termovi)
71

72 elif formula.tip == TipFormula.NEGACIJA:
73 return neg(substituiraj(formula.sadrzaj, varijabla, term))
74

75 elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
TipFormula.IMPLIKACIJA]:↪→

76 f1, f2 = formula.sadrzaj
77 nova_f1 = substituiraj(f1, varijabla, term)
78 nova_f2 = substituiraj(f2, varijabla, term)
79 if formula.tip == TipFormula.KONJUNKCIJA:
80 return konj(nova_f1, nova_f2)
81 elif formula.tip == TipFormula.DISJUNKCIJA:
82 return disj(nova_f1, nova_f2)
83 else:
84 return impl(nova_f1, nova_f2)
85

86 elif formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
87 kvant_var, podformula = formula.sadrzaj
88 if kvant_var == varijabla:

58
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

89 # Varijabla je vezana, ne substituiraj
90 return formula
91 nova_podformula = substituiraj(podformula, varijabla, term)
92 if formula.tip == TipFormula.UNIVERZALNI:
93 return svaki(kvant_var, nova_podformula)
94 else:
95 return postoji(kvant_var, nova_podformula)
96

97 return formula
98

99 # Testiranje
100 print("Analiza varijabli:")
101 print("==================")
102

103 formule_test = [
104 pred('Voli', var('x'), var('y')),
105 svaki('x', pred('Voli', var('x'), var('y'))),
106 svaki('x', postoji('y', pred('Voli', var('x'), var('y')))),
107 impl(svaki('x', pred('P', var('x'))), pred('P', var('y')))
108]
109

110 for f in formule_test:
111 slobodne = slobodne_varijable(f)
112 vezane = vezane_varijable(f)
113 zatvorena = "⊤" if je_zatvorena(f) else "⊥"
114 print(f"\nFormula: {f}")
115 print(f" Slobodne varijable: {slobodne}")
116 print(f" Vezane varijable: {vezane}")
117 print(f" Zatvorena? {zatvorena}")
118

119 print("\nSubstitucija:")
120 print("=============")
121

122 f1 = pred('P', var('x'))
123 f2 = svaki('x', pred('P', var('x')))
124 f3 = svaki('x', pred('P', var('x'), var('y')))
125

126 print(f"\n{f1}[x/sokrat] = {substituiraj(f1, 'x', konst('sokrat'))}")
127 print(f"{f2}[x/sokrat] = {substituiraj(f2, 'x', konst('sokrat'))}")
128 print(f"{f3}[y/sokrat] = {substituiraj(f3, 'y', konst('sokrat'))}")

Output

Analiza varijabli:
==================

Formula: Voli(x, y)
Slobodne varijable: {'y', 'x'}
Vezane varijable: set()
Zatvorena? ⊥

4.1. OD SUDOVA K PREDIKATIMA 59

Formula: ∀x Voli(x, y)
Slobodne varijable: {'y'}
Vezane varijable: {'x'}
Zatvorena? ⊥

Formula: ∀x ∃y Voli(x, y)
Slobodne varijable: set()
Vezane varijable: {'y', 'x'}
Zatvorena? ⊤

Formula: (∀x P(x) → P(y))
Slobodne varijable: {'y'}
Vezane varijable: {'x'}
Zatvorena? ⊥

Substitucija:
=============

P(x)[x/sokrat] = P(sokrat)
∀x P(x)[x/sokrat] = ∀x P(x)
∀x P(x, y)[y/sokrat] = ∀x P(x, sokrat)

4.1.5 Valjanost i zadovoljivost

U logici predikata razlikujemo:

• Valjanost (logički istinita) formula: istinita u svim modelima

• Zadovoljiva formula: istinita u barem jednom modelu

• Nezadovoljiva formula: lažna u svim modelima

GÃ¶del je dokazao potpunost logike predikata prvog reda:

"Svaka valjana formula logike predikata prvog reda je dokaziva" - Goedel, 1929

Ali također i nepotpunost aritmetike:

"U svakom dovoljno bogatom formalnom sustavu postoje istinite tvrdnje koje se
ne mogu dokazati" - GÃ¶del, 1931

1 def je_validna(formula: Formula, modeli: List[Model]) -> bool:
2 """Provjerava je li formula validna u svim danim modelima."""
3 for model in modeli:

60
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

4 # Za svaku moguću valuaciju
5 # (za jednostavnost, provjeravamo samo praznu valuaciju za zatvorene formule)
6 if je_zatvorena(formula):
7 val = Valuacija({})
8 if not evaluiraj_formulu(formula, model, val):
9 return False

10 else:
11 # Za formule sa slobodnim varijablama, trebamo provjeriti sve valuacije
12 slobodne = slobodne_varijable(formula)
13

14 def sve_valuacije(varijable, domena, trenutna={}):
15 if not varijable:
16 yield Valuacija(trenutna.copy())
17 else:
18 var = varijable[0]
19 for element in domena:
20 trenutna[var] = element
21 yield from sve_valuacije(varijable[1:], domena, trenutna)
22 del trenutna[var]
23

24 for val in sve_valuacije(list(slobodne), model.domena):
25 if not evaluiraj_formulu(formula, model, val):
26 return False
27 return True
28

29 def je_zadovoljiva(formula: Formula, modeli: List[Model]) -> bool:
30 """Provjerava je li formula zadovoljiva u barem jednom modelu."""
31 for model in modeli:
32 if je_zatvorena(formula):
33 val = Valuacija({})
34 if evaluiraj_formulu(formula, model, val):
35 return True
36 else:
37 slobodne = slobodne_varijable(formula)
38

39 def sve_valuacije(varijable, domena, trenutna={}):
40 if not varijable:
41 yield Valuacija(trenutna.copy())
42 else:
43 var = varijable[0]
44 for element in domena:
45 trenutna[var] = element
46 yield from sve_valuacije(varijable[1:], domena, trenutna)
47 del trenutna[var]
48

49 for val in sve_valuacije(list(slobodne), model.domena):
50 if evaluiraj_formulu(formula, model, val):
51 return True
52 return False
53

54 # Testni modeli
55 model1 = Model(
56 domena={'a', 'b'},

4.1. OD SUDOVA K PREDIKATIMA 61

57 interpretacija={
58 'P': {'a'},
59 'R': {('a', 'b'), ('b', 'a')}
60 }
61)
62

63 model2 = Model(
64 domena={'1', '2'},
65 interpretacija={
66 'P': set(),
67 'R': {('1', '1')}
68 }
69)
70

71 model3 = Model(
72 domena={'x', 'y', 'z'},
73 interpretacija={
74 'P': {'x', 'y'},
75 'R': {('x', 'y'), ('y', 'y'), ('z', 'y')}
76 }
77)
78

79 modeli = [model1, model2, model3]
80

81 # Test formula
82 print("Provjera validnosti i zadovoljivosti:")
83 print("=====================================")
84

85 test_formule = [
86 ("Zakon identiteta", svaki('x', impl(pred('P', var('x')), pred('P', var('x'))))),
87 ("Egzistencija P", postoji('x', pred('P', var('x')))),
88 ("Kontradikcija", konj(svaki('x', pred('P', var('x'))),
89 neg(svaki('x', pred('P', var('x')))))),
90 ("Svaki ima nekoga", svaki('x', postoji('y', pred('R', var('x'), var('y'))))),
91 ("Postoji za sve", postoji('y', svaki('x', pred('R', var('x'), var('y')))))
92]
93

94 for naziv, formula in test_formule:
95 print(f"\nFormula: {formula}")
96

97 # Evaluiraj u svakom modelu
98 rezultati = []
99 for i, model in enumerate(modeli, 1):

100 val = Valuacija({})
101 rez = evaluiraj_formulu(formula, model, val)
102 rezultati.append(rez)
103 print(f" Model {i}: {'⊤' if rez else '⊥'}")
104

105 # Određi status
106 if all(rezultati):
107 print(" Status: VALIDNA ✓")
108 elif any(rezultati):
109 print(" Status: ZADOVOLJIVA")

62
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

110 else:
111 print(" Status: NEZADOVOLJIVA ×")
112

113 print("\nVažno zapažanje:")
114 print(" ∀x∃y R(x,y) ̸= ∃y∀x R(x,y)")
115 print(" Redoslijed kvantifikatora je bitan!")

Output

Provjera validnosti i zadovoljivosti:
=====================================

Formula: ∀x (P(x) → P(x))
Model 1: ⊤
Model 2: ⊤
Model 3: ⊤
Status: VALIDNA ✓

Formula: ∃x P(x)
Model 1: ⊤
Model 2: ⊥
Model 3: ⊤
Status: ZADOVOLJIVA

Formula: (∀x P(x) ∧ ¬∀x P(x))
Model 1: ⊥
Model 2: ⊥
Model 3: ⊥
Status: NEZADOVOLJIVA ×

Formula: ∀x ∃y R(x, y)
Model 1: ⊤
Model 2: ⊥
Model 3: ⊤
Status: ZADOVOLJIVA

Formula: ∃y ∀x R(x, y)
Model 1: ⊥
Model 2: ⊥
Model 3: ⊤
Status: ZADOVOLJIVA

Važno zapažanje:
∀x∃y R(x,y) ̸= ∃y∀x R(x,y)
Redoslijed kvantifikatora je bitan!

4.1.6 Skolemizacija i prenex normalna forma

Thoralf Skolem pokazao je kako eliminirati egzistencijalne kvantifikatore:

4.1. OD SUDOVA K PREDIKATIMA 63

"Svaka formula logike predikata može se transformirati u ekvivalentnu formulu bez
egzistencijalnih kvantifikatora" - Skolem, 1920

Prenex normalna forma: svi kvantifikatori su na početku formule.

Skolemizacija: zamjena egzistencijalnih kvantifikatora Skolemovim funkcijama.

1 def u_prenex_formu(formula: Formula, kvantifikatori=[]) -> Formula:
2 """Pretvara formulu u prenex normalnu formu.
3 (Pojednostavljena verzija za demonstraciju)
4 """
5 # Ovo je pojednostavljena implementacija
6 # Potpuna implementacija bi trebala rukovati svim slučajevima
7

8 if formula.tip in [TipFormula.UNIVERZALNI, TipFormula.EGZISTENCIJALNI]:
9 var, podformula = formula.sadrzaj

10 return u_prenex_formu(podformula, kvantifikatori + [(formula.tip, var)])
11

12 # Rekonstruiraj formulu s kvantifikatorima na početku
13 rezultat = formula
14 for tip_kvant, var in reversed(kvantifikatori):
15 if tip_kvant == TipFormula.UNIVERZALNI:
16 rezultat = svaki(var, rezultat)
17 else:
18 rezultat = postoji(var, rezultat)
19

20 return rezultat
21

22 def skolemizuj(formula: Formula, univerzalni_kontekst=[]) -> Formula:
23 """Skolemizacija - eliminacija egzistencijalnih kvantifikatora.
24 (Pojednostavljena verzija)
25 """
26

27 if formula.tip == TipFormula.UNIVERZALNI:
28 var, podformula = formula.sadrzaj
29 nova_podformula = skolemizuj(podformula, univerzalni_kontekst + [var])
30 return svaki(var, nova_podformula)
31

32 elif formula.tip == TipFormula.EGZISTENCIJALNI:
33 var, podformula = formula.sadrzaj
34

35 # Stvori Skolemov term
36 if not univerzalni_kontekst:
37 # Skolemova konstanta
38 skolem_term = konst(f"c_{var}")
39 else:
40 # Skolemova funkcija
41 argumenti = [var(v) for v in univerzalni_kontekst]
42 skolem_term = funk(f"f_{var}", *argumenti)
43

64
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

44 # Substituiraj
45 nova_podformula = substituiraj(podformula, var, skolem_term)
46 return skolemizuj(nova_podformula, univerzalni_kontekst)
47

48 elif formula.tip == TipFormula.NEGACIJA:
49 return neg(skolemizuj(formula.sadrzaj, univerzalni_kontekst))
50

51 elif formula.tip in [TipFormula.KONJUNKCIJA, TipFormula.DISJUNKCIJA,
TipFormula.IMPLIKACIJA]:↪→

52 f1, f2 = formula.sadrzaj
53 nova_f1 = skolemizuj(f1, univerzalni_kontekst)
54 nova_f2 = skolemizuj(f2, univerzalni_kontekst)
55 if formula.tip == TipFormula.KONJUNKCIJA:
56 return konj(nova_f1, nova_f2)
57 elif formula.tip == TipFormula.DISJUNKCIJA:
58 return disj(nova_f1, nova_f2)
59 else:
60 return impl(nova_f1, nova_f2)
61

62 return formula
63

64 print("Prenex normalna forma:")
65 print("======================")
66

67 # Primjeri prenex transformacije
68 f1 = impl(svaki('x', pred('P', var('x'))), postoji('y', pred('Q', var('y'))))
69 print(f"\nOriginal: {f1}")
70 print(f"Prenex: ∃x ∃y (¬P(x) ∨ Q(y))")
71

72 f2 = svaki('x', impl(pred('P', var('x')), postoji('y', pred('R', var('x'), var('y')))))
73 print(f"\nOriginal: {f2}")
74 print(f"Prenex: ∀x ∃y (¬P(x) ∨ R(x, y))")
75

76 print("\nSkolemizacija:")
77 print("===============")
78

79 # Primjer 1: Egzistencijalni kvantifikator bez univerzalnog konteksta
80 f3 = postoji('x', pred('P', var('x')))
81 print(f"\nOriginal: {f3}")
82 print(f"Skolemizovano: P(c)")
83 print(" gdje je c nova Skolemova konstanta")
84

85 # Primjer 2: Egzistencijalni u kontekstu univerzalnog
86 f4 = svaki('x', postoji('y', pred('R', var('x'), var('y'))))
87 print(f"\nOriginal: {f4}")
88 print(f"Skolemizovano: ∀x R(x, f(x))")
89 print(" gdje je f nova Skolemova funkcija")
90

91 # Primjer 3: Složeniji slučaj
92 f5 = postoji('x', svaki('y', postoji('z', pred('S', var('x'), var('y'), var('z')))))
93 print(f"\nOriginal: {f5}")
94 print(f"Skolemizovano: ∀y S(a, y, g(y))")
95 print(" gdje su a konstanta i g funkcija")

4.1. OD SUDOVA K PREDIKATIMA 65

96

97 print("\nKorak po korak - formula: ∀x (P(x) → ∃y R(x, y))")
98 print("==")
99 print("\n1. Eliminacija implikacije:")

100 print(" ∀x (¬P(x) ∨ ∃y R(x, y))")
101 print("\n2. Premještanje kvantifikatora (prenex):")
102 print(" ∀x ∃y (¬P(x) ∨ R(x, y))")
103 print("\n3. Skolemizacija:")
104 print(" ∀x (¬P(x) ∨ R(x, f(x)))")
105 print(" gdje f(x) je Skolemova funkcija")
106 print("\n4. Rezultat je ekvizadovoljiv s originalnom formulom")

Output

Prenex normalna forma:
======================

Original: (∀x P(x) → ∃y Q(y))
Prenex: ∃x ∃y (¬P(x) ∨ Q(y))

Original: ∀x (P(x) → ∃y R(x, y))
Prenex: ∀x ∃y (¬P(x) ∨ R(x, y))

Skolemizacija:
===============

Original: ∃x P(x)
Skolemizovano: P(c)

gdje je c nova Skolemova konstanta

Original: ∀x ∃y R(x, y)
Skolemizovano: ∀x R(x, f(x))

gdje je f nova Skolemova funkcija

Original: ∃x ∀y ∃z S(x, y, z)
Skolemizovano: ∀y S(a, y, g(y))

gdje su a konstanta i g funkcija

Korak po korak - formula: ∀x (P(x) → ∃y R(x, y))
==

1. Eliminacija implikacije:
∀x (¬P(x) ∨ ∃y R(x, y))

2. Premještanje kvantifikatora (prenex):
∀x ∃y (¬P(x) ∨ R(x, y))

3. Skolemizacija:
∀x (¬P(x) ∨ R(x, f(x)))
gdje f(x) je Skolemova funkcija

66
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

4. Rezultat je ekvizadovoljiv s originalnom formulom

4.1.7 Herbrandov univerzum i teorem

Jacques Herbrand pokazao je kako svesti problem zadovoljivosti na propozicijski slučaj:

"Zadovoljivost formule prvog reda može se svesti na zadovoljivost beskonačnog
skupa propozicijskih formula" - Herbrand, 1930

Herbrandov univerzum: skup svih termova koji se mogu konstruirati iz konstanti i funkcija.

1 def generiraj_herbrandov_univerzum(konstante: Set[str], funkcije: Dict[str, int], dubina: int
= 2):↪→

2 """Generira Herbrandov univerzum do zadane dubine.
3 funkcije: dict koji mapira ime funkcije u njen aritet
4 """
5 H = []
6

7 # H0 - samo konstante
8 H.append(set(konstante))
9

10 for d in range(1, dubina + 1):
11 novi = set(H[d-1]) # Uključi sve iz prethodne razine
12

13 # Za svaku funkciju
14 for funk_ime, aritet in funkcije.items():
15 # Generiraj sve kombinacije argumenata iz H[d-1]
16 import itertools
17 for args in itertools.product(H[d-1], repeat=aritet):
18 args_str = ", ".join(args)
19 novi.add(f"{funk_ime}({args_str})")
20

21 H.append(novi)
22

23 return H
24

25 def generiraj_herbrandovu_bazu(predikati: Dict[str, int], termovi: Set[str]):
26 """Generira Herbrandovu bazu - sve atomarne formule s Herbrandovim termovima.
27 predikati: dict koji mapira ime predikata u njegov aritet
28 """
29 baza = set()
30

31 for pred_ime, aritet in predikati.items():
32 if aritet == 0:
33 baza.add(pred_ime)
34 else:

4.1. OD SUDOVA K PREDIKATIMA 67

35 import itertools
36 for args in itertools.product(termovi, repeat=aritet):
37 args_str = ", ".join(args)
38 baza.add(f"{pred_ime}({args_str})")
39

40 return baza
41

42 # Primjer
43 konstante = {'a', 'b'}
44 funkcije = {'f': 1, 'g': 2} # f je unarna, g je binarna
45 predikati = {'P': 1, 'R': 2} # P je unarni, R je binarni
46

47 print("Herbrandov univerzum:")
48 print("=====================")
49 print(f"\nKonstante: {konstante}")
50 print(f"Funkcije: {{{', '.join(f'{f}/{a}' for f, a in funkcije.items())}}}")
51

52 H = generiraj_herbrandov_univerzum(konstante, funkcije, 2)
53

54 print(f"\nH0 = {H[0]}")
55 print(f"H1 = {H[1]}")
56 print(f"H2 = ... ({len(H[2])} termova)")
57

58 print("\nHerbrandova baza:")
59 print("==================")
60

61 baza = generiraj_herbrandovu_bazu(predikati, H[0])
62 print(f"\nZa predikate P/1 i R/2:")
63 print("B0 = {")
64 baza_lista = sorted(list(baza))
65 print(f" {', '.join(baza_lista[:2])},")
66 print(f" {', '.join(baza_lista[2:])}")
67 print("}")
68

69 print("\nHerbrandove interpretacije:")
70 print("============================")
71 print(f"\nBroj mogućih interpretacija za B0: 26 = {2**len(baza)}")
72

73 print("\nPrimjer interpretacije I1:")
74 print(" P(a) = ⊤, P(b) = ⊥")
75 print(" R(a, a) = ⊤, R(a, b) = ⊤")
76 print(" R(b, a) = ⊥, R(b, b) = ⊤")
77

78 print("\nHerbrandov teorem:")
79 print("==================")
80 print("\nFormula ∀x ∃y R(x, y) je zadovoljiva")
81 print("⇐⇒")
82 print("Skup {R(a, f(a)), R(b, f(b)), ...} je zadovoljiv")
83 print("\nTime se problem prvog reda svodi na propozicijski!")

68
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

4.1.8 Praktična primjena: Mini dokazivač teorema

Implementirajmo jednostavan dokazivač teorema koji koristi rezoluciju:

1 class Klauzula:
2 """Predstavlja klauzulu u CNF formi."""
3 def __init__(self, literali):
4 self.literali = set(literali)
5

6 def __repr__(self):
7 if not self.literali:
8 return "□" # Prazna klauzula
9 return "{" + ", ".join(str(l) for l in self.literali) + "}"

10

11 def je_prazna(self):
12 return len(self.literali) == 0
13

14 class Literal:
15 """Predstavlja literal (atomarna formula ili njena negacija)."""
16 def __init__(self, predikat, argumenti, negiran=False):
17 self.predikat = predikat
18 self.argumenti = argumenti
19 self.negiran = negiran
20

21 def __repr__(self):
22 args = "(" + ", ".join(str(a) for a in self.argumenti) + ")" if self.argumenti else

""↪→

23 return ("¬" if self.negiran else "") + self.predikat + args
24

25 def __eq__(self, other):
26 return (self.predikat == other.predikat and
27 self.argumenti == other.argumenti and
28 self.negiran == other.negiran)
29

30 def __hash__(self):
31 return hash((self.predikat, tuple(self.argumenti), self.negiran))
32

33 def komplementaran(self, other):
34 """Provjerava jesu li literali komplementarni."""
35 return (self.predikat == other.predikat and
36 self.argumenti == other.argumenti and
37 self.negiran != other.negiran)
38

39 def unifikacija(t1, t2, subst={}):
40 """Jednostavna unifikacija za konstante i varijable."""
41 if t1 == t2:
42 return subst
43 elif t1.startswith('x') or t1.startswith('y') or t1.startswith('z'):
44 # t1 je varijabla
45 if t1 in subst:
46 return unifikacija(subst[t1], t2, subst)

4.1. OD SUDOVA K PREDIKATIMA 69

47 else:
48 subst[t1] = t2
49 return subst
50 elif t2.startswith('x') or t2.startswith('y') or t2.startswith('z'):
51 # t2 je varijabla
52 return unifikacija(t2, t1, subst)
53 else:
54 return None # Unifikacija neuspješna
55

56 def primijeni_substituciju(literal, subst):
57 """Primjenjuje substituciju na literal."""
58 novi_argumenti = []
59 for arg in literal.argumenti:
60 if arg in subst:
61 novi_argumenti.append(subst[arg])
62 else:
63 novi_argumenti.append(arg)
64 return Literal(literal.predikat, novi_argumenti, literal.negiran)
65

66 # Demonstracija
67 print("Rezolucijski dokazivač teorema:")
68 print("================================")
69 print("\nCilj: Dokazati da Sokrat je smrtan")
70 print("\nPremise:")
71 print(" 1. ∀x (Covjek(x) → Smrtan(x))")
72 print(" 2. Covjek(sokrat)")
73

74 # Pretvorba u klauzule
75 k1 = Klauzula([Literal("Covjek", ['x'], True), Literal("Smrtan", ['x'])])
76 k2 = Klauzula([Literal("Covjek", ['sokrat'])])
77 k3 = Klauzula([Literal("Smrtan", ['sokrat'], True)]) # Negacija cilja
78

79 print("\nKlauzule (nakon Skolemizacije i CNF):")
80 print(f" C1: {k1}")
81 print(f" C2: {k2}")
82 print(f" C3: {k3} (negacija cilja)")
83

84 print("\nRezolucijski dokaz:")
85 print("-------------------")
86

87 print("Korak 1: Rezolucija C1 i C2")
88 print(" Unifikacija: x 7→ sokrat")
89 print(" {¬Covjek(sokrat), Smrtan(sokrat)} + {Covjek(sokrat)}")
90 print(" =⇒ {Smrtan(sokrat)}")
91

92 print("\nKorak 2: Rezolucija {Smrtan(sokrat)} i C3")
93 print(" {Smrtan(sokrat)} + {¬Smrtan(sokrat)}")
94 print(" =⇒ □ (prazna klauzula)")
95

96 print("\n✓ DOKAZ PRONAÐEN!")
97 print("Sokrat je doista smrtan.")
98

99 print("\n==")

70
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

100 print("\nSloženiji primjer - tranzitivnost:")
101 print("===================================")
102 print("\nPremise:")
103 print(" 1. ∀x ∀y (Roditelj(x, y) → Predak(x, y))")
104 print(" 2. ∀x ∀y ∀z ((Predak(x, y) ∧ Predak(y, z)) → Predak(x, z))")
105 print(" 3. Roditelj(ivan, marko)")
106 print(" 4. Roditelj(marko, ana)")
107 print("\nCilj: Dokazati Predak(ivan, ana)")
108 print("\nKoraci dokazivanja:")
109 print("1. Iz premise 1 i 3: Predak(ivan, marko)")
110 print("2. Iz premise 1 i 4: Predak(marko, ana)")
111 print("3. Iz premise 2, koraka 1 i 2: Predak(ivan, ana)")
112 print("\n✓ Teorem dokazan!")

4.1.9 Zadaci za vježbu

Za produbljivanje razumijevanja semantike i sintakse logike predikata, predlažemo sljedeće
vježbe:

Implementacija potpune evaluacije

Proširite funkciju "evaluiraj formulu" da podržava složenije termovima s ugniježđenim funkci-
jama.

Provjera validnosti formula

Implementirajte algoritam koji provjerava je li formula validna konstruiranjem konačno mnogo
modela (za formule s konačnim Herbrandovim univerzumom).

Unifikacijski algoritam

Implementirajte potpuni Robinson unifikacijski algoritam koji rukuje složenim termovima i
provjerava occur-check.

CNF transformacija

Napišite funkciju koja pretvara proizvolju formulu logike predikata u konjunktivnu normalnu
formu (CNF).

4.1. OD SUDOVA K PREDIKATIMA 71

Rezolucijski dokazivač

Proširite mini dokazivač da automatski pronalazi dokaze korištenjem rezolucije s unifikacijom.

Model checker

Stvorite interaktivni model checker gdje korisnik može definirati model i provjeriti istinitost
formula.

Analiza složenosti

Istražite složenost problema zadovoljivosti za različite fragmente logike predikata (Horn
klauzule, monadski predikat, itd.).

Visualizacija modela

Implementirajte grafički prikaz modela kao usmjerenog grafa za binarne relacije.

Prevođenje prirodnog jezika

Napišite parser koji prevodi jednostavne rečenice prirodnog jezika u formule logike predikata.

Igra evaluacije

Implementirajte Hintikkinu semantičku igru za evaluaciju formula - dvoje igrača (Svatko i
Netko) naizmjence biraju vrijednosti za kvantificirane varijable.

Svaki zadatak postupno gradi razumijevanje Tarskijeve semantičke teorije istine i odnosa
između sintakse i semantike u logici predikata prvog reda.

4.1.10 Zaključak

Kroz ovu implementaciju istražili smo Tarskijev revolucionarni pristup semantici logike
predikata:

1. Sintaksu logike predikata - termove, formule i kvantifikatore

2. Tarskijevu semantičku teoriju istine - modele, interpretacije i valuacije

3. Rekurzivnu evaluaciju formula prema Tarskijevoj definiciji

4. Validnost i zadovoljivost u logici predikata

72
POGLAVLJE 4. TARSKIJEV SVIJET: SEMANTIKA LOGIKE PREDIKATA PRVOG

REDA

5. Skolemizaciju i vezu s propozicijskim slučajem

Tarski je svojim radom odgovorio na fundamentalno pitanje:

"Što znači da je rečenica istinita?" - Tarski, 1933

Njegov odgovor kroz rekurzivnu definiciju istine omogućio je:

• Precizno razumijevanje semantike formalnih jezika

• Razvoj teorije modela

• Temelj za automatsko dokazivanje teorema

• Most između logike i računarstva

Tarskijev svijet pokazuje kako apstraktni matematički objekti mogu biti reprezentirani i
manipulirani kroz konkretne strukture podataka. Python implementacija omogućava nam da
eksperimentiramo s ovim konceptima i razvijemo intuiciju za duboke logičke istine.

Logika predikata prvog reda ostaje temelj:

• Baza podataka - SQL je u biti logika predikata

• Umjetne inteligencije - predstavljanje znanja

• Verifikacije programa - dokazivanje svojstava

• Semantičkog weba - formalizacija ontologija

Tarskijev svijet nas uči da istina nije samo filozofski koncept, već precizno definirana matema-
tička struktura koju možemo konstruirati, analizirati i računati.

Poglavlje 5

Turingov svijet: Granice izračunlji-
vosti

5.1 Od Hilbertovog programa do Turingovih strojeva

Godine 1928., David Hilbert postavio je svoj čuveni Entscheidungsproblem (problem
odlučivosti):

"Postoji li algoritam koji za svaku tvrdnju logike predikata može odlučiti je li
dokaziva?" - Hilbert, 1928

Alan Turing (1912-1954) odgovorio je na ovo pitanje 1936. godine uvođenjem koncepta koji
danas nazivamo Turingov stroj:

"Moguće je izmisliti jedan stroj koji se može koristiti za računanje bilo kojeg
izračunljivog niza" - Turing, On Computable Numbers, 1936

Turingov rad ne samo da je riješio Hilbertov problem (negativno!), već je postavio temelje
moderne teorije računanja.

5.1.1 Turingov stroj - formalni model računanja

Turingov stroj sastoji se od:

• Beskonačne trake podijeljene na ćelije

• Glave za čitanje/pisanje koja se može pomicati lijevo ili desno

• Konačnog skupa stanja uključujući početno i završna stanja

• Prijelazne funkcije koja određuje sljedeći korak

73

74 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

Formalno: M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

Implementirajmo Turingov stroj u Pythonu:

1 from dataclasses import dataclass
2 from typing import Dict, Tuple, Optional, List, Set
3 from enum import Enum
4

5 class Smjer(Enum):
6 """Smjer pomicanja glave."""
7 LIJEVO = 'L'
8 DESNO = 'D'
9 STOJ = 'S'

10

11 @dataclass
12 class TuringovStroj:
13 """Implementacija determinističkog Turingovog stroja."""
14

15 def __init__(self, stanja: Set[str], ulazni_alfabet: Set[str],
16 alfabet_trake: Set[str], prijelazi: Dict,
17 pocetno: str, prihvaca: str, odbacuje: str):
18 self.Q = stanja
19 self.Sigma = ulazni_alfabet
20 self.Gamma = alfabet_trake
21 self.delta = prijelazi
22 self.q0 = pocetno
23 self.q_accept = prihvaca
24 self.q_reject = odbacuje
25 self.prazno = '_' # Simbol za praznu ćeliju
26

27 # Trenutna konfiguracija
28 self.traka = []
29 self.pozicija = 0
30 self.stanje = self.q0
31 self.povijest = []
32

33 def postavi_ulaz(self, ulaz: str):
34 """Postavlja ulazni niz na traku."""
35 self.traka = list(ulaz) + [self.prazno]
36 self.pozicija = 0
37 self.stanje = self.q0
38 self.povijest = [self._trenutna_konfiguracija()]
39

40 def _trenutna_konfiguracija(self) -> Tuple[str, List[str], int]:
41 """Vraća trenutnu konfiguraciju (stanje, traka, pozicija)."""
42 return (self.stanje, self.traka.copy(), self.pozicija)
43

44 def korak(self) -> bool:
45 """Izvršava jedan korak stroja. Vraća False ako je završio."""
46 if self.stanje in [self.q_accept, self.q_reject]:
47 return False

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 75

48

49 # Čitaj simbol s trake
50 if self.pozicija >= len(self.traka):
51 self.traka.append(self.prazno)
52 simbol = self.traka[self.pozicija]
53

54 # Pronađi prijelaz
55 if (self.stanje, simbol) not in self.delta:
56 self.stanje = self.q_reject
57 return False
58

59 novo_stanje, novi_simbol, smjer = self.delta[(self.stanje, simbol)]
60

61 # Ažuriraj konfiguraciju
62 self.stanje = novo_stanje
63 self.traka[self.pozicija] = novi_simbol
64

65 if smjer == Smjer.LIJEVO:
66 self.pozicija = max(0, self.pozicija - 1)
67 elif smjer == Smjer.DESNO:
68 self.pozicija += 1
69 if self.pozicija >= len(self.traka):
70 self.traka.append(self.prazno)
71

72 self.povijest.append(self._trenutna_konfiguracija())
73 return True
74

75 def pokreni(self, max_koraka: int = 1000) -> str:
76 """Pokreće stroj do kraja ili maksimalnog broja koraka."""
77 koraci = 0
78 while self.korak() and koraci < max_koraka:
79 koraci += 1
80

81 if self.stanje == self.q_accept:
82 return "PRIHVAĆEN"
83 elif self.stanje == self.q_reject:
84 return "ODBAČEN"
85 else:
86 return "PREKORAČEN LIMIT"
87

88 def prikazi_povijest(self):
89 """Prikazuje povijest izvršavanja."""
90 for i, (stanje, traka, poz) in enumerate(self.povijest):
91 # Prikaži traku s trenutnom pozicijom
92 prikaz = ""
93 for j, simbol in enumerate(traka):
94 if j == poz:
95 prikaz += f"[{stanje}] {simbol} "
96 else:
97 prikaz += f"{simbol} "
98 print(f"Korak {i}: {prikaz}")
99 if poz < len(traka):

100 print(" " * (9 + poz * 2 + len(stanje) // 2) + "↑")

76 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

101

102 # Primjer: Stroj koji mijenja 0→1 i 1→0
103 stanja = {'q0', 'q1', 'q_accept', 'q_reject'}
104 ulazni = {'0', '1'}
105 traka = {'0', '1', '_'}
106

107 # Prijelazna funkcija
108 prijelazi = {
109 ('q0', '0'): ('q1', '1', Smjer.DESNO),
110 ('q0', '1'): ('q1', '0', Smjer.DESNO),
111 ('q1', '0'): ('q0', '1', Smjer.DESNO),
112 ('q1', '1'): ('q0', '0', Smjer.DESNO),
113 ('q0', '_'): ('q_accept', '_', Smjer.LIJEVO),
114 ('q1', '_'): ('q_accept', '_', Smjer.LIJEVO)
115 }
116

117 tm = TuringovStroj(stanja, ulazni, traka, prijelazi, 'q0', 'q_accept', 'q_reject')
118

119 print("Turingov stroj inicijaliziran")
120 print("=====================================")
121 print("\nKomponente stroja:")
122 print(f" Stanja Q = {tm.Q}")
123 print(f" Ulazni alfabet Σ = {tm.Sigma}")
124 print(f" Alfabet trake Γ = {tm.Gamma}")
125 print(f" Početno stanje = {tm.q0}")
126 print(f" Prihvaća stanje = {tm.q_accept}")
127 print(f" Odbacuje stanje = {tm.q_reject}")
128

129 print("\nPrijelazna funkcija δ:")
130 for (s, sym), (ns, nsym, d) in list(prijelazi.items())[:3]:
131 print(f" δ({s}, {sym}) = ({ns}, {nsym}, {d.value})")
132

133 # Test
134 ulaz = "0011"
135 print(f"\nSimulacija na ulazu '{ulaz}':")
136 print("=============================")
137 print()
138

139 tm.postavi_ulaz(ulaz)
140 rezultat = tm.pokreni()
141 tm.prikazi_povijest()
142

143 print(f"\nRezultat: {rezultat}")
144 print(f"Finalna traka: {''.join(tm.traka)}")

Output

Turingov stroj inicijaliziran
=====================================

Komponente stroja:

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 77

Stanja Q = {'q0', 'q1', 'q_reject', 'q_accept'}
Ulazni alfabet Σ = {'1', '0'}
Alfabet trake Γ = {'1', '0', '_'}
Početno stanje = q0
Prihvaća stanje = q_accept
Odbacuje stanje = q_reject

Prijelazna funkcija δ:
δ(q0, 0) = (q1, 1, D)
δ(q0, 1) = (q1, 0, D)
δ(q1, 0) = (q0, 1, D)

Simulacija na ulazu '0011':
=============================

Korak 0: [q0] 0 0 1 1 _
↑

Korak 1: 1 [q1] 0 1 1 _
↑

Korak 2: 1 1 [q0] 1 1 _
↑

Korak 3: 1 1 0 [q1] 1 _
↑

Korak 4: 1 1 0 0 [q0] _
↑

Korak 5: 1 1 0 [q_accept] 0 _
↑

Rezultat: PRIHVAĆEN
Finalna traka: 1100_

5.1.2 Church-Turingova teza

Istovremeno s Turingom, Alonzo Church razvio je lambda račun kao alternativni formalizam:

"Efektivno izračunljiva funkcija je ona koja se može izraziti u lambda računu" -
Church, 1936

Church-Turingova teza tvrdi da su svi razumni modeli računanja ekvivalentni:

• Turingovi strojevi

• Lambda račun

• Rekurzivne funkcije (Gödel, Kleene)

• Postovi sustavi

78 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

• Register strojevi

Implementirajmo lambda račun i pokažimo ekvivalenciju:

1 class LambdaTerm:
2 """Apstraktna klasa za lambda terme."""
3 pass
4

5 class Var(LambdaTerm):
6 """Varijabla."""
7 def __init__(self, ime):
8 self.ime = ime
9

10 def __repr__(self):
11 return self.ime
12

13 def substitute(self, var, term):
14 if self.ime == var:
15 return term
16 return self
17

18 class Abs(LambdaTerm):
19 """Lambda apstrakcija."""
20 def __init__(self, param, tijelo):
21 self.param = param
22 self.tijelo = tijelo
23

24 def __repr__(self):
25 return f"λ{self.param}.{self.tijelo}"
26

27 def substitute(self, var, term):
28 if self.param == var:
29 return self # Varijabla je vezana
30 return Abs(self.param, self.tijelo.substitute(var, term))
31

32 class App(LambdaTerm):
33 """Aplikacija."""
34 def __init__(self, funkcija, argument):
35 self.funkcija = funkcija
36 self.argument = argument
37

38 def __repr__(self):
39 return f"({self.funkcija} {self.argument})"
40

41 def substitute(self, var, term):
42 return App(
43 self.funkcija.substitute(var, term),
44 self.argument.substitute(var, term)
45)
46

47 def beta_redukcija(term: LambdaTerm, max_koraka=100) -> LambdaTerm:

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 79

48 """Beta redukcija lambda terma."""
49 koraci = 0
50

51 while koraci < max_koraka:
52 if isinstance(term, App) and isinstance(term.funkcija, Abs):
53 # Beta redukcija: (λx.M)N → M[x/N]
54 term = term.funkcija.tijelo.substitute(
55 term.funkcija.param,
56 term.argument
57)
58 koraci += 1
59 else:
60 break
61

62 return term
63

64 # Church brojevi - reprezentacija prirodnih brojeva
65 def church_broj(n):
66 """Konstruira Church broj za n."""
67 # n = λf.λx.f^n(x)
68 f = lambda func: lambda x: x if n == 0 else func(church_broj(n-1)(func)(x))
69 return f
70

71 def church_to_int(church_n):
72 """Pretvara Church broj u Python int."""
73 return church_n(lambda x: x + 1)(0)
74

75 # Aritmetičke operacije
76 SUCC = lambda n: lambda f: lambda x: f(n(f)(x))
77 PLUS = lambda m: lambda n: lambda f: lambda x: m(f)(n(f)(x))
78 MULT = lambda m: lambda n: lambda f: m(n(f))
79

80 # Booleove vrijednosti
81 TRUE = lambda x: lambda y: x
82 FALSE = lambda x: lambda y: y
83 NOT = lambda p: p(FALSE)(TRUE)
84 AND = lambda p: lambda q: p(q)(FALSE)
85 OR = lambda p: lambda q: p(TRUE)(q)
86

87 print("Lambda račun")
88 print("============")
89 print("\nOsnovni konstrukti:")
90 print(f" Varijabla: {Var('x')}")
91 print(f" Apstrakcija: {Abs('x', Var('x'))}")
92 print(f" Aplikacija: {App(Var('f'), Var('x'))}")
93

94 print("\nChurch brojevi:")
95 for i in range(4):
96 if i == 0:
97 print(f" {i} = λf.λx.x")
98 else:
99 f_aplikacije = ' '.join(['(f' for _ in range(i)]) + ' x' + ')' * i

100 print(f" {i} = λf.λx.{f_aplikacije}")

80 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

101

102 print("\nAritmetičke operacije:")
103 print(" SUCC = λn.λf.λx.(f ((n f) x))")
104 print(" PLUS = λm.λn.λf.λx.((m f) ((n f) x))")
105 print(" MULT = λm.λn.λf.(m (n f))")
106

107 print("\nPrimjer redukcije: (SUCC 1)")
108 print("================================")
109 print("\nKorak 0: ((λn.λf.λx.(f ((n f) x)) λf.λx.(f x))")
110 print("Korak 1: λf.λx.(f ((λf.λx.(f x) f) x))")
111 print("Korak 2: λf.λx.(f (λx.(f x) x))")
112 print("Korak 3: λf.λx.(f (f x))")
113 print("\nRezultat: Church broj 2")
114

115 # Python simulacija
116 print("\nPython simulacija Church brojeva:")
117 print("=================================")
118

119 for i in range(4):
120 c = church_broj(i)
121 print(f"church({i}) kao Python broj: {church_to_int(c)}")
122

123 # Testovi
124 print("\nTestovi:")
125 c2 = church_broj(2)
126 c3 = church_broj(3)
127

128 rezultat_succ = church_to_int(SUCC(c2))
129 print(f" succ(2) = {rezultat_succ} {'✓' if rezultat_succ == 3 else '×'}")
130

131 rezultat_plus = church_to_int(PLUS(c2)(c3))
132 print(f" plus(2, 3) = {rezultat_plus} {'✓' if rezultat_plus == 5 else '×'}")
133

134 rezultat_mult = church_to_int(MULT(c2)(c3))
135 print(f" mult(2, 3) = {rezultat_mult} {'✓' if rezultat_mult == 6 else '×'}")
136

137 print("\nBooleove vrijednosti:")
138 print(" TRUE = λx.λy.x")
139 print(" FALSE = λx.λy.y")
140 print(" NOT = λp.((p FALSE) TRUE)")
141 print(" AND = λp.λq.((p q) FALSE)")
142

143 # Test Booleovih operacija
144 def bool_to_python(church_bool):
145 return church_bool(True)(False)
146

147 print(f"\nTest: NOT TRUE = FALSE {'✓' if not bool_to_python(NOT(TRUE)) else '×'}")
148 print(f"Test: AND TRUE FALSE = FALSE {'✓' if not bool_to_python(AND(TRUE)(FALSE)) else

'×'}")↪→

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 81

Output

Lambda račun
============

Osnovni konstrukti:
Varijabla: x
Apstrakcija: λx.x
Aplikacija: (f x)

Church brojevi:
0 = λf.λx.x
1 = λf.λx.(f x)
2 = λf.λx.(f (f x))
3 = λf.λx.(f (f (f x)))

Aritmetičke operacije:
SUCC = λn.λf.λx.(f ((n f) x))
PLUS = λm.λn.λf.λx.((m f) ((n f) x))
MULT = λm.λn.λf.(m (n f))

Primjer redukcije: (SUCC 1)
================================

Korak 0: ((λn.λf.λx.(f ((n f) x)) λf.λx.(f x))
Korak 1: λf.λx.(f ((λf.λx.(f x) f) x))
Korak 2: λf.λx.(f (λx.(f x) x))
Korak 3: λf.λx.(f (f x))

Rezultat: Church broj 2

Python simulacija Church brojeva:
=================================
church(0) kao Python broj: 0
church(1) kao Python broj: 1
church(2) kao Python broj: 2
church(3) kao Python broj: 3

Testovi:
succ(2) = 3 ✓
plus(2, 3) = 5 ✓
mult(2, 3) = 6 ✓

Booleove vrijednosti:
TRUE = λx.λy.x
FALSE = λx.λy.y
NOT = λp.((p FALSE) TRUE)
AND = λp.λq.((p q) FALSE)

Test: NOT TRUE = FALSE ✓
Test: AND TRUE FALSE = FALSE ✓

82 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

5.1.3 Problem zaustavljanja - prva granica izračunljivosti

Turing je 1936. dokazao da ne postoji algoritam koji može odlučiti hoće li se proizvoljan
program zaustaviti:

"Ne može postojati opći proces za određivanje hoće li se dani stroj ikada ispisati
0" - Turing, 1936

Halting problem: Za dani Turingov stroj M i ulaz w, odlučiti hoće li se M zaustaviti na w.

Dokaz koristi dijagonalizaciju, tehniku koju je Cantor koristio za dokaz neprebrojavosti
realnih brojeva:

1 def simuliraj_halt_problem():
2 """Demonstracija paradoksa problema zaustavljanja."""
3

4 # Pretpostavljamo da imamo magičnu funkciju HALT
5 def pretpostavljeni_halt(program_kod, ulaz):
6 """Hipotetička funkcija koja 'rješava' problem zaustavljanja."""
7 # Ovo je nemoguće implementirati općenito!
8 # Za demonstraciju, vraćamo random vrijednost
9 import hashlib

10 h = hashlib.md5((program_kod + ulaz).encode()).hexdigest()
11 return int(h, 16) % 2 == 0
12

13 # Dijagonalizacijski stroj D
14 def D(M_kod):
15 """Stroj koji stvara paradoks."""
16 if pretpostavljeni_halt(M_kod, M_kod):
17 # Ako M staje na M, onda D ulazi u beskonačnu petlju
18 while True:
19 pass
20 else:
21 # Ako M ne staje na M, onda D staje
22 return "STOP"
23

24 # Paradoks: Što se događa s D(D)?
25 D_kod = "def D(M): ..."
26

27 return D_kod
28

29 print("Problem zaustavljanja")
30 print("=====================")
31 print("\nPretpostavimo da postoji funkcija HALT(M, w) koja vraća:")
32 print(" ⊤ ako se M zaustavlja na ulazu w")
33 print(" ⊥ ako se M ne zaustavlja na ulazu w")
34

35 print("\nDijagonalizacijski dokaz:")
36 print("-------------------------")

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 83

37 print("\n1. Konstruiramo stroj D koji na ulazu M:")
38 print(" - Ako HALT(M, M) = ⊤, onda D ulazi u beskonačnu petlju")
39 print(" - Ako HALT(M, M) = ⊥, onda D se zaustavlja")
40

41 print("\n2. Što se događa kad pokrenemo D(D)?")
42 print(" - Ako D(D) se zaustavlja, onda HALT(D, D) = ⊤")
43 print(" → Po definiciji D, to znači da D(D) ne staje!")
44 print(" - Ako D(D) ne staje, onda HALT(D, D) = ⊥")
45 print(" → Po definiciji D, to znači da D(D) staje!")
46

47 print("\n3. KONTRADIKCIJA! ⋆")
48 print("\nDakle, funkcija HALT ne može postojati.")
49

50 # Simulacija
51 print("\nSimulacija paradoksa:")
52 print("=====================")
53

54 def simple_loop():
55 while True:
56 pass
57

58 def simple_halt():
59 return "STOP"
60

61 print("\nPokušaj 1: Pretpostavljamo HALT(simple_loop, '') = ⊥")
62 print(" Stroj D bi se zaustavio")
63

64 print("\nPokušaj 2: Pretpostavljamo HALT(simple_halt, '') = ⊤")
65 print(" Stroj D bi ušao u petlju")
66

67 print("\nPokušaj 3: HALT(D, D) = ?")
68 print(" Paradoks! Ne možemo odlučiti.")
69

70 print("\nPraktične posljedice:")
71 print("=====================")
72 print("\nNeodlučivi problemi u programiranju:")
73 print(" • Hoće li program ikad pristupiti null pointeru?")
74 print(" • Jesu li dva programa ekvivalentna?")
75 print(" • Hoće li program ikad ispisati \"Hello World\"?")
76 print(" • Je li funkcija totalna (definirana za sve ulaze)?")
77 print(" • Postoji li ulaz za koji program vraća 42?")
78 print("\nRice-ov teorem: Svako netrivijalno svojstvo programa je neodlučivo!")

Output

Problem zaustavljanja
=====================

Pretpostavimo da postoji funkcija HALT(M, w) koja vraća:
⊤ ako se M zaustavlja na ulazu w
⊥ ako se M ne zaustavlja na ulazu w

84 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

Dijagonalizacijski dokaz:

1. Konstruiramo stroj D koji na ulazu M:
- Ako HALT(M, M) = ⊤, onda D ulazi u beskonačnu petlju
- Ako HALT(M, M) = ⊥, onda D se zaustavlja

2. Što se događa kad pokrenemo D(D)?
- Ako D(D) se zaustavlja, onda HALT(D, D) = ⊤

→ Po definiciji D, to znači da D(D) ne staje!
- Ako D(D) ne staje, onda HALT(D, D) = ⊥

→ Po definiciji D, to znači da D(D) staje!

3. KONTRADIKCIJA! ⋆

Dakle, funkcija HALT ne može postojati.

Simulacija paradoksa:
=====================

Pokušaj 1: Pretpostavljamo HALT(simple_loop, '') = ⊥
Stroj D bi se zaustavio

Pokušaj 2: Pretpostavljamo HALT(simple_halt, '') = ⊤
Stroj D bi ušao u petlju

Pokušaj 3: HALT(D, D) = ?
Paradoks! Ne možemo odlučiti.

Praktične posljedice:
=====================

Neodlučivi problemi u programiranju:
• Hoće li program ikad pristupiti null pointeru?
• Jesu li dva programa ekvivalentna?
• Hoće li program ikad ispisati "Hello World"?
• Je li funkcija totalna (definirana za sve ulaze)?
• Postoji li ulaz za koji program vraća 42?

Rice-ov teorem: Svako netrivijalno svojstvo programa je neodlučivo!

5.1.4 Rekurzivno prebrojive vs. odlučive jezike

Turing je razlikovao dvije klase problema:

• Odlučivi (rekurzivni): Turingov stroj uvijek staje s DA/NE odgovorom

• Poluodlučivi (rekurzivno prebrojivi): Turingov stroj staje za DA, možda ne staje za

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 85

NE

Post je pokazao:

"Jezik je odlučiv ako i samo ako su i on i njegov komplement rekurzivno prebrojivi"
- Post, 1944

1 class JezikKlasa(Enum):
2 """Klasifikacija jezika po odlučivosti."""
3 ODLUCIV = "odlučiv"
4 POLUODLUCIV = "poluodlučiv"
5 NEODLUCIV = "neodlučiv"
6

7 def odluciv_paran_broj_jedinica(w: str) -> str:
8 """Odlučuje jezik s parnim brojem jedinica."""
9 broj_jedinica = w.count('1')

10 if broj_jedinica % 2 == 0:
11 return "PRIHVAĆEN"
12 else:
13 return "ODBAČEN"
14

15 def poluodluciv_halting(M_opis: str, w: str, max_koraka: int = 100) -> str:
16 """Simulira poluodlučivost problema zaustavljanja."""
17 # Simuliramo izvršavanje do max_koraka
18 # U stvarnosti, ovo bi moglo trajati zauvijek!
19

20 koraci = 0
21 while koraci < max_koraka:
22 # Simulacija...
23 koraci += 1
24

25 # Za demonstraciju, "zaustavlja se" za neke slučajeve
26 if len(M_opis + w) % 7 == 0:
27 return "PRIHVAĆEN"
28

29 return "NEPOZNATO (još uvijek radi...)"
30

31 def enumerator(jezik_generator):
32 """Enumerator za rekurzivno prebrojiv jezik."""
33 for niz in jezik_generator():
34 yield niz
35

36 def generator_anbn():
37 """Generira jezik {anbn takav da n ≥ 0}."""
38 n = 0
39 while True:
40 yield 'a' * n + 'b' * n
41 n += 1
42

43 def provjeri_pripadnost_enumeracijom(w: str, enumerator, max_koraka: int = 1000):

86 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

44 """Provjerava pripadnost enumeracijom."""
45 for i, generirani in enumerate(enumerator):
46 if i >= max_koraka:
47 return "NEPOZNATO"
48 if generirani == w:
49 return "PRONAÐEN"
50 return "NIJE PRONAÐEN"
51

52 print("Hijerarhija jezika")
53 print("==================")
54 print("\n1. ODLUČIVI (Rekurzivni) jezici:")
55 print(" Turingov stroj M takav da za svaki w:")
56 print(" • M(w) = PRIHVATI ako w ∈ L")
57 print(" • M(w) = ODBACI ako w /∈ L")
58 print(" • M se UVIJEK zaustavlja")
59

60 print("\n2. POLUODLUČIVI (Rekurzivno prebrojivi) jezici:")
61 print(" Turingov stroj M takav da za svaki w:")
62 print(" • M(w) = PRIHVATI ako w ∈ L")
63 print(" • M(w) = ODBACI ili ∞ ako w /∈ L")
64

65 print("\n3. NEODLUČIVI jezici:")
66 print(" Ne postoji Turingov stroj koji odlučuje jezik")
67

68 print("\nPrimjeri:")
69 print("=========")
70

71 print("\nODLUČIV: L = {w takav da w ima paran broj jedinica}")
72 testovi = ['1011', '1001', '1111']
73 for w in testovi:
74 rezultat = odluciv_paran_broj_jedinica(w)
75 broj = w.count('1')
76 print(f" Test '{w}': {broj} jedinice → {rezultat}")
77

78 print("\nPOLUODLUČIV: H = {〈M,w〉 takav da M se zaustavlja na w}")
79 print(" Možemo simulirati M na w")
80 print(" Ako stane → PRIHVATI")
81 print(" Ako ne stane → ... (čekamo zauvijek)")
82

83 print("\nSimulacija poluodlučivog problema:")
84 print("===================================")
85

86 print("\nEnumerator za jezik {anbn takav da n ≥ 0}:")
87 gen = generator_anbn()
88 prvih_6 = [next(gen) for _ in range(6)]
89 print(f" Generirani nizovi: {', '.join(prvih_6 if prvih_6[0] else ['ε'] + prvih_6[1:])}")
90

91 print("\nProvjera 'aabb' ∈ L?")
92 enum = enumerator(generator_anbn)
93 for i in range(3):
94 niz = next(enum)
95 if niz == 'aabb':
96 print(f" Korak {i+1}: Generiraj {niz if niz else 'ε'} → PRONAÐEN! ✓")

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 87

97 break
98 else:
99 print(f" Korak {i+1}: Generiraj {niz if niz else 'ε'} → ne odgovara")

100

101 print("\nProvjera 'abab' ∈ L?")
102 enum = enumerator(generator_anbn)
103 for i in range(5):
104 niz = next(enum)
105 print(f" Korak {i+1}: {niz if niz else 'ε'} → ne")
106 print(" ... (nikad neće pronaći, ali ne znamo to unaprijed!)")
107

108 print("\nPostov teorem:")
109 print("==============")
110 print("\nL je odlučiv ⇐⇒ L i ne L su rekurzivno prebrojivi")
111 print("\nDokaz (=⇒):")
112 print(" Ako je L odlučiv, imamo M koji uvijek staje.")
113 print(" Za L: pokreni M, prihvati ako M prihvati.")
114 print(" Za ne L: pokreni M, prihvati ako M odbaci.")
115 print("\nDokaz (⇐=):")
116 print(" Ako su L i ne L r.p., imamo M1 i M2.")
117 print(" Simuliraj M1 i M2 paralelno (dovetailing).")
118 print(" Jedan mora stati → odluči!")

Output

Hijerarhija jezika
==================

1. ODLUČIVI (Rekurzivni) jezici:
Turingov stroj M takav da za svaki w:
• M(w) = PRIHVATI ako w ∈ L
• M(w) = ODBACI ako w /∈ L
• M se UVIJEK zaustavlja

2. POLUODLUČIVI (Rekurzivno prebrojivi) jezici:
Turingov stroj M takav da za svaki w:
• M(w) = PRIHVATI ako w ∈ L
• M(w) = ODBACI ili ∞ ako w /∈ L

3. NEODLUČIVI jezici:
Ne postoji Turingov stroj koji odlučuje jezik

Primjeri:
=========

ODLUČIV: L = {w takav da w ima paran broj jedinica}
Test '1011': 3 jedinice → ODBAČEN
Test '1001': 2 jedinice → PRIHVAĆEN
Test '1111': 4 jedinice → PRIHVAĆEN

POLUODLUČIV: H = {〈M,w〉 takav da M se zaustavlja na w}

88 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

Možemo simulirati M na w
Ako stane → PRIHVATI
Ako ne stane → ... (čekamo zauvijek)

Simulacija poluodlučivog problema:
===================================

Enumerator za jezik {anbn takav da n ≥ 0}:
Generirani nizovi: ε, ab, aabb, aaabbb, aaaabbbb, aaaaabbbbb

Provjera 'aabb' ∈ L?
Korak 1: Generiraj ε → ne odgovara
Korak 2: Generiraj ab → ne odgovara
Korak 3: Generiraj aabb → PRONAÐEN! ✓

Provjera 'abab' ∈ L?
Korak 1: ε → ne
Korak 2: ab → ne
Korak 3: aabb → ne
Korak 4: aaabbb → ne
Korak 5: aaaabbbb → ne
... (nikad neće pronaći, ali ne znamo to unaprijed!)

Postov teorem:
==============

L je odlučiv ⇐⇒ L i ne L su rekurzivno prebrojivi

Dokaz (=⇒):
Ako je L odlučiv, imamo M koji uvijek staje.
Za L: pokreni M, prihvati ako M prihvati.
Za ne L: pokreni M, prihvati ako M odbaci.

Dokaz (⇐=):
Ako su L i ne L r.p., imamo M1 i M2.
Simuliraj M1 i M2 paralelno (dovetailing).
Jedan mora stati → odluči!

5.1.5 Redukcije i stupnjevi neodlučivosti

Turing je uveo koncept redukcije - svođenja jednog problema na drugi:

"Mnogi problemi mogu se svesti na problem zaustavljanja" - Turing, 1936

Many-one redukcija: A ≤m B ako postoji izračunljiva funkcija f takva da:

w ∈ A ⇐⇒ f(w) ∈ B

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 89

1 class Redukcija:
2 """Reprezentira many-one redukciju između problema."""
3

4 def __init__(self, ime, od_problema, do_problema):
5 self.ime = ime
6 self.od = od_problema
7 self.do = do_problema
8

9 def __repr__(self):
10 return f"{self.od} ≤m {self.do}"
11

12 def reduciraj_acceptance_na_halting(M, w):
13 """Reducira ACCEPTANCE problem na HALTING."""
14

15 # Konstruiramo novi stroj M'
16 def M_prime(x):
17 # Simuliraj M na w
18 rezultat = simuliraj_tm(M, w)
19

20 if rezultat == "PRIHVAĆEN":
21 return "STOP" # M' staje
22 else:
23 while True: # M' ne staje
24 pass
25

26 return M_prime
27

28 def simuliraj_tm(M, w, max_koraka=100):
29 """Simulira Turingov stroj (pojednostavljeno)."""
30 # Za demonstraciju
31 import hashlib
32 h = int(hashlib.md5((str(M) + w).encode()).hexdigest(), 16)
33 if h % 3 == 0:
34 return "PRIHVAĆEN"
35 elif h % 3 == 1:
36 return "ODBAČEN"
37 else:
38 return "LOOP"
39

40 class OracleTM:
41 """Turingov stroj s orakulom."""
42

43 def __init__(self, oracle_problem):
44 self.oracle = oracle_problem
45

46 def query_oracle(self, instance):
47 """Pita orakul za odgovor."""
48 # U teoriji, orakul instantno odgovara
49 return self.oracle(instance)
50

51 def riješi_problem_s_orakulom(self, problem, ulaz):
52 """Rješava problem koristeći orakul."""

90 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

53 # Primjer: s H-orakulom možemo riješiti mnoge probleme
54 if problem == "EMPTY":
55 # Je li L(M) prazan?
56 # Konstruiraj M' koji prihvaća sve ako M prihvaća bar nešto
57 return self.query_oracle(("modified_M", ulaz))
58 return "NEPOZNAT"
59

60 def halting_oracle(instance):
61 """Hipotetički halting oracle."""
62 M, w = instance
63 # Ovo je nemoguće implementirati!
64 # Za demonstraciju:
65 if "while True" in str(M):
66 return False
67 elif "return" in str(M):
68 return True
69 else:
70 return None
71

72 print("Redukcije među problemima")
73 print("=========================")
74 print("\nMany-one redukcija: A ≤m B")
75 print(" Postoji izračunljiva f: w ∈ A ⇐⇒ f(w) ∈ B")
76 print("\nAko A ≤m B i B je odlučiv → A je odlučiv")
77 print("Ako A ≤m B i A je neodlučiv → B je neodlučiv")
78

79 print("\nPrimjer redukcije:")
80 print("==================")
81 print("\nProblem: ACCEPTANCE ≤m HALTING")
82 print("\nACCEPTANCE: Prihvaća li M ulaz w?")
83 print("HALTING: Zaustavlja li se M na w?")
84 print("\nRedukcija:")
85 print(" Konstruiraj M' koji:")
86 print(" 1. Simulira M na w")
87 print(" 2. Ako M prihvati → M' staje")
88 print(" 3. Ako M odbaci → M' ulazi u petlju")
89 print("\nTada: M prihvaća w ⇐⇒ M' se zaustavlja na w")
90

91 print("\nLanac redukcija:")
92 print("================")
93 print("\nEMPTY (Je li L(M) = ∅?)")
94 print(" ↓ ≤m")
95 print("REGULAR (Je li L(M) regularan?)")
96 print(" ↓ ≤m")
97 print("EQUIVALENT (Je li L(M1) = L(M2)?)")
98 print(" ↓ ≤m")
99 print("HALTING")

100 print("\nSvi su neodlučivi!")
101

102 print("\nTuringovi stupnjevi:")
103 print("====================")
104 print("\nStupanj 0: Odlučivi problemi")
105 print(" Primjer: Je li broj paran?")

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 91

106 print("\nStupanj 0': Problem zaustavljanja")
107 print(" H = {〈M,w〉 takav da M staje na w}")
108 print("\nStupanj 0'': Halting za oracle strojeve")
109 print(" H' = {〈M^H,w〉 takav da M s H-orakulom staje na w}")
110 print("\nBeskonačna hijerarhija: 0 < 0' < 0'' < ...")
111

112 print("\nOracle simulacija:")
113 print("==================")
114

115 oracle_tm = OracleTM(halting_oracle)
116

117 print("\nTuringov stroj s H-orakulom može:")
118 print(" • Riješiti problem zaustavljanja za obične TM")
119 print(" • Ali ne može riješiti svoj vlastiti problem zaustavljanja!")
120

121 print("\nTest oracle stroja:")
122 test1 = oracle_tm.query_oracle(("while True: pass", ""))
123 print(f" Query: Staje li 'while True: pass'? → {'DA' if test1 else 'NE'}")
124

125 test2 = oracle_tm.query_oracle(("return 42", ""))
126 print(f" Query: Staje li 'return 42'? → {'DA' if test2 else 'NE'}")
127

128 print(" Query: Staje li ovaj oracle stroj? → PARADOKS!")

Output

Redukcije među problemima
=========================

Many-one redukcija: A ≤m B
Postoji izračunljiva f: w ∈ A ⇐⇒ f(w) ∈ B

Ako A ≤m B i B je odlučiv → A je odlučiv
Ako A ≤m B i A je neodlučiv → B je neodlučiv

Primjer redukcije:
==================

Problem: ACCEPTANCE ≤m HALTING

ACCEPTANCE: Prihvaća li M ulaz w?
HALTING: Zaustavlja li se M na w?

Redukcija:
Konstruiraj M' koji:
1. Simulira M na w
2. Ako M prihvati → M' staje
3. Ako M odbaci → M' ulazi u petlju

Tada: M prihvaća w ⇐⇒ M' se zaustavlja na w

92 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

Lanac redukcija:
================

EMPTY (Je li L(M) = ∅?)
↓ ≤m

REGULAR (Je li L(M) regularan?)
↓ ≤m

EQUIVALENT (Je li L(M1) = L(M2)?)
↓ ≤m

HALTING

Svi su neodlučivi!

Turingovi stupnjevi:
====================

Stupanj 0: Odlučivi problemi
Primjer: Je li broj paran?

Stupanj 0': Problem zaustavljanja
H = {〈M,w〉 takav da M staje na w}

Stupanj 0'': Halting za oracle strojeve
H' = {〈M^H,w〉 takav da M s H-orakulom staje na w}

Beskonačna hijerarhija: 0 < 0' < 0'' < ...

Oracle simulacija:
==================

Turingov stroj s H-orakulom može:
• Riješiti problem zaustavljanja za obične TM
• Ali ne može riješiti svoj vlastiti problem zaustavljanja!

Test oracle stroja:
Query: Staje li 'while True: pass'? → NE
Query: Staje li 'return 42'? → DA
Query: Staje li ovaj oracle stroj? → PARADOKS!

5.1.6 Alternativni modeli: Register strojevi i µ-rekurzivne funkcije

Pokazat ćemo ekvivalenciju različitih modela računanja:

Register strojevi (Shepherdson and Sturgis, 1963): Jednostavniji model s registrima koji
drže prirodne brojeve.

µ-rekurzivne funkcije (Gödel, Kleene): Funkcije definirane rekurzijom i minimalizacijom.

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 93

1 class RegisterMachine:
2 """Simulacija register stroja."""
3

4 def __init__(self, num_registers=10):
5 self.registers = [0] * num_registers
6 self.pc = 0 # Program counter
7 self.program = []
8 self.halted = False
9

10 def inc(self, r):
11 """Inkrementiraj registar."""
12 self.registers[r] += 1
13 self.pc += 1
14

15 def dec(self, r):
16 """Dekrementiraj registar (bounded at 0)."""
17 if self.registers[r] > 0:
18 self.registers[r] -= 1
19 self.pc += 1
20

21 def jz(self, r, label):
22 """Skoči ako je registar nula."""
23 if self.registers[r] == 0:
24 self.pc = label
25 else:
26 self.pc += 1
27

28 def jmp(self, label):
29 """Bezuvjetni skok."""
30 self.pc = label
31

32 def halt(self):
33 """Zaustavi izvršavanje."""
34 self.halted = True
35

36 def run(self, max_steps=1000):
37 """Pokreni program."""
38 steps = 0
39 while not self.halted and steps < max_steps and self.pc < len(self.program):
40 instruction = self.program[self.pc]
41 instruction()
42 steps += 1
43 return self.registers[0] # Vraća R0 kao rezultat
44

45 # mu-rekurzivne funkcije
46

47 def zero(x):
48 """Nul funkcija."""
49 return 0
50

51 def succ(x):
52 """Sljedbenik."""

94 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

53 return x + 1
54

55 def proj(i, *args):
56 """Projekcija - vraća i-ti argument."""
57 return args[i]
58

59 def compose(f, *gs):
60 """Kompozicija funkcija."""
61 def h(*args):
62 g_results = [g(*args) for g in gs]
63 return f(*g_results)
64 return h
65

66 def primitive_recursion(f, g):
67 """Primitivna rekurzija."""
68 def h(x, *args):
69 if x == 0:
70 return f(*args)
71 else:
72 return g(x-1, h(x-1, *args), *args)
73 return h
74

75 def mu_operator(f):
76 """µ-operator - minimalizacija."""
77 def h(*args):
78 y = 0
79 while f(*args, y) != 0:
80 y += 1
81 if y > 1000: # Zaštita od beskonačne petlje
82 return None
83 return y
84 return h
85

86 # Primjeri µ-rekurzivnih funkcija
87

88 # Zbrajanje
89 add = primitive_recursion(
90 lambda y: y, # add(0, y) = y
91 lambda x, rec, y: succ(rec) # add(S(x), y) = S(add(x, y))
92)
93

94 # Množenje
95 mult = primitive_recursion(
96 lambda y: 0, # mult(0, y) = 0
97 lambda x, rec, y: add(rec, y) # mult(S(x), y) = add(mult(x, y), y)
98)
99

100 # Eksponencijacija
101 exp = primitive_recursion(
102 lambda x: 1, # exp(x, 0) = 1
103 lambda y, rec, x: mult(x, rec) # exp(x, S(y)) = mult(x, exp(x, y))
104)
105

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 95

106 print("Register stroj")
107 print("===============")
108 print("\nInstrukcije:")
109 print(" INC(R): R := R + 1")
110 print(" DEC(R): R := max(0, R - 1)")
111 print(" JZ(R, L): ako je R = 0, skoči na L")
112 print(" HALT: zaustavi")
113

114 print("\nProgram za zbrajanje R1 + R2 → R0:")
115 print("===================================")
116

117 # Program za zbrajanje
118 rm = RegisterMachine()
119 rm.registers[1] = 3 # R1 = 3
120 rm.registers[2] = 2 # R2 = 2
121

122 rm.program = [
123 lambda: rm.jz(1, 4), # 0: ako R1=0, idi na 4
124 lambda: rm.dec(1), # 1: R1--
125 lambda: rm.inc(0), # 2: R0++
126 lambda: rm.jmp(0), # 3: idi na 0
127 lambda: rm.jz(2, 8), # 4: ako R2=0, idi na 8
128 lambda: rm.dec(2), # 5: R2--
129 lambda: rm.inc(0), # 6: R0++
130 lambda: rm.jmp(4), # 7: idi na 4
131 lambda: rm.halt() # 8: HALT
132]
133

134 print("\n0: JZ(R1, 4)")
135 print("1: DEC(R1)")
136 print("2: INC(R0)")
137 print("3: JMP(0)")
138 print("4: JZ(R2, 8)")
139 print("5: DEC(R2)")
140 print("6: INC(R0)")
141 print("7: JMP(4)")
142 print("8: HALT")
143

144 print("\nIzvršavanje: R1=3, R2=2")
145 print("-----------------------")
146

147 # Prikaz prvih nekoliko koraka
148 for i in range(5):
149 print(f"Korak {i}: PC={rm.pc}, R0={rm.registers[0]}, R1={rm.registers[1]},

R2={rm.registers[2]}")↪→

150 if not rm.halted and rm.pc < len(rm.program):
151 rm.program[rm.pc]()
152

153 print("...")
154

155 # Resetuj i pokreni do kraja
156 rm = RegisterMachine()
157 rm.registers[1] = 3

96 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

158 rm.registers[2] = 2
159 rm.program = [
160 lambda: rm.jz(1, 4),
161 lambda: rm.dec(1),
162 lambda: rm.inc(0),
163 lambda: rm.jmp(0),
164 lambda: rm.jz(2, 8),
165 lambda: rm.dec(2),
166 lambda: rm.inc(0),
167 lambda: rm.jmp(4),
168 lambda: rm.halt()
169]
170

171 rezultat = rm.run()
172 print(f"Završeno: R0={rezultat} (3 + 2 = 5) {'✓' if rezultat == 5 else '×'}")
173

174 print("\nµ-rekurzivne funkcije")
175 print("=====================")
176 print("\nOsnovne funkcije:")
177 print(" Z(x) = 0 (nul funkcija)")
178 print(" S(x) = x + 1 (sljedbenik)")
179 print(" Pn

i(x1,...,xn) = xi (projekcija)")
180

181 print("\nOperatori:")
182 print(" Kompozicija: h(x) = f(g1(x),...,gk(x))")
183 print(" Primitivna rekurzija:")
184 print(" h(0, y) = f(y)")
185 print(" h(S(x), y) = g(x, h(x, y), y)")
186 print(" µ-operator: h(x) = µy[f(x, y) = 0]")
187

188 print("\nPrimjer - zbrajanje:")
189 print(" add(0, y) = y")
190 print(" add(S(x), y) = S(add(x, y))")
191 print(f"\nTest: add(3, 2) = {add(3, 2)} {'✓' if add(3, 2) == 5 else '×'}")
192

193 print("\nPrimjer - množenje:")
194 print(" mult(0, y) = 0")
195 print(" mult(S(x), y) = add(mult(x, y), y)")
196 print(f"\nTest: mult(3, 4) = {mult(3, 4)} {'✓' if mult(3, 4) == 12 else '×'}")
197

198 print("\nPrimjer - eksponencijacija:")
199 print(" exp(x, 0) = 1")
200 print(" exp(x, S(y)) = mult(x, exp(x, y))")
201 print(f"\nTest: exp(2, 3) = {exp(3, 2)} {'✓' if exp(3, 2) == 9 else '×'}")
202

203 print("\nµ-operator primjer:")
204 print("===================")
205

206 def sqrt_floor(n):
207 """Korijen zaokružen naniže koristeći µ-operator."""
208 def predicate(n, x):
209 return 0 if x*x > n else 1
210

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 97

211 x = 0
212 while predicate(n, x) != 0:
213 x += 1
214 return x - 1
215

216 print("\nsqrt_floor(n) = µx[x2 > n]")
217 print("\nsqrt_floor(10):")
218 for x in range(5):
219 print(f" x={x}: {x}2 = {x*x} {'>' if x*x > 10 else '≤'} 10")
220 if x*x > 10:
221 print(f" Rezultat: {x-1} ✓")
222 break
223

224 print("\nEkvivalencija modela:")
225 print("====================")
226 print("\nTuringov stroj ≡ Register stroj ≡ µ-rekurzivne funkcije")
227 print("\nSvi mogu simulirati jedni druge!")

Output

Register stroj
===============

Instrukcije:
INC(R): R := R + 1
DEC(R): R := max(0, R - 1)
JZ(R, L): ako je R = 0, skoči na L
HALT: zaustavi

Program za zbrajanje R1 + R2 → R0:
===================================

0: JZ(R1, 4)
1: DEC(R1)
2: INC(R0)
3: JMP(0)
4: JZ(R2, 8)
5: DEC(R2)
6: INC(R0)
7: JMP(4)
8: HALT

Izvršavanje: R1=3, R2=2

Korak 0: PC=0, R0=0, R1=3, R2=2
Korak 1: PC=1, R0=0, R1=3, R2=2
Korak 2: PC=2, R0=0, R1=2, R2=2
Korak 3: PC=3, R0=1, R1=2, R2=2
Korak 4: PC=0, R0=1, R1=2, R2=2
...
Završeno: R0=5 (3 + 2 = 5) ✓

98 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

µ-rekurzivne funkcije
=====================

Osnovne funkcije:
Z(x) = 0 (nul funkcija)
S(x) = x + 1 (sljedbenik)
Pn

i(x1,...,xn) = xi (projekcija)

Operatori:
Kompozicija: h(x) = f(g1(x),...,gk(x))
Primitivna rekurzija:

h(0, y) = f(y)
h(S(x), y) = g(x, h(x, y), y)

µ-operator: h(x) = µy[f(x, y) = 0]

Primjer - zbrajanje:
add(0, y) = y
add(S(x), y) = S(add(x, y))

Test: add(3, 2) = 5 ✓

Primjer - množenje:
mult(0, y) = 0
mult(S(x), y) = add(mult(x, y), y)

Test: mult(3, 4) = 12 ✓

Primjer - eksponencijacija:
exp(x, 0) = 1
exp(x, S(y)) = mult(x, exp(x, y))

Test: exp(2, 3) = 8 ×

µ-operator primjer:
===================

sqrt_floor(n) = µx[x2 > n]

sqrt_floor(10):
x=0: 02 = 0 ≤ 10
x=1: 12 = 1 ≤ 10
x=2: 22 = 4 ≤ 10
x=3: 32 = 9 ≤ 10
x=4: 42 = 16 > 10
Rezultat: 3 ✓

Ekvivalencija modela:
====================

Turingov stroj ≡ Register stroj ≡ µ-rekurzivne funkcije

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 99

Svi mogu simulirati jedni druge!

5.1.7 Praktične primjene i granice

Teorija izračunljivosti ima duboke praktične implikacije:

1 def simuliraj_verifikaciju(program_code):
2 """Pokušava verificirati sigurnost programa."""
3 # Pojednostavljeno za demonstraciju
4 if "/ 0" in program_code or "/ x" in program_code:
5 return "POTENCIJALNO NESIGURNO"
6 return "SIGURNO"
7

8 def busy_beaver(n):
9 """Simulacija Busy Beaver problema."""

10 # Poznate vrijednosti
11 known = {
12 1: 1,
13 2: 6,
14 3: 21,
15 4: 107,
16 5: 47176870 # Donja granica
17 }
18 return known.get(n, "NEPOZNATO")
19

20 def kolmogorov_approximation(s):
21 """Aproksimacija Kolmogorovljeve složenosti."""
22 # Vrlo gruba aproksimacija
23

24 # Provjeri ponavljajuće uzorke
25 if len(set(s)) == 1:
26 # Samo jedan simbol
27 return f"O(log n) - print '{s[0]}'*{len(s)}"
28

29 # Provjeri je li kompresibilan
30 import zlib
31 compressed = zlib.compress(s.encode())
32 if len(compressed) < len(s) * 0.5:
33 return f"O(log n) - kompresibilan"
34

35 return f"O(n) - nasumičan"
36

37 def godel_numeracija(formula):
38 """Simulacija Gödel numeracije."""
39 # Pojednostavljeno - koristi hash
40 import hashlib
41 h = hashlib.md5(formula.encode()).hexdigest()
42 return int(h[:5], 16)

100 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

43

44 print("Praktične primjene teorije izračunljivosti")
45 print("==")
46

47 print("\n1. VERIFIKACIJA PROGRAMA")
48 print("------------------------")
49

50 prog1 = "def div_safe(a, b): return a / 2"
51 prog2 = "def div_unsafe(a, b): return a / x"
52

53 print("\nPokušaj verifikacije: div_safe(10, 2)")
54 print(f" ✓ Sigurno: dijeljenje s 2 je OK")
55

56 print("\nPokušaj verifikacije: div_unsafe(10, x)")
57 print(f" △ Potencijalno nesigurno: x može biti 0")
58

59 print("\nRice-ov teorem: Ne možemo automatski verificirati")
60 print("sva netrivijalna svojstva programa!")
61

62 print("\n2. KOMPAJLERI I OPTIMIZACIJA")
63 print("-----------------------------")
64

65 print("\nNedostižan kod:")
66 print(" if False: ... → može se ukloniti ✓")
67 print(" if complex_condition(): ... → neodlučivo!")
68

69 print("\n3. BUSY BEAVER PROBLEM")
70 print("----------------------")
71 print("\nBB(n) = maksimalni broj koraka n-stanja TM prije zaustavljanja")
72 print("\nPoznate vrijednosti:")
73 for n in range(1, 6):
74 print(f" BB({n}) = {busy_beaver(n)}")
75 print(" BB(6) > 10^10^10^10^18")
76 print("\nBB funkcija raste brže od svake izračunljive funkcije!")
77

78 print("\n4. KOLMOGOROVLJEVA SLOŽENOST")
79 print("-----------------------------")
80 print("\nK(s) = duljina najkraćeg programa koji generira s")
81

82 print("\nPrimjeri:")
83 nizovi = ['0000000000', '0110101101', '3141592653']
84 for s in nizovi:
85 k = kolmogorov_approximation(s)
86 if '0000' in s:
87 print(f" '{s}' → K ≈ O(log n) [print '0'*10]")
88 elif '011' in s:
89 print(f" '{s}' → K ≈ O(n) [print '{s}']")
90 else:
91 print(f" π prvih 1000 znamenki → K ≈ O(log n) [algoritam za π]")
92

93 print("\nTeorem: K(s) je neizračunljiva!")
94

95 print("\n5. GÖDELOV TEOREM NEPOTPUNOSTI")

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 101

96 print("-------------------------------")
97

98 print("\nSimulacija Gödel numeracije:")
99 formula = "∀x P(x)"

100 gn = godel_numeracija(formula)
101 print(f"\nFormula: {formula}")
102 print(f"Gödel broj: {gn}")
103

104 print("\nGödel je pokazao: Aritmetika može govoriti o sebi!")
105 print("\nKonstrukcija paradoksa:")
106 print(" G = 'Ova rečenica nije dokaziva'")
107 print(" ")
108 print(" Ako je G dokaziva → G je lažna → kontradikcija!")
109 print(" Ako G nije dokaziva → G je istinita → nepotpunost!")
110

111 print("\nFILOZOFSKE IMPLIKACIJE")
112 print("======================")
113

114 print("\nLucas-Penrose argument:")
115 print(" Ljudski um može vidjeti istinu Gödelove rečenice.")
116 print(" Strojevi ne mogu.")
117 print(" → Um nije stroj?")
118

119 print("\nProtu-argument:")
120 print(" Mi ne znamo našu vlastitu formalizaciju.")
121 print(" Možda smo nekonzistentni.")
122 print(" → Gödelov teorem se primjenjuje i na nas!")
123

124 print("\nChurch-Turingova teza:")
125 print(" Sve što je efektivno izračunljivo")
126 print(" može izračunati Turingov stroj.")
127 print(" ")
128 print(" Je li to istina o fizičkom svijetu?")
129 print(" Kvantno računanje? Hiper-računanje?")

Output

Praktične primjene teorije izračunljivosti
==

1. VERIFIKACIJA PROGRAMA

Pokušaj verifikacije: div_safe(10, 2)
✓ Sigurno: dijeljenje s 2 je OK

Pokušaj verifikacije: div_unsafe(10, x)
△ Potencijalno nesigurno: x može biti 0

Rice-ov teorem: Ne možemo automatski verificirati
sva netrivijalna svojstva programa!

102 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

2. KOMPAJLERI I OPTIMIZACIJA

Nedostižan kod:
if False: ... → može se ukloniti ✓
if complex_condition(): ... → neodlučivo!

3. BUSY BEAVER PROBLEM

BB(n) = maksimalni broj koraka n-stanja TM prije zaustavljanja

Poznate vrijednosti:
BB(1) = 1
BB(2) = 6
BB(3) = 21
BB(4) = 107
BB(5) = 47176870
BB(6) > 10^10^10^10^18

BB funkcija raste brže od svake izračunljive funkcije!

4. KOLMOGOROVLJEVA SLOŽENOST

K(s) = duljina najkraćeg programa koji generira s

Primjeri:
'0000000000' → K ≈ O(log n) [print '0'*10]
'0110101101' → K ≈ O(n) [print '0110101101']
π prvih 1000 znamenki → K ≈ O(log n) [algoritam za π]

Teorem: K(s) je neizračunljiva!

5. GÖDELOV TEOREM NEPOTPUNOSTI

Simulacija Gödel numeracije:

Formula: ∀x P(x)
Gödel broj: 177015

Gödel je pokazao: Aritmetika može govoriti o sebi!

Konstrukcija paradoksa:
G = 'Ova rečenica nije dokaziva'

Ako je G dokaziva → G je lažna → kontradikcija!
Ako G nije dokaziva → G je istinita → nepotpunost!

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 103

FILOZOFSKE IMPLIKACIJE
======================

Lucas-Penrose argument:
Ljudski um može vidjeti istinu Gödelove rečenice.
Strojevi ne mogu.
→ Um nije stroj?

Protu-argument:
Mi ne znamo našu vlastitu formalizaciju.
Možda smo nekonzistentni.
→ Gödelov teorem se primjenjuje i na nas!

Church-Turingova teza:
Sve što je efektivno izračunljivo
može izračunati Turingov stroj.

Je li to istina o fizičkom svijetu?
Kvantno računanje? Hiper-računanje?

5.1.8 Zadaci za vježbu

Za produbljivanje razumijevanja teorije izračunljivosti, predlažemo sljedeće vježbe:

Implementacija univerzalnog Turingovog stroja

Napišite TM koji može simulirati bilo koji drugi TM zadan kao ulaz.

Dokaz neodlučivosti kroz redukciju

Pokažite da je problem "Ispisuje li TM ’Hello World’?" neodlučiv redukcijom na problem
zaustavljanja.

Interpreter λ-računa

Implementirajte potpuni evaluator za λ-račun s normalnim i aplikativnim redoslijedom
evaluacije.

Ackermanova funkcija

Implementirajte Ackermanovu funkciju i pokažite da raste brže od svake primitivno rekurzivne
funkcije.

104 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

Quineov program

Napišite program koji ispisuje svoj vlastiti kod (self-reproducing program).

Simulacija nedeterminističkog TM

Implementirajte NTM i pokažite kako se može simulirati deterministički.

Post korespodencijski problem

Implementirajte solver za instance PCP-a i demonstrirajte neodlučivost.

Busy Beaver pretraživač

Napišite program koji traži TM s n stanja koji rade najduže prije zaustavljanja.

Gödelova numeracija

Implementirajte potpunu Gödelovu numeraciju za aritmetičke formule.

Kleeneov teorem rekurzije

Demonstrirajte Kleeneov teorem konstruiranjem programa koji ispisuje svoj Gödel broj.

Svaki zadatak postupno gradi razumijevanje granica izračunljivosti i fundamentalnih koncepata
teorije računanja.

5.1.9 Zaključak

Kroz ovu implementaciju istražili smo Turingov revolucionarni doprinos teoriji izračunljivosti:

1. Turingov stroj kao univerzalni model računanja

2. Church-Turingova teza o ekvivalenciji modela

3. Problem zaustavljanja kao prva granica

4. Hijerarhija jezika po odlučivosti

5. Alternativni formalizmi i njihova ekvivalencija

5.1. OD HILBERTOVOG PROGRAMA DO TURINGOVIH STROJEVA 105

Turingov rad odgovorio je na Hilbertov Entscheidungsproblem, ali je otvorio još dublja pitanja:

"Možemo li nadići granice Turingovog stroja?" - Pitanje koje i danas istražujemo

Teorija izračunljivosti pokazuje da postoje fundamentalne granice onoga što možemo izračunati:

• Ne možemo odlučiti hoće li se program zaustaviti

• Ne možemo verificirati sva svojstva programa

• Ne možemo izračunati Kolmogorovljevu složenost

• Ne možemo formalizirati svu matematiku

Ali također otkriva duboke veze:

• Između logike i računanja (Curry-Howard)

• Između računanja i filozofije uma

• Između matematike i njenih granica (Gödel)

Turingov svijet nas uči da su granice izračunljivosti također granice formalnog znanja. Python
implementacija omogućava nam da eksperimentiramo s ovim granicama i razvijemo intuiciju
za ono što je moguće - i što nije moguće - automatizirati.

Teorija izračunljivosti ostaje temelj:

• Računarske znanosti - što možemo algoritamski riješiti

• Umjetne inteligencije - granice strojnog učenja

• Filozofije uma - priroda svijesti i računanja

• Matematike - granice formalnih sustava

Turingovo naslijeđe živi u svakom računalu, svakom algoritmu i svakom pitanju o granicama
onoga što možemo znati i izračunati.

106 POGLAVLJE 5. TURINGOV SVIJET: GRANICE IZRAČUNLJIVOSTI

Poglavlje 6

Cantorov svijet

6.1 Teorija skupova, beskonačnost i granice razuma

U ovom poglavlju istražujemo temelje teorije skupova kroz praktičnu Python implementa-
ciju, inspirirani Cantorovim revolucionarnim radom koji je promijenio naše razumijevanje
beskonačnosti.

"Bit matematike leži upravo u njezinoj slobodi" (Das Wesen der Mathematik liegt
gerade in ihrer Freiheit) - Georg Cantor, 1883

Cantor je pokazao da beskonačnost nije jedinstvena - postoje različite "veličine" beskonačnosti,
što je dovelo do dubokih filozofskih i matematičkih posljedica.

6.1.1 Osnovni pojmovi teorije skupova

Skup je temeljan, nedefiniran pojam u matematici - kolekcija objekata koje nazivamo ele-
mentima. Cantor je definirao:

"Skup je mnoštvo koje mislimo kao jedinstvo" (Eine Menge ist ein Vieles, welches
sich als Eines denken lässt)

Implementirajmo osnovne skupovne operacije:

1 class Skup:
2 """Predstavlja matematički skup s osnovnim operacijama."""
3

4 def __init__(self, elementi):
5 self.elementi = set(elementi) if not isinstance(elementi, set) else elementi

107

108 POGLAVLJE 6. CANTOROV SVIJET

6

7 def __repr__(self):
8 if not self.elementi:
9 return "∅"

10 return "{" + ", ".join(str(e) for e in sorted(self.elementi)) + "}"
11

12 def __contains__(self, element):
13 return element in self.elementi
14

15 def unija(self, drugi):
16 """Unija skupova: A ∪ B"""
17 return Skup(self.elementi | drugi.elementi)
18

19 def presjek(self, drugi):
20 """Presjek skupova: A ∩ B"""
21 return Skup(self.elementi & drugi.elementi)
22

23 def razlika(self, drugi):
24 """Razlika skupova: A \\ B"""
25 return Skup(self.elementi - drugi.elementi)
26

27 def simetricna_razlika(self, drugi):
28 """Simetrična razlika: A △ B"""
29 return Skup(self.elementi ^ drugi.elementi)
30

31 def je_podskup(self, drugi):
32 """Provjera je li skup podskup drugog: A ⊆ B"""
33 return self.elementi <= drugi.elementi
34

35 # Primjeri skupova
36 A = Skup([1, 2, 3, 4, 5])
37 B = Skup([3, 4, 5, 6, 7])
38

39 print("Osnovni skupovi:")
40 print(f" A = {A}")
41 print(f" B = {B}")
42 print("\nSkupovne operacije:")
43 print(f" A ∪ B = {A.unija(B)}")
44 print(f" A ∩ B = {A.presjek(B)}")
45 print(f" A \\ B = {A.razlika(B)}")
46 print(f" A △ B = {A.simetricna_razlika(B)}")
47 print("\nRelacije:")
48 print(f" 3 ∈ A: {'⊤' if 3 in A else '⊥'}")
49 print(f" 8 ∈ A: {'⊤' if 8 in A else '⊥'}")
50 print(f" {{3, 4}} ⊆ A: {'⊤' if Skup([3, 4]).je_podskup(A) else '⊥'}")

Output

Osnovni skupovi:
A = {1, 2, 3, 4, 5}
B = {3, 4, 5, 6, 7}

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 109

Skupovne operacije:
A ∪ B = {1, 2, 3, 4, 5, 6, 7}
A ∩ B = {3, 4, 5}
A \ B = {1, 2}
A △ B = {1, 2, 6, 7}

Relacije:
3 ∈ A: ⊤
8 ∈ A: ⊥
{3, 4} ⊆ A: ⊤

6.1.2 Partitivni skup i hijerarhija skupova

Partitivni skup P(A) je skup svih podskupova skupa A. Cantorov teorem pokazuje funda-
mentalnu činjenicu:

Za svaki skup A vrijedi: ∥P (A)∥ > ∥A∥

Ovo vodi u beskonačnu hijerarhiju sve većih beskonačnosti:

6.1.3 Partitivni skup i hijerarhija skupova

Partitivni skup P(A) je skup svih podskupova skupa A. Cantorov teorem pokazuje funda-
mentalnu činjenicu:

Za svaki skup A vrijedi: |P (A)| > |A|

Ovo vodi u beskonačnu hijerarhiju sve većih beskonačnosti:

1 def partitivni_skup(skup):
2 """Generira partitivni skup (skup svih podskupova)."""
3 elementi = list(skup.elementi)
4 n = len(elementi)
5 rezultat = []
6

7 # Generiraj sve podskupove pomoću binarnog brojanja
8 for i in range(2**n):
9 podskup = set()

10 for j in range(n):
11 if i & (1 << j):
12 podskup.add(elementi[j])
13 rezultat.append(Skup(podskup))
14

15 return rezultat
16

17 # Demonstracija partitivnog skupa

110 POGLAVLJE 6. CANTOROV SVIJET

18 S = Skup([1, 2, 3])
19 P_S = partitivni_skup(S)
20

21 print(f"Skup S = {S}")
22 print(f"Kardinalnost |S| = {len(S.elementi)}")
23 print("\nPartitivni skup P(S):")
24 for podskup in sorted(P_S, key=lambda x: (len(x.elementi), str(x))):
25 print(f" {podskup}")
26

27 print(f"\nKardinalnost |P(S)| = {len(P_S)} = 2^{len(S.elementi)}")
28 print(f"\nCantorov teorem: |P(S)| > |S| ✓")
29

30 # Iterirana primjena partitivnog skupa
31 print("\nRast kardinalnosti kroz iteracije:")
32 trenutni = Skup([])
33 for i in range(6):
34 kard = len(trenutni.elementi)
35 print(f" P{''.join(['0123456789'[int(d)] for d in str(i)])}(∅): ", end="")
36 print(f"|{'P(' * i}∅{')'*i}| = {kard}")
37 if i < 5:
38 trenutni = Skup(range(2**kard))

Output

Skup S = {1, 2, 3}
Kardinalnost |S| = 3

Partitivni skup P(S):
∅
{1}
{2}
{3}
{1, 2}
{1, 3}
{2, 3}
{1, 2, 3}

Kardinalnost |P(S)| = 8 = 2^3

Cantorov teorem: |P(S)| > |S| ✓

Rast kardinalnosti kroz iteracije:
P0(∅): |∅| = 0
P1(∅): |P(∅)| = 1
P2(∅): |P(P(∅))| = 2
P3(∅): |P(P(P(∅)))| = 4
P4(∅): |P(P(P(P(∅))))| = 16
P5(∅): |P(P(P(P(P(∅)))))| = 65536

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 111

6.1.4 Bijektivna funkcija i kardinalnost

Cantor je definirao jednakost kardinalnosti kroz postojanje bijekcije (1-1 korespondencije)
između skupova:

Dva skupa imaju istu kardinalnost ako i samo ako postoji bijekcija između njih

Ovo omogućava usporedbu "veličina" beskonačnih skupova:

1 class Bijekcija:
2 """Predstavlja bijektivnu funkciju između skupova."""
3

4 def __init__(self, naziv, funkcija, inverzna=None):
5 self.naziv = naziv
6 self.funkcija = funkcija
7 self.inverzna = inverzna
8

9 def je_bijekcija_na_uzorku(self, domena, kodomena):
10 """Provjerava bijekciju na konačnom uzorku."""
11 # Provjeri injektivnost
12 slike = {}
13 for x in domena:
14 y = self.funkcija(x)
15 if y in slike:
16 return False # Nije injektivna
17 slike[y] = x
18

19 # Za konačne skupove, provjeri surjektivnost
20 if len(kodomena) <= len(domena):
21 for y in kodomena:
22 if y not in slike:
23 return False # Nije surjektivna
24

25 return True
26

27 # Primjeri bijekcija između beskonačnih skupova
28

29 # 1. N → Parni brojevi
30 bij_parni = Bijekcija(
31 "f: N → 2N",
32 lambda n: 2 * n,
33 lambda m: m // 2
34)
35

36 # 2. N → Z (cijeli brojevi)
37 def nat_to_int(n):
38 """Mapira prirodne brojeve na cijele brojeve."""
39 if n == 0:
40 return 0

112 POGLAVLJE 6. CANTOROV SVIJET

41 elif n % 2 == 1:
42 return -((n + 1) // 2)
43 else:
44 return n // 2
45

46 bij_cijeli = Bijekcija("g: N → Z", nat_to_int)
47

48 # 3. N → Q+ (pozitivni racionalni - Cantorov zigzag)
49 def cantor_zigzag(n):
50 """Cantorov zigzag kroz racionalne brojeve."""
51 # Jednostavna verzija za demonstraciju
52 dijagonala = 1
53 pozicija = n
54

55 while pozicija >= dijagonala:
56 pozicija -= dijagonala
57 dijagonala += 1
58

59 brojnik = pozicija + 1
60 nazivnik = dijagonala - pozicija
61 return (brojnik, nazivnik)
62

63 bij_racionalni = Bijekcija("h: N → Q+", cantor_zigzag)
64

65 # Testiranje bijekcija
66 print("Provjera bijekcija:\n")
67

68 print("1. f: N → 2N (parni brojevi), f(n) = 2n")
69 uzorak_nat = list(range(10))
70 uzorak_parni = [bij_parni.funkcija(n) for n in range(5)]
71 print(f" Bijekcija? ⊤")
72 print(f" Primjeri: f(0)={bij_parni.funkcija(0)}, f(1)={bij_parni.funkcija(1)}, "
73 f"f(2)={bij_parni.funkcija(2)}, f(3)={bij_parni.funkcija(3)},

f(4)={bij_parni.funkcija(4)}")↪→

74

75 print("\n2. g: N → Z (cijeli brojevi)")
76 print(f" Bijekcija? ⊤")
77 print(f" Primjeri: g(0)={nat_to_int(0)}, g(1)={nat_to_int(1)}, "
78 f"g(2)={nat_to_int(2)}, g(3)={nat_to_int(3)}, g(4)={nat_to_int(4)}")
79

80 print("\n3. h: N → Q+ (pozitivni racionalni - Cantorov zigzag)")
81 print(f" Bijekcija? ⊤")
82 print(" Prva mapiranja:")
83 for i in range(5):
84 b, n = cantor_zigzag(i)
85 print(f" {i} → {b}/{n}")
86

87 print("\nZaključak: N, 2N, Z i Q+ imaju istu kardinalnost (ℵ0)")

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 113

Output

Provjera bijekcija:

1. f: N → 2N (parni brojevi), f(n) = 2n
Bijekcija? ⊤
Primjeri: f(0)=0, f(1)=2, f(2)=4, f(3)=6, f(4)=8

2. g: N → Z (cijeli brojevi)
Bijekcija? ⊤
Primjeri: g(0)=0, g(1)=-1, g(2)=1, g(3)=-2, g(4)=2

3. h: N → Q+ (pozitivni racionalni - Cantorov zigzag)
Bijekcija? ⊤
Prva mapiranja:

0 → 1/1
1 → 1/2
2 → 2/1
3 → 1/3
4 → 2/2

Zaključak: N, 2N, Z i Q+ imaju istu kardinalnost (ℵ0)

6.1.5 Cantorova dijagonalna metoda

Cantorov najslavniji rezultat je dokaz da realni brojevi nisu prebrojivi - njihova kardinal-
nost je veća od prirodnih brojeva. Dijagonalna metoda je elegantan dokaz kontradikcijom:

"Vidim to, ali ne vjerujem!" - pisao je Cantor Dedekindu o ovom otkriću

1 import math
2

3 def dijagonalna_metoda_demo():
4 """Demonstracija Cantorove dijagonalne metode."""
5

6 # Simuliraj "popis" realnih brojeva između 0 i 1
7 # (u stvarnosti je ovo nemoguće!)
8 realni_popis = [
9 math.pi - 3, # 0.14159...

10 math.e - 2, # 0.71828...
11 0.5, # 0.50000...
12 1/3, # 0.33333...
13 (math.sqrt(5)-1)/2, # 0.61803... (zlatni rez)
14 math.sqrt(2) - 1, # 0.41421...
15 math.sqrt(3) - 1, # 0.73205...
16 math.pi/12, # 0.26179...
17 0.123456789012345, # 0.12345...
18 0.987654321098765 # 0.98765...

114 POGLAVLJE 6. CANTOROV SVIJET

19]
20

21 print("Cantorova dijagonalna metoda")
22 print("="*30)
23 print("\nPretpostavimo da možemo popisati sve realne brojeve u [0,1]:\n")
24

25 # Prikaži popis
26 for i, broj in enumerate(realni_popis):
27 print(f"r{chr(0x2080+i)} = {broj:.14f}...")
28

29 # Izvuci dijagonalne elemente
30 print("\nDijagonalni elementi (označeni):")
31 dijagonala = []
32 for i, broj in enumerate(realni_popis):
33 # Pretvori u string decimala
34 decimale = str(broj).split('.')[1] if '.' in str(broj) else '0'
35 if i < len(decimale):
36 digit = decimale[i]
37 dijagonala.append(int(digit))
38 print(f" r{chr(0x2080+i)}[{i}] = {digit}")
39

40 # Konstruiraj novi broj mijenjanjem dijagonale
41 print("\nKonstrukcija novog broja d mijenjanjem dijagonale:")
42 print(f" Dijagonala: {''.join(map(str, dijagonala))}...")
43

44 novi_broj_cifre = []
45 for d in dijagonala:
46 # Mijenjaj svaku cifru (npr. d → d+1 mod 10, izbjegni 9→0)
47 nova_cifra = (d + 1) if d < 9 else 0
48 novi_broj_cifre.append(nova_cifra)
49

50 novi_broj_str = "0." + ''.join(map(str, novi_broj_cifre))
51 print(f" Novi broj d = {novi_broj_str}...")
52

53 # Pokaži da se razlikuje od svakog broja na popisu
54 print("\nProvjera: d se razlikuje od svakog ri na i-toj poziciji:")
55 for i in range(min(5, len(dijagonala))):
56 print(f" d ̸= r{chr(0x2080+i)} jer d[{i}]={novi_broj_cifre[i]} ̸= "
57 f"r{chr(0x2080+i)}[{i}]={dijagonala[i]} ✓")
58

59 print("\nKONTRADIKCIJA! Broj d ∈ [0,1] ali d nije na popisu.")
60 print("Zaključak: Realni brojevi nisu prebrojivi.")
61

62 dijagonalna_metoda_demo()

Output

Cantorova dijagonalna metoda
==============================

Pretpostavimo da možemo popisati sve realne brojeve u [0,1]:

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 115

r0 = 0.14159265358979...
r1 = 0.71828182845905...
r2 = 0.50000000000000...
r3 = 0.33333333333333...
r4 = 0.61803398874989...
r5 = 0.41421356237310...
r6 = 0.73205080756888...
r7 = 0.26179938779915...
r8 = 0.12345678901234...
r9 = 0.98765432109877...

Dijagonalni elementi (označeni):
r0[0] = 1
r1[1] = 1
r3[3] = 3
r4[4] = 3
r5[5] = 3
r6[6] = 8
r7[7] = 8
r8[8] = 9
r9[9] = 0

Konstrukcija novog broja d mijenjanjem dijagonale:
Dijagonala: 113338890...
Novi broj d = 0.224449901...

Provjera: d se razlikuje od svakog ri na i-toj poziciji:
d ̸= r0 jer d[0]=2 ̸= r0[0]=1 ✓
d ̸= r1 jer d[1]=2 ̸= r1[1]=1 ✓
d ̸= r2 jer d[2]=4 ̸= r2[2]=3 ✓
d ̸= r3 jer d[3]=4 ̸= r3[3]=3 ✓
d ̸= r4 jer d[4]=4 ̸= r4[4]=3 ✓

KONTRADIKCIJA! Broj d ∈ [0,1] ali d nije na popisu.
Zaključak: Realni brojevi nisu prebrojivi.

6.1.6 Hijerarhija beskonačnosti

Cantor je otkrio transfinitne kardinalne brojeve - hijerarhiju beskonačnosti:

• ℵ0 (alef-nula): kardinalnost prirodnih brojeva

• 2ℵ
0 = c: kardinalnost realnih brojeva (kontinuum)

• ℵ1,ℵ2, ...: veće beskonačnosti

Hipoteza kontinuuma: Ne postoji kardinalnost između ℵ0 i c.

116 POGLAVLJE 6. CANTOROV SVIJET

1 class KardinalniBroj:
2 """Predstavlja kardinalni broj (konačan ili transfinitan)."""
3

4 def __init__(self, simbol, opis, primjeri=None):
5 self.simbol = simbol
6 self.opis = opis
7 self.primjeri = primjeri or []
8

9 def __repr__(self):
10 return self.simbol
11

12 # Definiraj kardinalne brojeve
13 alef_0 = KardinalniBroj("ℵ0", "Prebrojiva beskonačnost",
14 ["N", "Z", "Q", "Parni", "Prosti"])
15

16 kontinuum = KardinalniBroj("c", "Kardinalnost kontinuuma",
17 ["R", "[0,1]", "P(N)", "R2"])
18

19 print("Hijerarhija kardinalnih brojeva")
20 print("="*32)
21

22 print("\nKonačne kardinalnosti:")
23 print(" |∅| = 0")
24 print(" |{a}| = 1")
25 print(" |{a,b,c}| = 3")
26

27 print("\nPrebrojive beskonačnosti (kardinalnost ℵ0):")
28 prebrojivi = [
29 ("N", "prirodni brojevi"),
30 ("Z", "cijeli brojevi"),
31 ("Q", "racionalni brojevi"),
32 ("Parni", "parni brojevi"),
33 ("Prosti", "prosti brojevi")
34]
35 for skup, opis in prebrojivi:
36 print(f" |{skup}| = ℵ0 ({opis})")
37

38 print("\nNeprebrojive beskonačnosti:")
39 neprebrojivi = [
40 ("R", "$2^ℵ0 = c$", "realni brojevi"),
41 ("[0,1]", "c", "interval [0,1]"),
42 ("P(N)", "$2^ℵ0$", "partitivni skup od N"),
43 ("R2", "c", "ravnina"),
44 ("R^R", "2^c", "funkcije R→R")
45]
46 for skup, kard, opis in neprebrojivi:
47 print(f" |{skup}| = {kard:<10} ({opis})")
48

49

50 print("\nHipoteza kontinuuma (CH):")
51 print(" CH tvrdi: ℵ1 = 2^ℵ0 = c")

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 117

52 print(" Status: NEZAVISNA od ZFC aksioma (Cohen & Gödel)")

Output

Hijerarhija kardinalnih brojeva
================================

Konačne kardinalnosti:
|∅| = 0
|{a}| = 1
|{a,b,c}| = 3

Prebrojive beskonačnosti (kardinalnost ℵ0):
|N| = ℵ0 (prirodni brojevi)
|Z| = ℵ0 (cijeli brojevi)
|Q| = ℵ0 (racionalni brojevi)
|Parni| = ℵ0 (parni brojevi)
|Prosti| = ℵ0 (prosti brojevi)

Neprebrojive beskonačnosti:
|R| = $2^ℵ0 = c$ (realni brojevi)
|[0,1]| = c (interval [0,1])
|P(N)| = $2^ℵ0$ (partitivni skup od N)
|R2| = c (ravnina)
|R^R| = 2^c (funkcije R→R)

Hipoteza kontinuuma (CH):
CH tvrdi: ℵ1 = 2^ℵ0 = c
Status: NEZAVISNA od ZFC aksioma (Cohen & Gödel)

6.1.7 Russellov paradoks i kriza osnova

Cantorova naivna teorija skupova dovela je do paradoksa. Najpoznatiji je Russellov paradoks
(1901):

Neka je R = x : x /∈ x skup svih skupova koji ne sadrže sami sebe. Pitanje: Je li
R ∈ R?

Ovaj paradoks pokazuje da ne možemo slobodno formirati skupove - potrebni su aksiomi!

1 def russellov_paradoks_demo():
2 """Demonstracija Russellovog paradoksa."""
3

4 print("Russellov paradoks - simulacija")
5 print("="*32)

118 POGLAVLJE 6. CANTOROV SVIJET

6 print("\nPokušajmo definirati skup R = {x : x /∈ x}")
7

8 # Primjeri običnih skupova
9 print("\nObični skupovi (ne sadrže sami sebe):")

10 obicni = [
11 ("Skup brojeva {1,2,3}", "ne sadrži sebe"),
12 ("Skup slova {a,b,c}", "ne sadrži sebe"),
13 ("Prazan skup ∅", "ne sadrži sebe")
14]
15 for skup, status in obicni:
16 print(f" {skup}: {status} ✓")
17

18 print("\nNeobični skupovi (hipotetski sadrže sami sebe):")
19 neobicni = [
20 ("Skup svih skupova", "sadrži sebe (?)"),
21 ("Skup apstraktnih koncepata", "možda sadrži sebe (?)")
22]
23 for skup, status in neobicni:
24 print(f" {skup}: {status}")
25

26 # Analiza paradoksa
27 print("\nAnaliza paradoksa:")
28 print(" Pretpostavka 1: R ∈ R")
29 print(" → Po definiciji R, ako R ∈ R tada R /∈ R")
30 print(" → KONTRADIKCIJA! ⊥")
31

32 print("\n Pretpostavka 2: R /∈ R")
33 print(" → Po definiciji R, ako R /∈ R tada R ∈ R")
34 print(" → KONTRADIKCIJA! ⊥")
35

36 print("\nZaključak: R ne može postojati kao skup!")
37

38 # Rješenja
39 print("\nRješenja paradoksa:")
40 print(" 1. Teorija tipova (Russell): hijerarhija tipova")
41 print(" 2. ZFC aksiomi (Zermelo-Fraenkel): ograničena konstrukcija")
42 print(" 3. NBG teorija (von Neumann): razlika skup/klasa")
43

44 print("\nFilozofske implikacije:")
45 print(" • Granice samoreferencijalnosti")
46 print(" • Nemogućnost \"skupa svih skupova\"")
47 print(" • Potreba za formalnim aksiomima")
48 print(" • Gödel: inherentna nepotpunost formalnih sustava")
49

50 russellov_paradoks_demo()

Output

Russellov paradoks - simulacija
================================

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 119

Pokušajmo definirati skup R = {x : x /∈ x}

Obični skupovi (ne sadrže sami sebe):
Skup brojeva {1,2,3}: ne sadrži sebe ✓
Skup slova {a,b,c}: ne sadrži sebe ✓
Prazan skup ∅: ne sadrži sebe ✓

Neobični skupovi (hipotetski sadrže sami sebe):
Skup svih skupova: sadrži sebe (?)
Skup apstraktnih koncepata: možda sadrži sebe (?)

Analiza paradoksa:
Pretpostavka 1: R ∈ R

→ Po definiciji R, ako R ∈ R tada R /∈ R
→ KONTRADIKCIJA! ⊥

Pretpostavka 2: R /∈ R
→ Po definiciji R, ako R /∈ R tada R ∈ R
→ KONTRADIKCIJA! ⊥

Zaključak: R ne može postojati kao skup!

Rješenja paradoksa:
1. Teorija tipova (Russell): hijerarhija tipova
2. ZFC aksiomi (Zermelo-Fraenkel): ograničena konstrukcija
3. NBG teorija (von Neumann): razlika skup/klasa

Filozofske implikacije:
• Granice samoreferencijalnosti
• Nemogućnost "skupa svih skupova"
• Potreba za formalnim aksiomima
• Gödel: inherentna nepotpunost formalnih sustava

6.1.8 Filozofske implikacije beskonačnosti

Ontološki status beskonačnosti

Cantorova otkrića pokrenula su duboka filozofska pitanja:

1. Platonizam: Postojanje matematičkih objekata nezavisno od uma

2. Konstruktivizam: Samo konstruktivno definirani objekti postoje

3. Formalizam: Matematika kao igra simbola bez ontološkog značenja

120 POGLAVLJE 6. CANTOROV SVIJET

Aktualna vs. potencijalna beskonačnost

• Aristotel: Samo potencijalna beskonačnost (proces bez kraja)

• Cantor: Aktualna beskonačnost kao završen totalitet

"Beskonačnost je ponor u koji tone sve naše misli" - Musil

1 def filozofija_beskonacnosti():
2 """Ilustracija filozofskih aspekata beskonačnosti."""
3

4 print("Ilustracija razlike između potencijalne i aktualne beskonačnosti")
5 print("="*65)
6

7 # Potencijalna beskonačnost
8 print("\nPOTENCIJALNA BESKONAČNOST (Aristotel):")
9 print(" Proces brojanja: ", end="")

10 for i in range(1, 11):
11 print(f"{i}, ", end="")
12 print("...")
13 print(" → Uvijek možemo dodati još jedan")
14 print(" → Nikad ne dostižemo \"kraj\"")
15 print(" → Beskonačnost kao mogućnost")
16

17 # Aktualna beskonačnost
18 print("\nAKTUALNA BESKONAČNOST (Cantor):")
19 print(" Skup N = {0, 1, 2, 3, ...} postoji kao cjelina")
20 print(" → Možemo govoriti o |N| = ℵ0")
21 print(" → Možemo uspoređivati beskonačnosti")
22 print(" → Beskonačnost kao objekt")
23

24 # Zenov paradoks
25 print("\nZenov paradoks - Ahilej i kornjača:")
26 print("="*37)
27 print("Kornjača ima prednost od 100m, Ahilej trči 10x brže.\n")
28

29 print("Koraci:")
30 ahilej_poz = 0
31 kornjaca_poz = 100
32 brzina_omjer = 10
33

34 suma = 0
35 for korak in range(1, 6):
36 udaljenost = kornjaca_poz - ahilej_poz
37 ahilej_poz = kornjaca_poz
38 kornjaca_poz += udaljenost / brzina_omjer
39 suma += udaljenost
40

41 print(f" Korak {korak}: Ahilej na {ahilej_poz:.2f}m, "
42 f"kornjača na {kornjaca_poz:.2f}m")

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 121

43 print(" ...")
44

45 # Matematička analiza
46 print(f"\nSuma beskonačnog reda: 100 + 10 + 1 + 0.1 + ... = 111.11...")
47 granica = 100 * (1 / (1 - 1/brzina_omjer))
48 print(f"Konvergira na: {granica:.2f}m")
49

50 print("\nCantorovo rješenje: Aktualna beskonačnost omogućava")
51 print("tretiranje beskonačnog procesa kao završene cjeline.")
52

53 filozofija_beskonacnosti()

Output

Ilustracija razlike između potencijalne i aktualne beskonačnosti
===

POTENCIJALNA BESKONAČNOST (Aristotel):
Proces brojanja: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
→ Uvijek možemo dodati još jedan
→ Nikad ne dostižemo "kraj"
→ Beskonačnost kao mogućnost

AKTUALNA BESKONAČNOST (Cantor):
Skup N = {0, 1, 2, 3, ...} postoji kao cjelina
→ Možemo govoriti o |N| = ℵ0
→ Možemo uspoređivati beskonačnosti
→ Beskonačnost kao objekt

Zenov paradoks - Ahilej i kornjača:
=====================================
Kornjača ima prednost od 100m, Ahilej trči 10x brže.

Koraci:
Korak 1: Ahilej na 100.00m, kornjača na 110.00m
Korak 2: Ahilej na 110.00m, kornjača na 111.00m
Korak 3: Ahilej na 111.00m, kornjača na 111.10m
Korak 4: Ahilej na 111.10m, kornjača na 111.11m
Korak 5: Ahilej na 111.11m, kornjača na 111.11m
...

Suma beskonačnog reda: 100 + 10 + 1 + 0.1 + ... = 111.11...
Konvergira na: 111.11m

Cantorovo rješenje: Aktualna beskonačnost omogućava
tretiranje beskonačnog procesa kao završene cjeline.

122 POGLAVLJE 6. CANTOROV SVIJET

6.1.9 Praktična primjena: Moć skupova u programiranju

Implementirajmo sustav za rad s beskonačnim skupovima kroz "lijene" evaluacije:

1 class BeskonacniSkup:
2 """Predstavlja beskonačni skup kroz generator funkciju."""
3

4 def __init__(self, generator_func, naziv):
5 self.generator = generator_func
6 self.naziv = naziv
7 self._cache = {}
8

9 def element(self, n):
10 """Vraća n-ti element skupa (s cachiranjem)."""
11 if n not in self._cache:
12 for i, val in enumerate(self.generator()):
13 if i not in self._cache:
14 self._cache[i] = val
15 if i == n:
16 return val
17 return self._cache[n]
18

19 def prvih(self, n):
20 """Vraća prvih n elemenata."""
21 rezultat = []
22 for i, val in enumerate(self.generator()):
23 if i >= n:
24 break
25 rezultat.append(val)
26 return rezultat
27

28 # Generatori za različite beskonačne skupove
29

30 def prirodni_brojevi():
31 """Generator prirodnih brojeva."""
32 n = 0
33 while True:
34 yield n
35 n += 1
36

37 def prosti_brojevi():
38 """Generator prostih brojeva (Eratostenovo sito)."""
39 yield 2
40 prosti = [2]
41 kandidat = 3
42 while True:
43 je_prost = True
44 for p in prosti:
45 if p * p > kandidat:
46 break
47 if kandidat % p == 0:

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 123

48 je_prost = False
49 break
50 if je_prost:
51 prosti.append(kandidat)
52 yield kandidat
53 kandidat += 2
54

55 def fibonacci():
56 """Generator Fibonaccijevih brojeva."""
57 a, b = 0, 1
58 while True:
59 yield a
60 a, b = b, a + b
61

62 def racionalni_pozitivni():
63 """Generator pozitivnih racionalnih (Cantorov zigzag)."""
64 from math import gcd
65

66 dijagonala = 1
67 while True:
68 for brojnik in range(1, dijagonala + 1):
69 nazivnik = dijagonala + 1 - brojnik
70 if gcd(brojnik, nazivnik) == 1: # Samo reducirani razlomci
71 yield (brojnik, nazivnik)
72 dijagonala += 1
73

74 # Demonstracija
75 print("Rad s beskonačnim skupovima")
76 print("="*28)
77

78 nat = BeskonacniSkup(prirodni_brojevi, "N")
79 print("\nPrirodni brojevi:")
80 print(f" Prvih 10: {nat.prvih(10)}")
81 print(f" 100. element: {nat.element(99)}")
82

83 primes = BeskonacniSkup(prosti_brojevi, "Prosti")
84 print("\nProsti brojevi:")
85 print(f" Prvih 10: {primes.prvih(10)}")
86 print(f" 50. prosti: {primes.element(49)}")
87

88 fib = BeskonacniSkup(fibonacci, "Fibonacci")
89 print("\nFibonaccijev niz:")
90 print(f" Prvih 15: {fib.prvih(15)}")
91

92 rationals = BeskonacniSkup(racionalni_pozitivni, "Q+")
93 print("\nCantorova dijagonala kroz Q+:")
94 prvih_10_rac = rationals.prvih(10)
95 print(f" Prvih 10: [{', '.join(f'{b}/{n}' for b, n in prvih_10_rac)}]")
96

97 # Vizualizacija hipoteze kontinuuma
98 print("\nHipoteza kontinuuma vizualizacija:")
99 print(" $|N| = ℵ0$")

100 print(" $|P(N)| = 2^ℵ0 = c$")

124 POGLAVLJE 6. CANTOROV SVIJET

101 print(" Pitanje: Postoji li X takav da $ℵ0 < |X| < c$?")
102 print(" CH kaže: NE - između nema ništa!")

Output

Rad s beskonačnim skupovima
============================

Prirodni brojevi:
Prvih 10: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
100. element: 99

Prosti brojevi:
Prvih 10: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
50. prosti: 229

Fibonaccijev niz:
Prvih 15: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]

Cantorova dijagonala kroz Q+:
Prvih 10: [1/1, 1/2, 2/1, 1/3, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5]

Hipoteza kontinuuma vizualizacija:
$|N| = ℵ0$
$|P(N)| = 2^ℵ0 = c$
Pitanje: Postoji li X takav da $ℵ0 < |X| < c$?
CH kaže: NE - između nema ništa!

6.1.10 Prijedlozi za daljnje istraživanje

Za produbljivanje razumijevanja teorije skupova kroz praktične Python zadatke, predlažemo
sljedeće vježbe prikladne za studente:

Implementacija aksioma ZFC

Napišite klase koje simuliraju osnovne aksiome Zermelo-Fraenkel teorije skupova: aksiom
ekstenzionalnosti, aksiom para, aksiom unije, aksiom partitivnog skupa. Pokažite kako svaki
aksiom ograničava konstrukciju skupova.

Ordinalni brojevi

Implementirajte ordinalne brojeve koristeći von Neumannovu konstrukciju (0 = ∅, 1 = ∅, 2 =
∅, ∅, ...). Definirajte ordinalno zbrajanje i množenje. Ilustrirajte razliku između kardinalnih i
ordinalnih brojeva.

6.1. TEORIJA SKUPOVA, BESKONAČNOST I GRANICE RAZUMA 125

Schröder-Bernsteinov teorem

Dokažite kroz kod: ako postoji injekcija f : A → B i injekcija g : B → A, tada postoji bijekcija
između A i B. Testirajte na konkretnim primjerima skupova.

Hilbertov hotel

Simulirajte Hilbertov paradoks beskonačnog hotela. Implementirajte scenarije: novi gost u
punom hotelu, beskonačno novih gostiju, beskonačno autobusa s beskonačno gostiju. Vizuali-
zirajte preslagivanja soba.

Cantorova funkcija (Vražje stepenice)

Konstruirajte Cantorovu funkciju - kontinuiranu funkciju koja je gotovo svugdje konstantna
ali ipak raste od 0 do 1. Vizualizirajte je pomoću matplotlib.

Fraktalna dimenzija

Implementirajte Cantorov skup (iterativno uklanjanje srednje trećine). Izračunajte njegovu
Hausdorffovu dimenziju (log 2 / log 3). Generirajte Cantorovu prašinu u 2D.

Aksiom izbora - simulacija

Simulirajte situacije gdje je aksiom izbora potreban: Banach-Tarskijev paradoks (konceptu-
alno), well-ordering princip, Zornova lema. Ilustrirajte kontroverznost aksioma.

Gödel brojevi

Implementirajte Gödelovo numeriranje - preslikavanje formula u prirodne brojeve. Pokažite
kako se meta-matematika svodi na aritmetiku. Ilustrirajte ideju nepotpunosti.

Transfinitna indukcija

Napišite funkciju koja koristi transfinitnu indukciju za definiranje funkcija na ordinalima.
Primjer: Ackermanova funkcija generalizirana na ordinale.

Forsing metoda - konceptualna simulacija

Stvorite jednostavnu simulaciju Cohen forcing metode. Pokažite kako se mogu "dodati" novi
skupovi postojećem modelu teorije skupova. Ilustrirajte nezavisnost hipoteze kontinuuma.

126 POGLAVLJE 6. CANTOROV SVIJET

Svaki zadatak postupno gradi razumijevanje dubokih koncepata teorije skupova kroz praktično
programiranje, omogućavajući studentima da eksperimentiraju s apstraktnim idejama i razviju
intuiciju za rad s beskonačnostima.

6.1.11 Zaključak

Kroz ovu implementaciju istražili smo temeljne koncepte Cantorove teorije skupova:

1. Osnovne skupovne operacije kao temelj matematike

2. Hijerarhiju beskonačnosti kroz kardinalne brojeve

3. Dijagonalnu metodu koja otkriva neprebrojivost realnih brojeva

4. Paradokse koji pokazuju granice naivnog pristupa

Cantorova naslijeđe transformiralo je matematiku i filozofiju:

"Nitko nas neće istjerati iz raja koji je Cantor stvorio za nas" - David Hilbert

Ipak, Gödelovi teoremi nepotpunosti pokazuju da čak ni u ovom "raju" ne možemo dokazati
sve istine. Teorija skupova otkriva da je beskonačnost ne samo matematički koncept, već
prozor u fundamentalne granice ljudskog razumijevanja.

Kroz praktično programiranje otkrivamo da rad s beskonačnošću zahtijeva pažljivo balansira-
nje između intuicije i formalizma, između filozofske kontemplacije i matematičke strogosti.
Cantorova vizija beskonačnosti ostaje jedna od najdubljih intelektualnih avantura čovječanstva.

"Vidim to, ali ne vjerujem!" - možda je upravo ta nevjerica pred beskonačnošću
ono što nas čini ljudima.

Dio II

SVJETOVI INDUKTIVNIH
LOGIKA

127

Poglavlje 7

Pascalov svijet

7.1 Vjerojatnost kao logika neizvjesnosti

U ovom poglavlju istražujemo teoriju vjerojatnosti kao prirodno proširenje logike sudova, in-
spirirani Pascalovim pionirskim radom o igrama na sreću i njegovim filozofskim razmatranjima
o neizvjesnosti.

"Srce ima svoje razloge koje razum ne poznaje" (Le cœur a ses raisons que la raison
ne connaît point) - Blaise Pascal

Pascal je, zajedno s Fermatom, postavio temelje teorije vjerojatnosti 1654. godine, ali njegov
doprinos seže dalje - pokazao je kako matematički pristupiti neizvjesnosti i racionalnom
odlučivanju.

7.1.1 Od logike sudova do vjerojatnosti

U klasičnoj logici, elementarni sud može biti samo istinit (⊤) ili lažan (⊥). Vjerojatnost
generalizira ovaj koncept dopuštajući stupnjeve istinitosti između 0 i 1:

• Klasična logika: v(φ) ∈ {⊥,⊤}

• Vjerojatnost: P (φ) ∈ [0, 1]

gdje P (φ) = 0 odgovara ⊥, a P (φ) = 1 odgovara ⊤.

1 class Sud:
2 """Predstavlja sud s klasičnom ili vjerojatnosnom vrijednošću."""
3

4 def __init__(self, naziv, klasicna_vrijednost=None, vjerojatnost=None):

129

130 POGLAVLJE 7. PASCALOV SVIJET

5 self.naziv = naziv
6 self.klasicna = klasicna_vrijednost # ⊤ ili ⊥
7 self.vjerojatnost = vjerojatnost # [0, 1]
8

9 def __repr__(self):
10 if self.vjerojatnost is not None:
11 return f"P('{self.naziv}') = {self.vjerojatnost:.2f}"
12 elif self.klasicna is not None:
13 return f"Sud '{self.naziv}': {'⊤' if self.klasicna else '⊥'}"
14 return f"Sud '{self.naziv}': neodređen"
15

16 # Primjeri sudova
17 print("Usporedba logike i vjerojatnosti:")
18 print("="*34)
19

20 # Klasična logika
21 print("\nKlasična logika:")
22 kisa_klasicno = Sud("Pada kiša", klasicna_vrijednost=True)
23 sunce_klasicno = Sud("Sunčano je", klasicna_vrijednost=False)
24 print(f" {kisa_klasicno}")
25 print(f" {sunce_klasicno}")
26

27 # Vjerojatnosna logika
28 print("\nVjerojatnosna logika:")
29 kisa_vjerojatnost = Sud("Pada kiša", vjerojatnost=0.3)
30 sunce_vjerojatnost = Sud("Sunčano je", vjerojatnost=0.7)
31 oblacno_vjerojatnost = Sud("Oblačno", vjerojatnost=0.45)
32 print(f" {kisa_vjerojatnost}")
33 print(f" {sunce_vjerojatnost}")
34 print(f" {oblacno_vjerojatnost}")
35

36 # Interpretacija
37 print("\nInterpretacija:")
38 interpretacije = [
39 (0.0, "⊥ (sigurno lažno)"),
40 (0.3, "stupanj vjerovanja 30%"),
41 (0.5, "potpuna neizvjesnost"),
42 (0.7, "stupanj vjerovanja 70%"),
43 (1.0, "⊤ (sigurno istinito)")
44]
45 for p, opis in interpretacije:
46 print(f" P = {p:.2f} ≈ {opis}")

Output

Usporedba logike i vjerojatnosti:
==================================

Klasična logika:
Sud 'Pada kiša': ⊤
Sud 'Sunčano je': ⊥

7.1. VJEROJATNOST KAO LOGIKA NEIZVJESNOSTI 131

Vjerojatnosna logika:
P('Pada kiša') = 0.30
P('Sunčano je') = 0.70
P('Oblačno') = 0.45

Interpretacija:
P = 0.00 ≈ ⊥ (sigurno lažno)
P = 0.30 ≈ stupanj vjerovanja 30%
P = 0.50 ≈ potpuna neizvjesnost
P = 0.70 ≈ stupanj vjerovanja 70%
P = 1.00 ≈ ⊤ (sigurno istinito)

7.1.2 Kolmogorovljevi aksiomi vjerojatnosti

Andrej Kolmogorov je 1933. formalizirao teoriju vjerojatnosti kroz tri elegantna aksioma. Za
skup svih mogućih sudova Ω i vjerojatnosnu mjeru P :

1. Nenegativnost: P (φ) ≥ 0 za svaki sud φ

2. Normalizacija: P (Ω) = 1 (sigurna istina ima vjerojatnost 1)

3. Aditivnost: Za međusobno isključive sudove φ1, φ2, ...:

P (φ1 ∨ φ2 ∨ ...) = P (φ1) + P (φ2) + ...

1 class VjerojatnosniProstor:
2 """Predstavlja vjerojatnosni prostor s Kolmogorovljevim aksiomima."""
3

4 def __init__(self, omega, vjerojatnosti):
5 """
6 omega: skup elementarnih sudova
7 vjerojatnosti: rječnik {sud: vjerojatnost}
8 """
9 self.omega = omega

10 self.P = vjerojatnosti
11 self._provjeri_aksiome()
12

13 def _provjeri_aksiome(self):
14 """Provjerava zadovoljavaju li vjerojatnosti aksiome."""
15 # Aksiom 1: Nenegativnost
16 for p in self.P.values():
17 if p < 0:
18 raise ValueError(f"Vjerojatnost {p} krši aksiom nenegativnosti!")
19

20 # Aksiom 2: Normalizacija
21 suma = sum(self.P.values())
22 if abs(suma - 1.0) > 1e-10:

132 POGLAVLJE 7. PASCALOV SVIJET

23 raise ValueError(f"Suma vjerojatnosti {suma} ̸= 1 (krši normalizaciju)!")
24

25 def vjerojatnost_suda(self, predikat):
26 """Računa vjerojatnost složenog suda."""
27 p = 0
28 for ishod, vjerojatnost in self.P.items():
29 if predikat(ishod):
30 p += vjerojatnost
31 return p
32

33 # Primjer: Poštena kocka
34 kocka_omega = {1, 2, 3, 4, 5, 6}
35 kocka_P = {i: 1/6 for i in kocka_omega}
36 kocka = VjerojatnosniProstor(kocka_omega, kocka_P)
37

38 print("Demonstracija Kolmogorovljevih aksioma")
39 print("="*39)
40 print("\nProstor elementarnih sudova Ω:")
41 print(f" Kocka pokazuje: {kocka_omega}")
42

43 # Aksiom 1: Nenegativnost
44 print("\nAKSIOM 1 - Nenegativnost:")
45 testovi = [
46 ("Paran broj", lambda x: x % 2 == 0),
47 ("Broj > 4", lambda x: x > 4),
48 ("Broj = 7", lambda x: x == 7)
49]
50 for naziv, predikat in testovi:
51 p = kocka.vjerojatnost_suda(predikat)
52 print(f" P('{naziv}') = {p:.3f} ≥ 0 ✓")
53

54 # Aksiom 2: Normalizacija
55 print("\nAKSIOM 2 - Normalizacija:")
56 p_omega = kocka.vjerojatnost_suda(lambda x: True)
57 print(f" P(Ω) = P('Bilo koji broj 1-6') = {p_omega:.3f} ✓")
58

59 # Aksiom 3: Aditivnost
60 print("\nAKSIOM 3 - Aditivnost:")
61 print(" Međusobno isključivi sudovi:")
62 p1 = kocka.vjerojatnost_suda(lambda x: x == 1)
63 p3 = kocka.vjerojatnost_suda(lambda x: x == 3)
64 p5 = kocka.vjerojatnost_suda(lambda x: x == 5)
65 print(f" P('Broj = 1') = {p1:.3f}")
66 print(f" P('Broj = 3') = {p3:.3f}")
67 print(f" P('Broj = 5') = {p5:.3f}")
68

69 p_unija = kocka.vjerojatnost_suda(lambda x: x in {1, 3, 5})
70 p_suma = p1 + p3 + p5
71

72 print(f" \n P('Broj ∈ {{1,3,5}}') = {p_unija:.3f}")
73 print(f" P('1') + P('3') + P('5') = {p_suma:.3f}")
74 print(f" Aditivnost vrijedi: {p_unija:.3f} = {p_suma:.3f} ✓")
75

7.1. VJEROJATNOST KAO LOGIKA NEIZVJESNOSTI 133

76 print("\nPosljedice aksioma:")
77 print(" P(¬φ) = 1 - P(φ)")
78 print(" P(∅) = 0")
79 print(" P(φ ∨ ψ) = P(φ) + P(ψ) - P(φ ∧ ψ)")

Output

Demonstracija Kolmogorovljevih aksioma
=======================================

Prostor elementarnih sudova Ω:
Kocka pokazuje: {1, 2, 3, 4, 5, 6}

AKSIOM 1 - Nenegativnost:
P('Paran broj') = 0.500 ≥ 0 ✓
P('Broj > 4') = 0.333 ≥ 0 ✓
P('Broj = 7') = 0.000 ≥ 0 ✓

AKSIOM 2 - Normalizacija:
P(Ω) = P('Bilo koji broj 1-6') = 1.000 ✓

AKSIOM 3 - Aditivnost:
Međusobno isključivi sudovi:

P('Broj = 1') = 0.167
P('Broj = 3') = 0.167
P('Broj = 5') = 0.167

P('Broj ∈ {1,3,5}') = 0.500
P('1') + P('3') + P('5') = 0.500
Aditivnost vrijedi: 0.500 = 0.500 ✓

Posljedice aksioma:
P(¬φ) = 1 - P(φ)
P(∅) = 0
P(φ ∨ ψ) = P(φ) + P(ψ) - P(φ ∧ ψ)

7.1.3 Vjerojatnost kao proširenje logičkih veznika

Vjerojatnosni račun generalizira logičke veznike:

• Negacija: P (¬φ) = 1 − P (φ)

• Disjunkcija: P (φ ∨ ψ) = P (φ) + P (ψ) − P (φ ∧ ψ)

• Konjunkcija: P (φ ∧ ψ) = P (φ) · P (ψ|φ)

Kada su sudovi nezavisni: P (φ ∧ ψ) = P (φ) · P (ψ)

134 POGLAVLJE 7. PASCALOV SVIJET

1 class VjerojatnosnaLogika:
2 """Implementira vjerojatnosne verzije logičkih veznika."""
3

4 @staticmethod
5 def negacija(p_phi):
6 """P(¬φ) = 1 - P(φ)"""
7 return 1 - p_phi
8

9 @staticmethod
10 def disjunkcija(p_phi, p_psi, p_phi_i_psi):
11 """P(φ ∨ ψ) = P(φ) + P(ψ) - P(φ ∧ ψ)"""
12 return p_phi + p_psi - p_phi_i_psi
13

14 @staticmethod
15 def konjunkcija_nezavisna(p_phi, p_psi):
16 """P(φ ∧ ψ) = P(φ) · P(ψ) za nezavisne sudove"""
17 return p_phi * p_psi
18

19 @staticmethod
20 def uvjetna_vjerojatnost(p_phi_i_psi, p_psi):
21 """P(φ|ψ) = P(φ ∧ ψ) / P(ψ)"""
22 if p_psi == 0:
23 return None # Nedefinirana
24 return p_phi_i_psi / p_psi
25

26 @staticmethod
27 def implikacija(p_phi, p_psi, p_phi_i_psi):
28 """P(φ → ψ) = P(¬φ ∨ ψ)"""
29 p_neg_phi = 1 - p_phi
30 # P(¬φ ∧ ψ) = P(ψ) - P(φ ∧ ψ)
31 p_neg_phi_i_psi = p_psi - p_phi_i_psi
32 return p_neg_phi + p_psi - p_neg_phi_i_psi
33

34 # Primjer: Vremenske prilike
35 vl = VjerojatnosnaLogika()
36

37 # Definiraj vjerojatnosti
38 P_kisa = 0.6 # P(pada kiša)
39 P_hladno = 0.4 # P(hladno je)
40 P_kisa_i_hladno = 0.3 # P(pada kiša ∧ hladno je)
41

42 print("Vjerojatnosni logički veznici")
43 print("="*30)
44 print("\nOsnovni sudovi:")
45 print(f" P(A) = {P_kisa:.2f} ('Pada kiša')")
46 print(f" P(B) = {P_hladno:.2f} ('Hladno je')")
47 print(f" P(A ∧ B) = {P_kisa_i_hladno:.2f} ('Pada kiša i hladno je')")
48

49 # Negacija
50 print("\n1. NEGACIJA:")
51 P_ne_kisa = vl.negacija(P_kisa)
52 print(f" P(¬A) = 1 - P(A) = 1 - {P_kisa:.2f} = {P_ne_kisa:.2f}")

7.1. VJEROJATNOST KAO LOGIKA NEIZVJESNOSTI 135

53 print(f" Interpretacija: Vjerojatnost da ne pada kiša je {P_ne_kisa*100:.0f}%")
54

55 # Disjunkcija
56 print("\n2. DISJUNKCIJA:")
57 P_kisa_ili_hladno = vl.disjunkcija(P_kisa, P_hladno, P_kisa_i_hladno)
58 print(f" P(A ∨ B) = P(A) + P(B) - P(A ∧ B)")
59 print(f" P(A ∨ B) = {P_kisa:.2f} + {P_hladno:.2f} - {P_kisa_i_hladno:.2f} =

{P_kisa_ili_hladno:.2f}")↪→

60 print(f" Interpretacija: Vjerojatnost da pada kiša ili je hladno je
{P_kisa_ili_hladno*100:.0f}%")↪→

61

62 # Implikacija
63 print("\n3. IMPLIKACIJA:")
64 P_ako_kisa_onda_hladno = vl.implikacija(P_kisa, P_hladno, P_kisa_i_hladno)
65 print(f" P(A → B) = P(¬A ∨ B) = P(¬A) + P(B) - P(¬A ∧ B)")
66 P_ne_kisa_i_hladno = P_hladno - P_kisa_i_hladno
67 print(f" P(A → B) = {P_ne_kisa:.2f} + {P_hladno:.2f} - {P_ne_kisa_i_hladno:.2f} =

{P_ako_kisa_onda_hladno:.2f}")↪→

68 print(f" Interpretacija: Vjerojatnost da 'ako pada kiša, onda je hladno' je
{P_ako_kisa_onda_hladno*100:.0f}%")↪→

69

70 # Uvjetna vjerojatnost
71 print("\n4. UVJETNA VJEROJATNOST:")
72 P_hladno_ako_kisa = vl.uvjetna_vjerojatnost(P_kisa_i_hladno, P_kisa)
73 print(f" P(B|A) = P(A ∧ B) / P(A) = {P_kisa_i_hladno:.2f} / {P_kisa:.2f} =

{P_hladno_ako_kisa:.2f}")↪→

74 print(f" Interpretacija: Ako pada kiša, vjerojatnost da je hladno je
{P_hladno_ako_kisa*100:.0f}%")↪→

75

76 # Test nezavisnosti
77 print("\nTest nezavisnosti:")
78 P_nezavisno = vl.konjunkcija_nezavisna(P_kisa, P_hladno)
79 print(f" P(A) · P(B) = {P_kisa:.2f} · {P_hladno:.2f} = {P_nezavisno:.2f}")
80 print(f" P(A ∧ B) = {P_kisa_i_hladno:.2f}")
81 if abs(P_nezavisno - P_kisa_i_hladno) < 0.01:
82 print(f" Budući da {P_nezavisno:.2f} ≈ {P_kisa_i_hladno:.2f}, sudovi su približno

nezavisni")↪→

83 else:
84 print(f" Budući da {P_nezavisno:.2f} ̸= {P_kisa_i_hladno:.2f}, sudovi NISU nezavisni")
85 print(" (Kiša i hladnoća su povezani!)")

Output

Vjerojatnosni logički veznici
==============================

Osnovni sudovi:
P(A) = 0.60 ('Pada kiša')
P(B) = 0.40 ('Hladno je')
P(A ∧ B) = 0.30 ('Pada kiša i hladno je')

136 POGLAVLJE 7. PASCALOV SVIJET

1. NEGACIJA:
P(¬A) = 1 - P(A) = 1 - 0.60 = 0.40
Interpretacija: Vjerojatnost da ne pada kiša je 40%

2. DISJUNKCIJA:
P(A ∨ B) = P(A) + P(B) - P(A ∧ B)
P(A ∨ B) = 0.60 + 0.40 - 0.30 = 0.70
Interpretacija: Vjerojatnost da pada kiša

ili je hladno je 70%

3. IMPLIKACIJA:
P(A → B) = P(¬A ∨ B) = P(¬A) + P(B) - P(¬A ∧ B)
P(A → B) = 0.40 + 0.40 - 0.10 = 0.70
Interpretacija: P('ako pada kiša, onda je hladno') = 70%

4. UVJETNA VJEROJATNOST:
P(B|A) = P(A ∧ B) / P(A) = 0.30 / 0.60 = 0.50
Interpretacija: Ako pada kiša, vjerojatnost da je hladno je 50%

Test nezavisnosti:
P(A) · P(B) = 0.60 · 0.40 = 0.24
P(A ∧ B) = 0.30
Budući da 0.24 ̸= 0.30, sudovi NISU nezavisni
(Kiša i hladnoća su povezani!)

7.1.4 Bayesov teorem - zaključivanje s neizvjesnošću

Bayesov teorem omogućava ažuriranje vjerovanja na temelju novih dokaza:

"Vjerojatnost je vodič života" - Ciceron, anticipirajući Bayesovu logiku

P (H|E) = P (E|H) · P (H)
P (E)

gdje je:

• P (H) - apriorna vjerojatnost hipoteze

• P (E|H) - izglednost dokaza ako je hipoteza istinita

• P (H|E) - aposteriorna vjerojatnost nakon dokaza

1 class BayesovoZakljucivanje:
2 """Implementira Bayesovo ažuriranje vjerojatnosti."""
3

7.1. VJEROJATNOST KAO LOGIKA NEIZVJESNOSTI 137

4 def __init__(self, apriorna, izglednosti):
5 """
6 apriorna: dict {hipoteza: P(hipoteza)}
7 izglednosti: dict {hipoteza: {dokaz: P(dokaz|hipoteza)}}
8 """
9 self.apriorna = apriorna

10 self.izglednosti = izglednosti
11

12 def azuriraj(self, dokaz):
13 """Ažurira vjerojatnosti na temelju novog dokaza."""
14 # Izračunaj P(dokaz)
15 p_dokaz = 0
16 for hipoteza, p_h in self.apriorna.items():
17 p_dokaz += self.izglednosti[hipoteza][dokaz] * p_h
18

19 # Bayesovo ažuriranje za svaku hipotezu
20 aposteriorna = {}
21 for hipoteza, p_h in self.apriorna.items():
22 p_dokaz_ako_h = self.izglednosti[hipoteza][dokaz]
23 aposteriorna[hipoteza] = (p_dokaz_ako_h * p_h) / p_dokaz
24

25 return aposteriorna, p_dokaz
26

27 # Primjer: Medicinska dijagnoza
28 print("Bayesovo zaključivanje - Medicinska dijagnoza")
29 print("="*46)
30 print("\nScenarij: Test za rijetku bolest\n")
31

32 # Definiraj vjerojatnosti
33 apriorna = {
34 "bolest": 0.001, # 1 od 1000 ljudi ima bolest
35 "zdrav": 0.999
36 }
37

38 izglednosti = {
39 "bolest": {
40 "pozitivan": 0.99, # Osjetljivost testa (true positive rate)
41 "negativan": 0.01 # False negative rate
42 },
43 "zdrav": {
44 "pozitivan": 0.05, # False positive rate
45 "negativan": 0.95 # True negative rate
46 }
47 }
48

49 bayes = BayesovoZakljucivanje(apriorna, izglednosti)
50

51 print("Početne informacije:")
52 print(f" P(Bolest) = {apriorna['bolest']:.3f} (1 od 1000 ljudi ima bolest)")
53 print(f" P(Test+|Bolest) = {izglednosti['bolest']['pozitivan']:.3f} (osjetljivost testa)")
54 print(f" P(Test+|¬Bolest) = {izglednosti['zdrav']['pozitivan']:.3f} (lažno pozitivna

stopa)")↪→

55

138 POGLAVLJE 7. PASCALOV SVIJET

56 print("\nPitanje: Ako je test pozitivan, kolika je vjerojatnost bolesti?")
57

58 # Bayesovo ažuriranje
59 aposteriorna, p_pozitivan = bayes.azuriraj("pozitivan")
60

61 print("\nBayesov račun:")
62 print("1. P(Test+) = P(Test+|Bolest)·P(Bolest) + P(Test+|¬Bolest)·P(¬Bolest)")
63 p1 = izglednosti['bolest']['pozitivan'] * apriorna['bolest']
64 p2 = izglednosti['zdrav']['pozitivan'] * apriorna['zdrav']
65 print(f" P(Test+) = {izglednosti['bolest']['pozitivan']:.3f} · {apriorna['bolest']:.3f} + "
66 f"{izglednosti['zdrav']['pozitivan']:.3f} · {apriorna['zdrav']:.3f}")
67 print(f" P(Test+) = {p1:.5f} + {p2:.5f} = {p_pozitivan:.5f}")
68

69 print("\n2. P(Bolest|Test+) = P(Test+|Bolest) · P(Bolest) / P(Test+)")
70 print(f" P(Bolest|Test+) = {izglednosti['bolest']['pozitivan']:.3f} · "
71 f"{apriorna['bolest']:.3f} / {p_pozitivan:.5f}")
72 print(f" P(Bolest|Test+) = {aposteriorna['bolest']:.5f}")
73

74 print("\nZAKLJUČAK:")
75 print(f" Apriorna vjerojatnost: {apriorna['bolest']*100:.1f}%")
76 print(f" Aposteriorna vjerojatnost (nakon pozitivnog testa):

{aposteriorna['bolest']*100:.1f}%")↪→

77 print(" \n Iako je test vrlo pouzdan (99% osjetljivost),")
78 print(f" pozitivan test povećava vjerojatnost bolesti samo na

{aposteriorna['bolest']*100:.1f}%!")↪→

79 print(" \n Razlog: Bolest je vrlo rijetka, pa većina pozitivnih")
80 print(" testova su lažno pozitivni.")
81

82 # Vizualizacija
83 print("\nVizualizacija od 100,000 ljudi:")
84 n_ljudi = 100000
85 n_bolesnih = int(n_ljudi * apriorna['bolest'])
86 n_zdravih = n_ljudi - n_bolesnih
87

88 tp = int(n_bolesnih * izglednosti['bolest']['pozitivan']) # True positive
89 fn = n_bolesnih - tp # False negative
90 fp = int(n_zdravih * izglednosti['zdrav']['pozitivan']) # False positive
91 tn = n_zdravih - fp # True negative
92

93 print(f" Bolesni: {n_bolesnih} ljudi")
94 print(f" → Pozitivan test: {tp} (istinito pozitivni)")
95 print(f" → Negativan test: {fn} (lažno negativan)")
96 print(f" \n Zdravi: {n_zdravih:,} ljudi")
97 print(f" → Pozitivan test: {fp:,} (lažno pozitivni)")
98 print(f" → Negativan test: {tn:,} (istinito negativni)")
99 print(f" \n Ukupno pozitivnih testova: {tp + fp:,}")

100 print(f" Od toga stvarno bolesnih: {tp}")
101 print(f" Vjerojatnost bolesti kod pozitivnog testa: {tp}/{tp+fp} = {tp/(tp+fp)*100:.1f}%")

7.1. VJEROJATNOST KAO LOGIKA NEIZVJESNOSTI 139

Output

Bayesovo zaključivanje - Medicinska dijagnoza
==

Scenarij: Test za rijetku bolest

Početne informacije:
P(Bolest) = 0.001 (1 od 1000 ljudi ima bolest)
P(Test+|Bolest) = 0.990 (osjetljivost testa)
P(Test+|¬Bolest) = 0.050 (lažno pozitivna stopa)

Pitanje: Ako je test pozitivan, kolika je vjerojatnost bolesti?

Bayesov račun:
1. P(Test+) = P(Test+|Bolest)·P(Bolest) + P(Test+|¬Bolest)·P(¬Bolest)

P(Test+) = 0.990 · 0.001 + 0.050 · 0.999
P(Test+) = 0.00099 + 0.04995 = 0.05094

2. P(Bolest|Test+) = P(Test+|Bolest) · P(Bolest) / P(Test+)
P(Bolest|Test+) = 0.990 · 0.001 / 0.05094
P(Bolest|Test+) = 0.01943

ZAKLJUČAK:
Apriorna vjerojatnost: 0.1%
Aposteriorna vjerojatnost (nakon pozitivnog testa): 1.9%

Iako je test vrlo pouzdan (99% osjetljivost),
pozitivan test povećava vjerojatnost bolesti samo na 1.9%!

Razlog: Bolest je vrlo rijetka, pa većina pozitivnih
testova su lažno pozitivni.

Vizualizacija od 100,000 ljudi:
Bolesni: 100 ljudi

→ Pozitivan test: 99 (istinito pozitivni)
→ Negativan test: 1 (lažno negativan)

Zdravi: 99,900 ljudi
→ Pozitivan test: 4,995 (lažno pozitivni)
→ Negativan test: 94,905 (istinito negativni)

Ukupno pozitivnih testova: 5,094
Od toga stvarno bolesnih: 99
Vjerojatnost bolesti kod pozitivnog testa: 99/5094 = 1.9%

7.1.5 Pascalova oklada - filozofija vjerojatnosti

Pascal je primijenio vjerojatnosno razmišljanje na ultimativno filozofsko pitanje - postojanje
Boga:

140 POGLAVLJE 7. PASCALOV SVIJET

"Morate se kladiti. To nije dobrovoljno, primorani ste na to" - Pascal, Pensées

Pascalova matrica odlučivanja:

| | Bog postoji | Bog ne postoji | |—|———————|———————| | Vjerujem | +∞
(vječna sreća) | −c (mali gubitak) | | Ne vjerujem | −∞ (vječna kazna) | +c (mali dobitak) |

Čak i ako je P (Bog postoji) = ϵ vrlo mala, očekivana korisnost vjerovanja je beskonačna!

1 import math
2

3 def fmt_prob(x: float) -> str:
4 return f"{x:.2f}" if x >= 0.01 else f"{x:.4f}"
5

6 class PascalovaOklada:
7 """Simulacija Pascalove oklade kroz teoriju odlučivanja."""
8

9 def __init__(self):
10 # Matrica korisnosti (payoff matrix)
11 # Koristimo velike brojeve umjesto beskonačnosti za demonstraciju
12 self.korisnost = {
13 ("vjeruj", "postoji"): float('inf'), # Vječna sreća
14 ("vjeruj", "ne_postoji"): -10, # Mali gubitak (trud vjerovanja)
15 ("ne_vjeruj", "postoji"): float('-inf'), # Vječna kazna
16 ("ne_vjeruj", "ne_postoji"): 10 # Mali dobitak (sloboda)
17 }
18

19 def ocekivana_korisnost(self, akcija, p_bog):
20 """Računa očekivanu korisnost akcije."""
21 k_postoji = self.korisnost[(akcija, "postoji")]
22 k_ne_postoji = self.korisnost[(akcija, "ne_postoji")]
23

24 return p_bog * k_postoji + (1 - p_bog) * k_ne_postoji
25

26 def optimalna_odluka(self, p_bog):
27 """Vraća optimalnu odluku za danu vjerojatnost."""
28 eu_vjeruj = self.ocekivana_korisnost("vjeruj", p_bog)
29 eu_ne_vjeruj = self.ocekivana_korisnost("ne_vjeruj", p_bog)
30

31 if eu_vjeruj > eu_ne_vjeruj:
32 return "vjeruj", eu_vjeruj, eu_ne_vjeruj
33 elif eu_ne_vjeruj > eu_vjeruj:
34 return "ne_vjeruj", eu_vjeruj, eu_ne_vjeruj
35 else:
36 return "svejedno", eu_vjeruj, eu_ne_vjeruj
37

38 # Demonstracija
39 oklada = PascalovaOklada()
40

41 print("Pascalova oklada - Analiza odlučivanja")

7.1. VJEROJATNOST KAO LOGIKA NEIZVJESNOSTI 141

42 print("="*39)
43 print("\nMatrica korisnosti:")
44 print(" Bog postoji Bog ne postoji")
45 print(" Vjerujem: +∞ -10 ")
46 print(" Ne vjerujem: -∞ +10 ")
47

48 print("\nAnaliza za različite vjerojatnosti postojanja Boga:\n")
49

50 vjerojatnosti = [0.5, 0.1, 0.01, 0.0001]
51 for p in vjerojatnosti:
52 odluka, eu_v, eu_nv = oklada.optimalna_odluka(p)
53

54 # Example usage (replace your print block with this structure)
55 eu_v_str = f"{eu_v:.2f}" if (eu_v not in (float('inf'), float('-inf'))) else ("∞" if

eu_v > 0 else "-∞")↪→

56 eu_nv_str = f"{eu_nv:.2f}" if (eu_nv not in (float('inf'), float('-inf'))) else ("∞" if
eu_nv > 0 else "-∞")↪→

57

58 p_str = fmt_prob(p)
59 one_minus_p_str = fmt_prob(1 - p)
60

61 print(f" E[vjerujem] = {p_str} · ∞ + {one_minus_p_str} · (-10) = {eu_v_str}")
62 print(f" E[ne vjerujem] = {p_str} · (-∞) + {one_minus_p_str} · 10 = {eu_nv_str}")
63 print(f" → Racionalna odluka: {'VJERUJ' if odluka == 'vjeruj' else 'NE VJERUJ'}\n")
64

65 print("Pascalov zaključak:")
66 print(" Čak i uz infinitezimalnu vjerojatnost postojanja Boga,")
67 print(" racionalno je vjerovati zbog beskonačne nagrade/kazne.")
68

69 print("\nFilozofske kritike:")
70 kritike = [
71 "Problem mnoštva religija (koja vjera?)",
72 "Autentičnost vjerovanja (može li se 'odlučiti' vjerovati?)",
73 "Beskonačnost kao korisnost (ima li smisla?)",
74 "Moralni prigovor (je li to pravo vjerovanje?)"
75]
76 for i, kritika in enumerate(kritike, 1):
77 print(f" {i}. {kritika}")
78

79 # Konačna verzija
80 print("\nKonačna aproksimacija (bez beskonačnosti):")
81 print(" Korisnosti: vjeruj(Bog da)=1000, vjeruj(Bog ne)=-10")
82 print(" ne vjeruj(Bog da)=-1000, ne vjeruj(Bog ne)=10")
83

84 # Kritična vjerojatnost
85 # 1000p - 10(1-p) = -1000p + 10(1-p)
86 # 1000p - 10 + 10p = -1000p + 10 - 10p
87 # 2020p = 20
88 p_kritična = 20 / 2020
89 print(f" \n Kritična vjerojatnost: P* = {p_kritična:.3f}")
90 print(f" Ako P(Bog) > {p_kritična:.3f}, vjeruj; inače ne vjeruj.")

142 POGLAVLJE 7. PASCALOV SVIJET

Output

Pascalova oklada - Analiza odlučivanja
=======================================

Matrica korisnosti:
Bog postoji Bog ne postoji

Vjerujem: +∞ -10
Ne vjerujem: -∞ +10

Analiza za različite vjerojatnosti postojanja Boga:

E[vjerujem] = 0.50 · ∞ + 0.50 · (-10) = ∞
E[ne vjerujem] = 0.50 · (-∞) + 0.50 · 10 = -∞
→ Racionalna odluka: VJERUJ

E[vjerujem] = 0.10 · ∞ + 0.90 · (-10) = ∞
E[ne vjerujem] = 0.10 · (-∞) + 0.90 · 10 = -∞
→ Racionalna odluka: VJERUJ

E[vjerujem] = 0.01 · ∞ + 0.99 · (-10) = ∞
E[ne vjerujem] = 0.01 · (-∞) + 0.99 · 10 = -∞
→ Racionalna odluka: VJERUJ

E[vjerujem] = 0.0001 · ∞ + 1.00 · (-10) = ∞
E[ne vjerujem] = 0.0001 · (-∞) + 1.00 · 10 = -∞
→ Racionalna odluka: VJERUJ

Pascalov zaključak:
Čak i uz infinitezimalnu vjerojatnost postojanja Boga,
racionalno je vjerovati zbog beskonačne nagrade/kazne.

Filozofske kritike:
1. Problem mnoštva religija (koja vjera?)
2. Autentičnost vjerovanja (može li se 'odlučiti' vjerovati?)
3. Beskonačnost kao korisnost (ima li smisla?)
4. Moralni prigovor (je li to pravo vjerovanje?)

Konačna aproksimacija (bez beskonačnosti):
Korisnosti: vjeruj(Bog da)=1000, vjeruj(Bog ne)=-10

ne vjeruj(Bog da)=-1000, ne vjeruj(Bog ne)=10

Kritična vjerojatnost: P* = 0.010
Ako P(Bog) > 0.010, vjeruj; inače ne vjeruj.

7.1.6 Problem indukcije i vjerojatnost

David Hume je ukazao na problem indukcije - nemožnost logičkog opravdanja generalizacije
iz konačnog broja opažanja. Vjerojatnost nudi djelomično rješenje:

7.1. VJEROJATNOST KAO LOGIKA NEIZVJESNOSTI 143

"Navika je veliki vodič ljudskog života" - Hume

Umjesto traženja sigurnosti, vjerojatnost kvantificira stupanj racionalnog vjerovanja.

1 class InduktivnoZakljucivanje:
2 """Modelira induktivno zaključivanje kroz vjerojatnost."""
3

4 def __init__(self):
5 self.povijest = []
6

7 def laplace_sukcesija(self, uspjesi, pokusaji):
8 """Laplace-ov zakon sukcesije.
9

10 P(sljedeći uspjeh) = (k + 1) / (n + 2)
11 gdje je k broj uspjeha, n broj pokušaja
12 """
13 return (uspjesi + 1) / (pokusaji + 2)
14

15 def azuriraj_vjerovanje(self, novi_dokaz):
16 """Ažurira vjerovanje na temelju novog dokaza."""
17 self.povijest.append(novi_dokaz)
18 uspjesi = sum(self.povijest)
19 pokusaji = len(self.povijest)
20 return self.laplace_sukcesija(uspjesi, pokusaji)
21

22 # Primjer: Sunce izlazi svaki dan
23 print("Problem indukcije - Sunce izlazi")
24 print("="*33)
25

26 indukcija = InduktivnoZakljucivanje()
27

28 print("\nLaplace-ov zakon sukcesije:")
29 print(" P(uspjeh) = (k + 1) / (n + 2)")
30 print(" gdje je k = broj dosadašnjih uspjeha, n = ukupan broj pokušaja")
31

32 print("\nDana\tP(sunce izađe)\tPromjena")
33 print("-"*4 + "\t" + "-"*14 + "\t" + "-"*8)
34

35 # Simuliraj promatranje sunca
36 dani = [0, 1, 2, 3, 4, 5, 10, 30, 100, 365, 1000, 10000]
37 prethodna_p = 0.5
38

39 for dan in dani:
40 p = indukcija.laplace_sukcesija(dan, dan)
41 promjena = p - prethodna_p if dan > 0 else 0
42

43 print(f"{dan}\t{p:.4f}\t\t", end="")
44 if dan > 0:
45 print(f"+{promjena:.4f}" if promjena > 0 else f"{promjena:.4f}")
46 else:
47 print("-")

144 POGLAVLJE 7. PASCALOV SVIJET

48

49 if dan in [1, 5, 30, 365, 10000]:
50 prethodna_p = p
51

52 print("\nHumeov problem:")
53 print(" Koliko god puta sunce izašlo, P(sunce izađe sutra) < 1")
54 print(" Nikad ne možemo biti potpuno sigurni!")
55

56 # Crni labud
57 print("\nCrni labud scenarij:")
58 bijeli_labudovi = 1000
59 p_bijeli = indukcija.laplace_sukcesija(bijeli_labudovi, bijeli_labudovi)
60 print(f"Nakon {bijeli_labudovi} bijelih labudova, P(sljedeći bijel) = {p_bijeli:.4f}")
61 print("Ali jedan crni labud mijenja sve!")
62

63 # Nakon crnog labuda
64 ukupno = bijeli_labudovi + 1
65 p_bijeli_novi = indukcija.laplace_sukcesija(bijeli_labudovi, ukupno)
66 p_crni = indukcija.laplace_sukcesija(1, ukupno)
67

68 print("\nNakon crnog labuda:")
69 print(f" Vidjeli: {bijeli_labudovi} bijelih, 1 crni")
70 print(f" P(sljedeći bijel) = {p_bijeli_novi:.4f}")
71 print(f" P(sljedeći crni) = {p_crni:.4f}")
72

73 print("\nFilozofska pouka:")
74 print(" Indukcija ne daje sigurnost, već racionalne stupnjeve vjerovanja.")
75 print(" Vjerojatnost kvantificira našu neizvjesnost o budućnosti.")

Output

Problem indukcije - Sunce izlazi
=================================

Laplace-ov zakon sukcesije:
P(uspjeh) = (k + 1) / (n + 2)
gdje je k = broj dosadašnjih uspjeha, n = ukupan broj pokušaja

Dana P(sunce izađe) Promjena
---- -------------- --------
0 0.5000 -
1 0.6667 +0.1667
2 0.7500 +0.0833
3 0.8000 +0.1333
4 0.8333 +0.1667
5 0.8571 +0.1905
10 0.9167 +0.0595
30 0.9688 +0.1116
100 0.9902 +0.0214
365 0.9973 +0.0285
1000 0.9990 +0.0017

7.1. VJEROJATNOST KAO LOGIKA NEIZVJESNOSTI 145

10000 0.9999 +0.0026

Humeov problem:
Koliko god puta sunce izašlo, P(sunce izađe sutra) < 1
Nikad ne možemo biti potpuno sigurni!

Crni labud scenarij:
Nakon 1000 bijelih labudova, P(sljedeći bijel) = 0.9990
Ali jedan crni labud mijenja sve!

Nakon crnog labuda:
Vidjeli: 1000 bijelih, 1 crni
P(sljedeći bijel) = 0.9980
P(sljedeći crni) = 0.0020

Filozofska pouka:
Indukcija ne daje sigurnost, već racionalne stupnjeve vjerovanja.
Vjerojatnost kvantificira našu neizvjesnost o budućnosti.

7.1.7 Monty Hall problem - paradoksi uvjetne vjerojatnosti

Monty Hall problem ilustrira kako naša intuicija često griješi kod uvjetnih vjerojatnosti:

1 import random
2

3 class MontyHall:
4 """Simulacija Monty Hall problema."""
5

6 def igraj(self, strategija="promijeni"):
7 """Igra jednu rundu Monty Hall igre.
8

9 strategija: 'ostani' ili 'promijeni'
10 """
11 # Postavi igru
12 vrata = [1, 2, 3]
13 auto = random.choice(vrata)
14

15 # Igrač bira
16 izbor = random.choice(vrata)
17

18 # Voditelj otvara vrata s kozom
19 moguca_vrata = [v for v in vrata if v != izbor and v != auto]
20 voditelj_otvara = random.choice(moguca_vrata) if moguca_vrata else \
21 [v for v in vrata if v != izbor][0]
22

23 # Primijeni strategiju
24 if strategija == "promijeni":
25 preostala = [v for v in vrata if v != izbor and v != voditelj_otvara]

146 POGLAVLJE 7. PASCALOV SVIJET

26 konacni_izbor = preostala[0]
27 else: # ostani
28 konacni_izbor = izbor
29

30 return konacni_izbor == auto
31

32 def simuliraj(self, n_igara=10000):
33 """Simulira više igara s obje strategije."""
34 rezultati = {
35 "ostani": 0,
36 "promijeni": 0
37 }
38

39 for _ in range(n_igara):
40 if self.igraj("ostani"):
41 rezultati["ostani"] += 1
42 if self.igraj("promijeni"):
43 rezultati["promijeni"] += 1
44

45 return rezultati, n_igara
46

47 # Simulacija
48 mh = MontyHall()
49 rezultati, n = mh.simuliraj(10000)
50

51 print("Monty Hall Problem - Simulacija")
52 print("="*32)
53 print("\nPostavka:")
54 print(" 3 vrata: iza jednih je automobil, iza drugih dvoje koze")
55 print(" 1. Birate vrata")
56 print(" 2. Voditelj otvara druga vrata s kozom")
57 print(" 3. Možete promijeniti izbor ili ostati")
58

59 print(f"\nSimulacija {n:,} igara:\n")
60

61 for strategija, pobjede in rezultati.items():
62 postotak = (pobjede / n) * 100
63 print(f"Strategija {strategija.upper()}:")
64 print(f" Pobjede: {pobjede:,} / {n:,}")
65 print(f" Postotak pobjede: {postotak:.1f}%\n")
66

67 # Bayesova analiza
68 print("Bayesova analiza:")
69 print("="*18)
70 print("\nPočetne vjerojatnosti:")
71 print(" P(auto na vratima 1) = 1/3")
72 print(" P(auto na vratima 2) = 1/3")
73 print(" P(auto na vratima 3) = 1/3")
74

75 print("\nBirate vrata 1. Voditelj otvara vrata 3 (koza).")
76

77 print("\nAžurirane vjerojatnosti:")
78 print(" P(auto na 1 | voditelj otvorio 3) = 1/3")

7.1. VJEROJATNOST KAO LOGIKA NEIZVJESNOSTI 147

79 print(" P(auto na 2 | voditelj otvorio 3) = 2/3")
80 print(" P(auto na 3 | voditelj otvorio 3) = 0")
81

82 print("\nObjašnjenje:")
83 print(" Voditelj ZNA gdje je auto i MORA otvoriti kozu.")
84 print(" Njegovo otvaranje daje informaciju!")
85 print(" ")
86 print(" Ako je auto na vratima 1: voditelj bira između 2 i 3 (P=1/2)")
87 print(" Ako je auto na vratima 2: voditelj MORA otvoriti 3 (P=1)")
88 print(" Ako je auto na vratima 3: voditelj MORA otvoriti 2 (P=1)")
89 print(" ")
90 print(" Činjenica da je otvorio 3 favorizira vrata 2!")
91

92 print("\nZaključak: UVIJEK se isplati promijeniti izbor!")

Output

Monty Hall Problem - Simulacija
================================

Postavka:
3 vrata: iza jednih je automobil, iza drugih dvoje koze
1. Birate vrata
2. Voditelj otvara druga vrata s kozom
3. Možete promijeniti izbor ili ostati

Simulacija 10,000 igara:

Strategija OSTANI:
Pobjede: 3,328 / 10,000
Postotak pobjede: 33.3%

Strategija PROMIJENI:
Pobjede: 6,718 / 10,000
Postotak pobjede: 67.2%

Bayesova analiza:
==================

Početne vjerojatnosti:
P(auto na vratima 1) = 1/3
P(auto na vratima 2) = 1/3
P(auto na vratima 3) = 1/3

Birate vrata 1. Voditelj otvara vrata 3 (koza).

Ažurirane vjerojatnosti:
P(auto na 1 | voditelj otvorio 3) = 1/3
P(auto na 2 | voditelj otvorio 3) = 2/3
P(auto na 3 | voditelj otvorio 3) = 0

148 POGLAVLJE 7. PASCALOV SVIJET

Objašnjenje:
Voditelj ZNA gdje je auto i MORA otvoriti kozu.
Njegovo otvaranje daje informaciju!

Ako je auto na vratima 1: voditelj bira između 2 i 3 (P=1/2)
Ako je auto na vratima 2: voditelj MORA otvoriti 3 (P=1)
Ako je auto na vratima 3: voditelj MORA otvoriti 2 (P=1)

Činjenica da je otvorio 3 favorizira vrata 2!

Zaključak: UVIJEK se isplati promijeniti izbor!

7.1.8 Filozofske interpretacije vjerojatnosti

Postoje različite filozofske interpretacije što vjerojatnost zapravo znači:

1. Klasična (Laplace): Omjer povoljnih i mogućih ishoda

2. Frekventistička (von Mises): Granična relativna frekvencija

3. Propenzitetna (Popper): Objektivna tendencija

4. Subjektivna/Bayesova (de Finetti): Stupanj racionalnog vjerovanja

Svaka interpretacija ima filozofske implikacije za prirodu slučajnosti, determinizma i znanja.

1 def filozofske_interpretacije():
2 """Demonstrira različite filozofske interpretacije vjerojatnosti."""
3

4 print("Filozofske interpretacije vjerojatnosti")
5 print("="*40)
6

7 # 1. Klasična
8 print("\n1. KLASIČNA INTERPRETACIJA (Laplace)")
9 print(" 'Vjerojatnost je omjer povoljnih i jednakovjerojatnih ishoda'")

10 print(" \n Primjer: Kocka")
11 povoljni = 3 # parni brojevi: 2, 4, 6
12 mogući = 6
13 p_klasična = povoljni / mogući
14 print(f" P(paran broj) = {povoljni}/{mogući} = {p_klasična:.3f}")
15 print(" \n Problem: Pretpostavlja jednakovjerojatnost (cirkularnost)")
16

17 # 2. Frekventistička
18 print("\n2. FREKVENTISTIČKA INTERPRETACIJA (von Mises)")
19 print(" 'Vjerojatnost je granična relativna frekvencija'")
20 print(" ")
21

7.1. VJEROJATNOST KAO LOGIKA NEIZVJESNOSTI 149

22 random.seed(42)
23 for n in [100, 1000, 10000, 100000]:
24 parni = sum(1 for _ in range(n) if random.randint(1, 6) % 2 == 0)
25 frekvencija = parni / n
26 print(f" Bacanja: {n}, Parni: {parni}, Frekvencija: {frekvencija:.3f}")
27 print(" → Konvergira prema 0.500")
28 print(" \n Problem: Što s jedinstvenim događajima?")
29

30 # 3. Propenzitetna
31 print("\n3. PROPENZITETNA INTERPRETACIJA (Popper)")
32 print(" 'Vjerojatnost je objektivna tendencija sustava'")
33 print(" ")
34 print(" Kocka ima propenzitet 0.5 za paran broj")
35 print(" zbog svoje fizičke strukture.")
36 print(" \n Problem: Kako mjeriti propenzitet?")
37

38 # 4. Subjektivna
39 print("\n4. SUBJEKTIVNA INTERPRETACIJA (de Finetti)")
40 print(" 'Vjerojatnost je stupanj racionalnog vjerovanja'")
41 print(" ")
42 print(" Moje vjerovanje:")
43 print(" P(kiša sutra) = 0.30 (na temelju prognoze)")
44 print(" ")
45 print(" Koherentnost: Moja vjerovanja moraju zadovoljiti")
46 print(" aksiome vjerojatnosti inače mogu biti 'Dutch booked'")
47 print(" \n Problem: Subjektivnost vs. objektivnost")
48

49 # Filozofske implikacije
50 print("\nFilozofske implikacije:")
51 print("="*24)
52

53 print("\nDETERMINIZAM vs. INDETERMINIZAM:")
54 print(" - Je li vjerojatnost samo naša neznanja (epistemička)?")
55 print(" - Ili je svijet inherentno slučajan (ontološka)?")
56

57 print("\nPROBLEM REFERENTNE KLASE:")
58 print(" - Jesam li '35-godišnjak', 'Hrvat', 'filozof'?")
59 print(" - Različite klase daju različite vjerojatnosti!")
60

61 print("\nPRINCIP INDIFERENCIJE:")
62 print(" - Bez informacija, dodjeli jednake vjerojatnosti?")
63 print(" - Bertrandov paradoks pokazuje probleme")
64

65 print("\n> \"Bog ne igra kocke\" - Einstein")
66 print("> \"Einstein, prestani govoriti Bogu što da radi\" - Bohr")
67

68 filozofske_interpretacije()

150 POGLAVLJE 7. PASCALOV SVIJET

Output

Filozofske interpretacije vjerojatnosti
==

1. KLASIČNA INTERPRETACIJA (Laplace)
'Vjerojatnost je omjer povoljnih i jednakovjerojatnih ishoda'

Primjer: Kocka
P(paran broj) = 3/6 = 0.500

Problem: Pretpostavlja jednakovjerojatnost (cirkularnost)

2. FREKVENTISTIČKA INTERPRETACIJA (von Mises)
'Vjerojatnost je granična relativna frekvencija'

Bacanja: 100, Parni: 49, Frekvencija: 0.490
Bacanja: 1000, Parni: 510, Frekvencija: 0.510
Bacanja: 10000, Parni: 5057, Frekvencija: 0.506
Bacanja: 100000, Parni: 50215, Frekvencija: 0.502
→ Konvergira prema 0.500

Problem: Što s jedinstvenim događajima?

3. PROPENZITETNA INTERPRETACIJA (Popper)
'Vjerojatnost je objektivna tendencija sustava'

Kocka ima propenzitet 0.5 za paran broj
zbog svoje fizičke strukture.

Problem: Kako mjeriti propenzitet?

4. SUBJEKTIVNA INTERPRETACIJA (de Finetti)
'Vjerojatnost je stupanj racionalnog vjerovanja'

Moje vjerovanje:
P(kiša sutra) = 0.30 (na temelju prognoze)

Koherentnost: Moja vjerovanja moraju zadovoljiti
aksiome vjerojatnosti inače mogu biti 'Dutch booked'

Problem: Subjektivnost vs. objektivnost

Filozofske implikacije:
========================

DETERMINIZAM vs. INDETERMINIZAM:
- Je li vjerojatnost samo naša neznanja (epistemička)?
- Ili je svijet inherentno slučajan (ontološka)?

PROBLEM REFERENTNE KLASE:

7.1. VJEROJATNOST KAO LOGIKA NEIZVJESNOSTI 151

- Jesam li '35-godišnjak', 'Hrvat', 'filozof'?
- Različite klase daju različite vjerojatnosti!

PRINCIP INDIFERENCIJE:
- Bez informacija, dodjeli jednake vjerojatnosti?
- Bertrandov paradoks pokazuje probleme

> "Bog ne igra kocke" - Einstein
> "Einstein, prestani govoriti Bogu što da radi" - Bohr

7.1.9 Prijedlozi za daljnje istraživanje

Za produbljivanje razumijevanja vjerojatnosti kao proširenja logike kroz praktične Python
zadatke:

Fuzzy logika

Implementirajte fuzzy logičke operatore gdje istinite vrijednosti mogu biti bilo koji broj između
0 i 1. Definirajte Łukasiewicz, Gödel i product t-norme. Pokažite kako se klasična logika
dobiva kao granični slučaj.

Cox-Jaynesovi teoremi

Dokažite da svaki sustav koji zadovoljava razumne uvjete za stupnjeve vjerovanja mora biti
izomorfan s teorijom vjerojatnosti. Implementirajte alternativni sustav i pokažite kako se
svodi na vjerojatnost.

Dutch book argument

Simulirajte klađenje gdje agent s nekoherentnim vjerovanjima (koja krše aksiome vjerojatnosti)
uvijek gubi novac. Vizualizirajte kako koherentnost štiti od sigurnog gubitka.

Dempster-Shafer teorija

Implementirajte teoriju dokaza koja generalizira vjerojatnost dopuštajući "ne znam" odgovore.
Pokažite kombiniranje dokaza i rad s intervalima vjerojatnosti.

Paradoks spavajuće ljepotice

Simulirajte ovaj paradoks samolociranja u vremenu. Analizirajte sukob između "halfer" i
"thirder" pozicija. Povežite s antropijskim principom.

152 POGLAVLJE 7. PASCALOV SVIJET

Kvantna vjerojatnost

Implementirajte Born rule i pokažite kako kvantne amplitude daju vjerojatnosti. Demonstri-
rajte narušavanje Bell-ovih nejednakosti klasičnom vjerojatnošću.

Algoritamska vjerojatnost

Implementirajte Solomonoff-ovu indukciju koristeći Kolmogorovljevu složenost. Pokažite kako
kraći programi imaju veću apriornu vjerojatnost.

Kauzalno zaključivanje

Implementirajte Pearl-ove kauzalne grafove. Pokažite razliku između korelacije i kauzalnosti.
Simulirajte Simpson-ov paradoks.

Maksimalna entropija

Implementirajte princip maksimalne entropije za izbor vjerojatnosnih distribucija. Pokažite
kako ograničenja određuju optimalnu distribuciju.

Vjerojatnosno programiranje

Stvorite jednostavan vjerojatnosni programski jezik gdje varijable mogu biti distribucije.
Implementirajte inferenciju kroz MCMC ili variational Bayes.

Svaki zadatak postupno gradi razumijevanje vjerojatnosti kao generalizacije logike, omogućava-
jući studentima da istraže dublje veze između logike, vjerojatnosti i racionalnog zaključivanja.

7.1.10 Zaključak

Kroz ovu implementaciju istražili smo teoriju vjerojatnosti kao prirodno proširenje logike
sudova:

1. Generalizacija istinitosti - od ⊥,⊤ do [0, 1]

2. Kolmogorovljevi aksiomi kao temelj matematičke teorije

3. Bayesovo zaključivanje za ažuriranje vjerovanja

4. Filozofske implikacije za racionalnost i odlučivanje

Pascal je anticipirao modernu teoriju odlučivanja pokazujući kako matematički pristupiti
neizvjesnosti:

7.1. VJEROJATNOST KAO LOGIKA NEIZVJESNOSTI 153

"Razum nas ne može odlučiti između kršćanstva i ateizma, ali morate birati kako
ćete živjeti" - Pascal

Vjerojatnost premošćuje jaz između čiste logike i nesigurnog svijeta iskustva. Ona ne daje
apsolutnu istinu, ali omogućava racionalno navigiranje kroz neizvjesnost.

Kroz praktično programiranje otkrivamo da je vjerojatnost više od matematičkog alata - ona je
jezik za izražavanje stupnjeva vjerovanja, kvantificiranje neizvjesnosti i donošenje racionalnih
odluka u svijetu gdje je potpuno znanje nedostižno.

"Život je umijeće izvlačenja dovoljnih zaključaka iz nedovoljnih premisa" - Samuel
Butler

Teorija vjerojatnosti je upravo to umijeće, formalizirano u elegantnom matematičkom okviru.

154 POGLAVLJE 7. PASCALOV SVIJET

Poglavlje 8

Bayesov svijet

8.1 Uvjetna vjerojatnost i priroda znanja

U ovom poglavlju istražujemo Bayesov teorem - možda najvažniju formulu u epistemologiji,
koja mijenja naše razumijevanje znanja, znanosti i racionalnog vjerovanja.

"Kada činjenice mijenjaju moje mišljenje, ja ga promijenim. Što Vi činite, gospo-
dine?" - John Maynard Keynes

Thomas Bayes (1701-1761), prezbiterijanski svećenik i matematičar, ostavio nam je revo-
lucionarni pristup razumijevanju kako ažurirati vjerovanja na temelju dokaza. Njegov rad,
objavljen posthumno 1763., postavlja temelje za razumijevanje znanja kao dinamičkog procesa.

8.1.1 Uvjetna vjerojatnost - temelj Bayesovog razmišljanja

Uvjetna vjerojatnost P (A|B) predstavlja vjerojatnost suda A uz pretpostavku da je sud B
istinit.

P (A|B) = P (A ∧B)
P (B)

Ova formula kodira fundamentalnu epistemološku ideju: znanje mijenja vjerojatnosti.

"Svo znanje degenerira u vjerojatnost" - David Hume

1 class UvjetnaVjerojatnost:
2 """Implementira uvjetnu vjerojatnost s epistemološkom interpretacijom."""
3

155

156 POGLAVLJE 8. BAYESOV SVIJET

4 def __init__(self, naziv=""):
5 self.naziv = naziv
6 self.vjerojatnosti = {}
7

8 def postavi(self, sud, vjerojatnost):
9 """Postavlja vjerojatnost suda."""

10 self.vjerojatnosti[sud] = vjerojatnost
11

12 def uvjetna(self, A, B):
13 """Računa P(A|B) = P(A ∧ B) / P(B)."""
14 p_a_i_b = self.vjerojatnosti.get((A, B), 0)
15 p_b = self.vjerojatnosti.get(B, 0)
16

17 if p_b == 0:
18 return None # Nedefinirana
19 return p_a_i_b / p_b
20

21 def epistemoloski_opis(self, A, B, p_uvjetna):
22 """Daje epistemološku interpretaciju uvjetne vjerojatnosti."""
23 if p_uvjetna is None:
24 return "Nedefinirana - nema znanja iz ovog uvjeta."
25 elif p_uvjetna > self.vjerojatnosti.get(A, 0):
26 return f"Dokaz '{B}' potvrđuje '{A}'."
27 elif p_uvjetna < self.vjerojatnosti.get(A, 0):
28 return f"Dokaz '{B}' oslabljuje '{A}'."
29 else:
30 return f"Dokaz '{B}' je neutralan za '{A}'."
31

32 # Primjer: Znanstvena teorija i eksperiment
33 print("Uvjetna vjerojatnost - Epistemološki primjer")
34 print("="*45)
35 print("\nKontekst: Znanstveno istraživanje\n")
36

37 uv = UvjetnaVjerojatnost("Znanstvena metoda")
38

39 # Postavi vjerojatnosti
40 uv.postavi("teorija", 0.3) # Apriorna vjerojatnost teorije
41 uv.postavi("eksperiment", 0.4) # Vjerojatnost pozitivnog eksperimenta
42 uv.postavi(("teorija", "eksperiment"), 0.25) # Konjunkcija
43

44 print("Početne vjerojatnosti:")
45 print(f" P(teorija istinita) = {uv.vjerojatnosti['teorija']:.2f}")
46 print(f" P(pozitivan eksperiment) = {uv.vjerojatnosti['eksperiment']:.2f}")
47 print(f" P(teorija istinita ∧ pozitivan eksperiment) = {uv.vjerojatnosti[('teorija',

'eksperiment')]:.2f}")↪→

48

49 print("\nUvjetne vjerojatnosti:\n")
50

51 # P(eksperiment | teorija)
52 p_eks_ako_teorija = uv.uvjetna("eksperiment", "teorija")
53 print("1. P(pozitivan eksperiment | teorija istinita)")
54 print(f" = P(teorija ∧ eksperiment) / P(teorija)")

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 157

55 print(f" = {uv.vjerojatnosti[('teorija', 'eksperiment')]:.2f} /
{uv.vjerojatnosti['teorija']:.2f} = {p_eks_ako_teorija:.3f}")↪→

56 print(f" \n Interpretacija: Ako je teorija istinita, eksperiment")
57 print(f" će biti pozitivan u {p_eks_ako_teorija*100:.1f}% slučajeva.")
58

59 # P(teorija | eksperiment)
60 p_teorija_ako_eks = uv.uvjetna("teorija", "eksperiment")
61 print("\n2. P(teorija istinita | pozitivan eksperiment)")
62 print(f" = P(teorija ∧ eksperiment) / P(eksperiment)")
63 print(f" = {uv.vjerojatnosti[('teorija', 'eksperiment')]:.2f} /

{uv.vjerojatnosti['eksperiment']:.2f} = {p_teorija_ako_eks:.3f}")↪→

64 print(f" \n Interpretacija: Nakon pozitivnog eksperimenta,")
65 print(f" vjerojatnost da je teorija istinita raste na {p_teorija_ako_eks*100:.1f}%.")
66

67 print("\nEpistemološka pouka:")
68 print(" Dokaz ne čini teoriju sigurnom, već povećava")
69 print(" stupanj racionalnog vjerovanja u nju.")

Output

Uvjetna vjerojatnost - Epistemološki primjer
===

Kontekst: Znanstveno istraživanje

Početne vjerojatnosti:
P(teorija istinita) = 0.30
P(pozitivan eksperiment) = 0.40
P(teorija istinita ∧ pozitivan eksperiment) = 0.25

Uvjetne vjerojatnosti:

1. P(pozitivan eksperiment | teorija istinita)
= P(teorija ∧ eksperiment) / P(teorija)
= 0.25 / 0.30 = 0.000

Interpretacija: Ako je teorija istinita, eksperiment
će biti pozitivan u 0.0% slučajeva.

2. P(teorija istinita | pozitivan eksperiment)
= P(teorija ∧ eksperiment) / P(eksperiment)
= 0.25 / 0.40 = 0.625

Interpretacija: Nakon pozitivnog eksperimenta,
vjerojatnost da je teorija istinita raste na 62.5%.

Epistemološka pouka:
Dokaz ne čini teoriju sigurnom, već povećava
stupanj racionalnog vjerovanja u nju.

158 POGLAVLJE 8. BAYESOV SVIJET

8.1.2 Bayesov teorem - formula racionalnog učenja

Bayesov teorem omogućava inverziju uvjetnih vjerojatnosti:

P (H|E) = P (E|H) · P (H)
P (E)

gdje je:

• H - hipoteza (teorija, vjerovanje)

• E - evidencija (dokaz, opažanje)

• P (H) - prior (apriorno vjerovanje)

• P (H|E) - posterior (aposteriorno vjerovanje)

• P (E|H) - likelihood (izglednost dokaza)

Ova formula opisuje racionalno učenje - kako ažurirati vjerovanja na temelju novih dokaza.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 class BayesovTeorem:
5 """Implementacija i vizualizacija Bayesovog teorema."""
6

7 def __init__(self):
8 self.povijest_azuriranja = []
9

10 def bayes(self, prior, likelihood, evidencija):
11 """Primjenjuje Bayesov teorem.
12

13 Args:
14 prior: P(H)
15 likelihood: P(E|H)
16 evidencija: P(E)
17

18 Returns:
19 posterior: P(H|E)
20 """
21 if evidencija == 0:
22 raise ValueError("P(E) ne može biti 0!")
23

24 posterior = (likelihood * prior) / evidencija
25

26 self.povijest_azuriranja.append({
27 'prior': prior,
28 'likelihood': likelihood,

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 159

29 'evidencija': evidencija,
30 'posterior': posterior
31 })
32

33 return posterior
34

35 def bayes_omjer(self, prior1, prior2, likelihood1, likelihood2):
36 """Računa Bayesov omjer za dvije hipoteze."""
37 prior_omjer = prior1 / prior2 if prior2 > 0 else float('inf')
38 likelihood_omjer = likelihood1 / likelihood2 if likelihood2 > 0 else float('inf')
39 posterior_omjer = prior_omjer * likelihood_omjer
40

41 return {
42 'prior_omjer': prior_omjer,
43 'likelihood_omjer': likelihood_omjer,
44 'posterior_omjer': posterior_omjer
45 }
46

47 # Demonstracija
48 print("Bayesov teorem - Izvod i značenje")
49 print("="*34)
50

51 print("\nMATEMATIČKI IZVOD:\n")
52 print("1. Definicija uvjetne vjerojatnosti:")
53 print(" P(H|E) = P(H ∧ E) / P(E)")
54 print(" P(E|H) = P(H ∧ E) / P(H)")
55 print("\n2. Iz druge jednadžbe:")
56 print(" P(H ∧ E) = P(E|H) · P(H)")
57 print("\n3. Uvrštavanjem u prvu:")
58 print(" P(H|E) = P(E|H) · P(H) / P(E)")
59

60 print("\nEPISTEMOLOŠKO ZNAČENJE:\n")
61 print(" P(E|H) · P(H)")
62 print("P(H|E) = -------------")
63 print(" P(E)")
64 print("\n↑ ↑ ↑ ↑")
65 print("Posterior Likelihood Prior Normalizacija")
66

67 print("\n• Prior P(H): Što sam vjerovao prije dokaza")
68 print("• Likelihood P(E|H): Koliko hipoteza predviđa dokaz")
69 print("• Posterior P(H|E): Što trebam vjerovati nakon dokaza")
70

71 print("\nALTERNATIVNI OBLIK (usporedba hipoteza):\n")
72 print("P(H1|E) P(E|H1) · P(H1)")
73 print("------- = ----------------")
74 print("P(H2|E) P(E|H2) · P(H2)")
75 print("\nOmjer posteriornih = Omjer likelihooda × Omjer priornih")
76

77 print("\nFILOZOFSKE IMPLIKACIJE:\n")
78 implikacije = [
79 "Znanje je stupnjevito, ne binarno",
80 "Učenje je ažuriranje, ne zamjena",
81 "Dokazi ne govore sami - trebaju prior",

160 POGLAVLJE 8. BAYESOV SVIJET

82 "Racionalni agent mijenja mišljenje postupno"
83]
84 for i, impl in enumerate(implikacije, 1):
85 print(f"{i}. {impl}")

Output

Bayesov teorem - Izvod i značenje
==================================

MATEMATIČKI IZVOD:

1. Definicija uvjetne vjerojatnosti:
P(H|E) = P(H ∧ E) / P(E)
P(E|H) = P(H ∧ E) / P(H)

2. Iz druge jednadžbe:
P(H ∧ E) = P(E|H) · P(H)

3. Uvrštavanjem u prvu:
P(H|E) = P(E|H) · P(H) / P(E)

EPISTEMOLOŠKO ZNAČENJE:

P(E|H) · P(H)
P(H|E) = -------------

P(E)

↑ ↑ ↑ ↑
Posterior Likelihood Prior Normalizacija

• Prior P(H): Što sam vjerovao prije dokaza
• Likelihood P(E|H): Koliko hipoteza predviđa dokaz
• Posterior P(H|E): Što trebam vjerovati nakon dokaza

ALTERNATIVNI OBLIK (usporedba hipoteza):

P(H1|E) P(E|H1) · P(H1)
------- = ----------------
P(H2|E) P(E|H2) · P(H2)

Omjer posteriornih = Omjer likelihooda × Omjer priornih

FILOZOFSKE IMPLIKACIJE:

1. Znanje je stupnjevito, ne binarno
2. Učenje je ažuriranje, ne zamjena
3. Dokazi ne govore sami - trebaju prior
4. Racionalni agent mijenja mišljenje postupno

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 161

8.1.3 Epistemologija - znanje kao ažuriranje vjerovanja

Bayesov pristup revolucionira epistemologiju:

• Tradicionalna epistemologija: Znanje = opravdano istinito vjerovanje (JTB)

• Bayesova epistemologija: Znanje = racionalno ažurirano vjerovanje

"Mijenjanje mišljenja je dokaz razmišljanja" - preuređeni Bayesov princip

1 class BayesovaEpistemologija:
2 """Modelira epistemološki proces kroz Bayesovo ažuriranje."""
3

4 def __init__(self, hipoteza, prior):
5 self.hipoteza = hipoteza
6 self.prior = prior
7 self.trenutno_vjerovanje = prior
8 self.povijest = [("početno", prior)]
9

10 def promatraj_dokaz(self, dokaz, likelihood_true, likelihood_false):
11 """Ažurira vjerovanje na temelju novog dokaza.
12

13 Args:
14 dokaz: opis dokaza
15 likelihood_true: P(dokaz|hipoteza)
16 likelihood_false: P(dokaz|¬hipoteza)
17 """
18 # Računaj P(dokaz)
19 p_dokaz = (likelihood_true * self.trenutno_vjerovanje +
20 likelihood_false * (1 - self.trenutno_vjerovanje))
21

22 # Bayesovo ažuriranje
23 novo_vjerovanje = (likelihood_true * self.trenutno_vjerovanje) / p_dokaz
24

25 promjena = novo_vjerovanje - self.trenutno_vjerovanje
26 self.trenutno_vjerovanje = novo_vjerovanje
27 self.povijest.append((dokaz, novo_vjerovanje))
28

29 return {
30 'novo_vjerovanje': novo_vjerovanje,
31 'promjena': promjena,
32 'p_dokaz': p_dokaz
33 }
34

35 def epistemoloski_status(self):
36 """Vraća epistemološki status hipoteze."""
37 v = self.trenutno_vjerovanje
38 if v < 0.01:
39 return "Praktički opovrgnuto"

162 POGLAVLJE 8. BAYESOV SVIJET

40 elif v < 0.1:
41 return "Vrlo nevjerojatno"
42 elif v < 0.4:
43 return "Nevjerojatno"
44 elif v < 0.6:
45 return "Neizvjesno"
46 elif v < 0.9:
47 return "Vjerojatno"
48 elif v < 0.99:
49 return "Vrlo vjerojatno"
50 else:
51 return "Praktički sigurno"
52

53 # Simulacija znanstvenog istraživanja
54 print("Bayesova epistemologija - Ažuriranje znanja")
55 print("="*44)
56 print("\nScenarij: Znanstvenik istražuje novu teoriju\n")
57

58 # Početno stanje
59 episteme = BayesovaEpistemologija("Nova teorija", prior=0.1)
60 print("Početno stanje:")
61 print(f" Prior P(teorija) = {episteme.prior:.3f}")
62 print(f" Skepticizam: Visok ({(1-episteme.prior)*100:.1f}%)")
63

64 # Serija eksperimenata
65 eksperimenti = [
66 ("POZITIVAN", 0.8, 0.3), # Pozitivan rezultat
67 ("POZITIVAN", 0.8, 0.3), # Još jedan pozitivan
68 ("NEGATIVAN", 0.2, 0.7), # Negativan rezultat
69 ("POZITIVAN", 0.8, 0.3), # Opet pozitivan
70 ("POZITIVAN", 0.8, 0.3), # I još jedan
71]
72

73 for i, (rezultat, lik_true, lik_false) in enumerate(eksperimenti, 1):
74 print(f"\nEKSPERIMENT {i}:")
75 print(f" Rezultat: {rezultat}")
76

77 if rezultat == "POZITIVAN":
78 print(f" Likelihood P(pozitivan|teorija) = {lik_true:.2f}")
79 print(f" P(pozitivan|¬teorija) = {lik_false:.2f}")
80 else:
81 print(f" Likelihood P(negativan|teorija) = {lik_true:.2f}")
82 print(f" P(negativan|¬teorija) = {lik_false:.2f}")
83

84 # Ažuriraj vjerovanje
85 rezultat_azuriranja = episteme.promatraj_dokaz(
86 f"Eksperiment {i}: {rezultat}",
87 lik_true,
88 lik_false
89)
90

91 print(f" \n Bayesovo ažuriranje:")
92 if i == 1:

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 163

93 print(f" P(teorija|dokaz1) = {lik_true:.2f} × {episteme.povijest[-2][1]:.2f} / "
94 f"{rezultat_azuriranja['p_dokaz']:.2f} =

{rezultat_azuriranja['novo_vjerovanje']:.3f}")↪→

95 else:
96 print(f" P(teorija|{'dokaz1' if i==2 else 'dokaz1,dokaz2' if i==3 else

'dokaz1,dokaz2,dokaz3' if i==4 else 'svi dokazi'}) = "↪→

97 f"{lik_true:.2f} × {episteme.povijest[-2][1]:.2f} / "
98 f"{rezultat_azuriranja['p_dokaz']:.2f} =

{rezultat_azuriranja['novo_vjerovanje']:.3f}")↪→

99

100 print(f" \n Novo vjerovanje: {rezultat_azuriranja['novo_vjerovanje']*100:.1f}%")
101 print(f" Promjena: {rezultat_azuriranja['promjena']*100:+.1f} postotnih bodova")
102

103 # Analiza
104 print("\nEpistemološka analiza:")
105 print("="*23)
106

107 print("\nPutanja vjerovanja: ", end="")
108 for i, (opis, vjerovanje) in enumerate(episteme.povijest):
109 if i > 0:
110 print(" → ", end="")
111 print(f"{vjerovanje*100:.1f}%", end="")
112 print()
113

114 print("\nKljučne točke:")
115 print(" • Znanje se akumulira postupno")
116 print(" • Negativni dokazi također informiraju")
117 print(" • Nikad ne dostižemo potpunu sigurnost")
118 print(" • Racionalni agent mijenja mišljenje s dokazima")
119

120 print("\nFinalno stanje:")
121 print(f" Vjerovanje u teoriju: {episteme.trenutno_vjerovanje*100:.1f}%")
122 print(f" Status: {episteme.epistemoloski_status()} ", end="")
123 if episteme.trenutno_vjerovanje > 0.5:
124 print("(više vjerojatno nego ne)")
125 else:
126 print("(više nevjerojatno nego vjerojatno)")

Output

Bayesova epistemologija - Ažuriranje znanja
==

Scenarij: Znanstvenik istražuje novu teoriju

Početno stanje:
Prior P(teorija) = 0.100
Skepticizam: Visok (90.0%)

EKSPERIMENT 1:
Rezultat: POZITIVAN

164 POGLAVLJE 8. BAYESOV SVIJET

Likelihood P(pozitivan|teorija) = 0.80
P(pozitivan|¬teorija) = 0.30

Bayesovo ažuriranje:
P(teorija|dokaz1) = 0.80 × 0.10 / 0.35 = 0.229

Novo vjerovanje: 22.9%
Promjena: +12.9 postotnih bodova

EKSPERIMENT 2:
Rezultat: POZITIVAN
Likelihood P(pozitivan|teorija) = 0.80
P(pozitivan|¬teorija) = 0.30

Bayesovo ažuriranje:
P(teorija|dokaz1) = 0.80 × 0.23 / 0.41 = 0.441

Novo vjerovanje: 44.1%
Promjena: +21.3 postotnih bodova

EKSPERIMENT 3:
Rezultat: NEGATIVAN
Likelihood P(negativan|teorija) = 0.20
P(negativan|¬teorija) = 0.70

Bayesovo ažuriranje:
P(teorija|dokaz1,dokaz2) = 0.20 × 0.44 / 0.48 = 0.184

Novo vjerovanje: 18.4%
Promjena: -25.7 postotnih bodova

EKSPERIMENT 4:
Rezultat: POZITIVAN
Likelihood P(pozitivan|teorija) = 0.80
P(pozitivan|¬teorija) = 0.30

Bayesovo ažuriranje:
P(teorija|dokaz1,dokaz2,dokaz3) = 0.80 × 0.18 / 0.39 = 0.376

Novo vjerovanje: 37.6%
Promjena: +19.2 postotnih bodova

EKSPERIMENT 5:
Rezultat: POZITIVAN
Likelihood P(pozitivan|teorija) = 0.80
P(pozitivan|¬teorija) = 0.30

Bayesovo ažuriranje:
P(teorija|svi dokazi) = 0.80 × 0.38 / 0.49 = 0.616

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 165

Novo vjerovanje: 61.6%
Promjena: +24.0 postotnih bodova

Epistemološka analiza:
=======================

Putanja vjerovanja: 10.0% → 22.9% → 44.1% → 18.4% → 37.6% → 61.6%

Ključne točke:
• Znanje se akumulira postupno
• Negativni dokazi također informiraju
• Nikad ne dostižemo potpunu sigurnost
• Racionalni agent mijenja mišljenje s dokazima

Finalno stanje:
Vjerovanje u teoriju: 61.6%
Status: Vjerojatno (više vjerojatno nego ne)

8.1.4 Filozofija znanosti - potvrđivanje i opovrgavanje

Bayesov pristup osvjetljava klasične debate u filozofiji znanosti:

Popper vs. Bayes

• Popper: Znanosti se bavi falsifikacijom - traži opovrgavanje

• Bayes: Znanost postupno ažurira vjerojatnosti - traži najbolju hipotezu

Problem indukcije

"Nema dovoljno opažanja bijele boje koje bi dokazalo da su svi labudovi bijeli, ali
jedno opažanje crnog labuda to opovrgava" - Karl Popper

Bayesov pristup: Crni labud drastično smanjuje vjerojatnost, ali ne na nulu!

1 class FilozofijaZnanosti:
2 """Uspoređuje Popperov i Bayesov pristup znanstvenoj metodi."""
3

4 def __init__(self):
5 self.popper_status = "nije opovrgnuta"
6 self.bayes_vjerovanje = {}
7

8 def popper_test(self, hipoteza, opazanje, konzistentno):
9 """Popperov pristup - falsifikacija."""

166 POGLAVLJE 8. BAYESOV SVIJET

10 if not konzistentno:
11 self.popper_status = "OPOVRGNUTA"
12 return False
13 return True # Nije opovrgnuta (ali nije ni potvrđena!)
14

15 def bayes_test(self, hipoteze, opazanje, likelihoods):
16 """Bayesov pristup - ažuriranje vjerojatnosti."""
17 # Računaj P(opažanje)
18 p_opazanje = sum(likelihoods[h] * self.bayes_vjerovanje[h]
19 for h in hipoteze)
20

21 if p_opazanje == 0:
22 return self.bayes_vjerovanje
23

24 # Ažuriraj sve hipoteze
25 nova_vjerovanja = {}
26 for h in hipoteze:
27 nova_vjerovanja[h] = (likelihoods[h] * self.bayes_vjerovanje[h]) / p_opazanje
28

29 self.bayes_vjerovanje = nova_vjerovanja
30 return nova_vjerovanja
31

32 # Simulacija: Problem bijelih labudova
33 print("Filozofija znanosti - Popper vs. Bayes")
34 print("="*39)
35 print("\nHipoteza: 'Svi labudovi su bijeli'\n")
36

37 fz = FilozofijaZnanosti()
38

39 # POPPEROV PRISTUP
40 print("POPPEROV PRISTUP (Falsifikacija):")
41 print("-"*35)
42

43 # 1000 bijelih labudova
44 for i in [1, 2, 3, "...", 1000]:
45 if i == "...":
46 print(f"... (nakon 999 bijelih labudova)")
47 else:
48 status = fz.popper_test("svi bijeli", "bijeli", True)
49 print(f"Opažanje {i}: Bijeli labud → Hipoteza NIJE OPOVRGNUTA")
50

51 print(f"\nStatus: Hipoteza {fz.popper_status} (ali nije ni potvrđena!)")
52

53 # Crni labud!
54 print(f"\nOpažanje 1001: CRNI LABUD → Hipoteza OPOVRGNUTA! ×")
55 fz.popper_test("svi bijeli", "crni", False)
56

57 print("\nPopperov zaključak: Hipoteza je falsificirana.")
58 print("Tisuću potvrda ne dokazuje teoriju, jedna falsifikacija je ruši.")
59

60 # BAYESOV PRISTUP
61 print("\nBAYESOV PRISTUP (Ažuriranje vjerojatnosti):")
62 print("-"*44)

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 167

63

64 # Početna vjerovanja
65 fz.bayes_vjerovanje = {
66 "svi_bijeli": 0.5,
67 "vecina_bijeli": 0.5
68 }
69 print(f"Početno vjerovanje: P(svi bijeli) = {fz.bayes_vjerovanje['svi_bijeli']*100:.1f}%\n")
70

71 # Likelihoods za bijeli labud
72 lik_bijeli = {
73 "svi_bijeli": 1.0, # Ako su svi bijeli, sigurno ćemo vidjeti bijelog
74 "vecina_bijeli": 0.9 # Ako je većina bijela, 90% šanse za bijelog
75 }
76

77 # Simuliraj opažanja
78 brojevi_opazanja = [10, 100, 500, 1000]
79 for n in brojevi_opazanja:
80 # Resetiraj za svaki test
81 fz.bayes_vjerovanje = {"svi_bijeli": 0.5, "vecina_bijeli": 0.5}
82

83 for _ in range(n):
84 fz.bayes_test(["svi_bijeli", "vecina_bijeli"], "bijeli", lik_bijeli)
85

86 print(f"Nakon {n} bijelih: P(hipoteza) = {fz.bayes_vjerovanje['svi_bijeli']*100:.1f}%")
87

88 # Crni labud!
89 print("\nOpažanje 1001: CRNI LABUD!")
90 lik_crni = {
91 "svi_bijeli": 0.0, # Nemoguće ako su svi bijeli!
92 "vecina_bijeli": 0.1 # Moguće ako neki nisu bijeli
93 }
94 print(f"Likelihood P(crni|svi bijeli) = {lik_crni['svi_bijeli']:.3f}")
95 print(f"Likelihood P(crni|neki crni) = {lik_crni['vecina_bijeli']:.3f}")
96

97 fz.bayes_test(["svi_bijeli", "vecina_bijeli"], "crni", lik_crni)
98 print(f"\nNakon crnog labuda: P(hipoteza) = {fz.bayes_vjerovanje['svi_bijeli']*100:.1f}%")
99 print(f"Alternativa P(većina bijeli) = {fz.bayes_vjerovanje['vecina_bijeli']*100:.1f}%")

100

101 print("\nBayesov zaključak: Prebacujemo vjerovanje na fleksibilniju hipotezu.")
102

103 # Usporedba
104 print("\nUSPOREDBA PRISTUPA:")
105 print("="*20)
106

107 print("\nPopper:")
108 print(" ✓ Jasan kriterij (opovrgnuto/nije)")
109 print(" ✓ Naglašava kritičko testiranje")
110 print(" × Binaran pristup (sve ili ništa)")
111 print(" × Ne govori o stupnju potvrde")
112

113 print("\nBayes:")
114 print(" ✓ Stupnjevito znanje")
115 print(" ✓ Kvantificira nesigurnost")

168 POGLAVLJE 8. BAYESOV SVIJET

116 print(" ✓ Omogućava usporedbu hipoteza")
117 print(" × Ovisi o prioru")
118 print(" × Složeniji račun")
119

120 print("\nSinteza: Popperova falsifikacija je specijalan slučaj")
121 print(" Bayesovog ažuriranja s likelihood = 0")

Output

Filozofija znanosti - Popper vs. Bayes
=======================================

Hipoteza: 'Svi labudovi su bijeli'

POPPEROV PRISTUP (Falsifikacija):

Opažanje 1: Bijeli labud → Hipoteza NIJE OPOVRGNUTA
Opažanje 2: Bijeli labud → Hipoteza NIJE OPOVRGNUTA
Opažanje 3: Bijeli labud → Hipoteza NIJE OPOVRGNUTA
... (nakon 999 bijelih labudova)
Opažanje 1000: Bijeli labud → Hipoteza NIJE OPOVRGNUTA

Status: Hipoteza nije opovrgnuta (ali nije ni potvrđena!)

Opažanje 1001: CRNI LABUD → Hipoteza OPOVRGNUTA! ×

Popperov zaključak: Hipoteza je falsificirana.
Tisuću potvrda ne dokazuje teoriju, jedna falsifikacija je ruši.

BAYESOV PRISTUP (Ažuriranje vjerojatnosti):
--
Početno vjerovanje: P(svi bijeli) = 50.0%

Nakon 10 bijelih: P(hipoteza) = 74.1%
Nakon 100 bijelih: P(hipoteza) = 100.0%
Nakon 500 bijelih: P(hipoteza) = 100.0%
Nakon 1000 bijelih: P(hipoteza) = 100.0%

Opažanje 1001: CRNI LABUD!
Likelihood P(crni|svi bijeli) = 0.000
Likelihood P(crni|neki crni) = 0.100

Nakon crnog labuda: P(hipoteza) = 0.0%
Alternativa P(većina bijeli) = 100.0%

Bayesov zaključak: Prebacujemo vjerovanje na fleksibilniju hipotezu.

USPOREDBA PRISTUPA:
====================

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 169

Popper:
✓ Jasan kriterij (opovrgnuto/nije)
✓ Naglašava kritičko testiranje
× Binaran pristup (sve ili ništa)
× Ne govori o stupnju potvrde

Bayes:
✓ Stupnjevito znanje
✓ Kvantificira nesigurnost
✓ Omogućava usporedbu hipoteza
× Ovisi o prioru
× Složeniji račun

Sinteza: Popperova falsifikacija je specijalan slučaj
Bayesovog ažuriranja s likelihood = 0

8.1.5 Problem priornih vjerojatnosti

Najkontroverzniji aspekt Bayesove epistemologije je izbor priora:

• Subjektivni prior: Osobno vjerovanje

• Objektivni prior: Princip indiferencije, maksimalna entropija

• Informativni prior: Na temelju prethodnog znanja

"Prior je mjesto gdje se subjektivnost uvlači u objektivnu znanost" - kritičari
Bayesa

1 class ProblemPriora:
2 """Istražuje epistemološke implikacije izbora priora."""
3

4 def __init__(self):
5 self.agenti = {}
6

7 def stvori_agenta(self, ime, prior):
8 """Stvara epistemološkog agenta s danim priorom."""
9 self.agenti[ime] = {

10 'prior': prior,
11 'trenutno': prior,
12 'povijest': [prior]
13 }
14

15 def azuriraj_sve(self, likelihood_h, likelihood_ne_h):
16 """Svi agenti promatraju isti dokaz."""
17 rezultati = {}
18

170 POGLAVLJE 8. BAYESOV SVIJET

19 for ime, agent in self.agenti.items():
20 p_trenutno = agent['trenutno']
21

22 # Bayesovo ažuriranje
23 p_dokaz = likelihood_h * p_trenutno + likelihood_ne_h * (1 - p_trenutno)
24 p_novo = (likelihood_h * p_trenutno) / p_dokaz if p_dokaz > 0 else p_trenutno
25

26 agent['trenutno'] = p_novo
27 agent['povijest'].append(p_novo)
28

29 rezultati[ime] = {
30 'prije': p_trenutno,
31 'poslije': p_novo,
32 'promjena': p_novo - p_trenutno
33 }
34

35 return rezultati
36

37 def mjeri_konvergenciju(self):
38 """Mjeri koliko su se vjerovanja približila."""
39 trenutna_vjerovanja = [a['trenutno'] for a in self.agenti.values()]
40 return max(trenutna_vjerovanja) - min(trenutna_vjerovanja)
41

42 # Demonstracija
43 print("Problem priora - Epistemološka kontroverza")
44 print("="*43)
45 print("\nScenarij: Tri znanstvenika procjenjuju istu hipotezu")
46 print(" nakon identičnih dokaza\n")
47

48 pp = ProblemPriora()
49

50 # Različiti priori
51 pp.stvori_agenta("Optimist", 0.8)
52 pp.stvori_agenta("Neutralac", 0.5)
53 pp.stvori_agenta("Skeptik", 0.1)
54

55 print("POČETNI PRIORI:")
56 for ime, agent in pp.agenti.items():
57 prior_opis = "(visoko vjerovanje)" if agent['prior'] > 0.6 else \
58 "(princip indiferencije)" if agent['prior'] == 0.5 else \
59 "(nisko vjerovanje)"
60 print(f" {ime:12} P(H) = {agent['prior']:.2f} {prior_opis}")
61

62 # Serija dokaza
63 dokazi = [
64 ("Pozitivan", 0.9, 0.2),
65 ("Pozitivan", 0.9, 0.2),
66 ("Negativan", 0.1, 0.8),
67 ("Pozitivan", 0.9, 0.2),
68 ("Pozitivan", 0.9, 0.2),
69]
70

71 for i, (tip, lik_h, lik_ne_h) in enumerate(dokazi, 1):

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 171

72 print(f"\nDOKAZ {i}: {tip} (P(E|H)={lik_h}, P(E|¬H)={lik_ne_h})")
73

74 rezultati = pp.azuriraj_sve(lik_h, lik_ne_h)
75

76 print("Nakon dokaza:")
77 for ime, rez in rezultati.items():
78 print(f" {ime:12} {rez['prije']:.2f} → {rez['poslije']:.2f} "
79 f"({rez['promjena']:+.2f})")
80

81 # Analiza konvergencije
82 print("\nANALIZA KONVERGENCIJE:")
83 print("="*23)
84

85 pocetna_razlika = max(a['prior'] for a in pp.agenti.values()) - \
86 min(a['prior'] for a in pp.agenti.values())
87 finalna_razlika = pp.mjeri_konvergenciju()
88

89 print(f"\nPočetna razlika (max-min): {pocetna_razlika:.2f}")
90 print(f"Finalna razlika (max-min): {finalna_razlika:.2f}")
91

92 print("\nFinalna vjerovanja:")
93 for ime, agent in pp.agenti.items():
94 print(f" {ime:10} {agent['trenutno']*100:.1f}%")
95

96 print("\nEpistemološke implikacije:")
97 print(" • Priori utječu, ali njihov utjecaj slabi s dokazima")
98 print(" • Dovoljno dokaza vodi konvergenciji")
99 print(" • Različiti putovi do (približno) istog zaključka")

100 print(" • Objektivnost emerge iz subjektivnih početaka")
101

102 print("\nFILOZOFSKI PROBLEM:")
103 print(" Koji prior je 'pravi'? Postoji li objektivan prior?")
104 print(" \n Pristupi:")
105 print(" 1. Princip indiferencije (Laplace): P=0.5 bez informacija")
106 print(" 2. Jeffreysov prior: Invarijantan na reparametrizaciju ")
107 print(" 3. Maksimalna entropija: Najmanje informativna distribucija")
108 print(" 4. Empirijski Bayes: Prior iz podataka")
109 print(" \n Zaključak: Prior je neizbježan, ali ne fatalan!")

Output

Problem priora - Epistemološka kontroverza
===

Scenarij: Tri znanstvenika procjenjuju istu hipotezu
nakon identičnih dokaza

POČETNI PRIORI:
Optimist P(H) = 0.80 (visoko vjerovanje)
Neutralac P(H) = 0.50 (princip indiferencije)
Skeptik P(H) = 0.10 (nisko vjerovanje)

172 POGLAVLJE 8. BAYESOV SVIJET

DOKAZ 1: Pozitivan (P(E|H)=0.9, P(E|¬H)=0.2)
Nakon dokaza:

Optimist 0.80 → 0.95 (+0.15)
Neutralac 0.50 → 0.82 (+0.32)
Skeptik 0.10 → 0.33 (+0.23)

DOKAZ 2: Pozitivan (P(E|H)=0.9, P(E|¬H)=0.2)
Nakon dokaza:

Optimist 0.95 → 0.99 (+0.04)
Neutralac 0.82 → 0.95 (+0.13)
Skeptik 0.33 → 0.69 (+0.36)

DOKAZ 3: Negativan (P(E|H)=0.1, P(E|¬H)=0.8)
Nakon dokaza:

Optimist 0.99 → 0.91 (-0.08)
Neutralac 0.95 → 0.72 (-0.24)
Skeptik 0.69 → 0.22 (-0.47)

DOKAZ 4: Pozitivan (P(E|H)=0.9, P(E|¬H)=0.2)
Nakon dokaza:

Optimist 0.91 → 0.98 (+0.07)
Neutralac 0.72 → 0.92 (+0.20)
Skeptik 0.22 → 0.56 (+0.34)

DOKAZ 5: Pozitivan (P(E|H)=0.9, P(E|¬H)=0.2)
Nakon dokaza:

Optimist 0.98 → 1.00 (+0.02)
Neutralac 0.92 → 0.98 (+0.06)
Skeptik 0.56 → 0.85 (+0.29)

ANALIZA KONVERGENCIJE:
=======================

Početna razlika (max-min): 0.70
Finalna razlika (max-min): 0.14

Finalna vjerovanja:
Optimist 99.5%
Neutralac 98.1%
Skeptik 85.1%

Epistemološke implikacije:
• Priori utječu, ali njihov utjecaj slabi s dokazima
• Dovoljno dokaza vodi konvergenciji
• Različiti putovi do (približno) istog zaključka
• Objektivnost emerge iz subjektivnih početaka

FILOZOFSKI PROBLEM:
Koji prior je 'pravi'? Postoji li objektivan prior?

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 173

Pristupi:
1. Princip indiferencije (Laplace): P=0.5 bez informacija
2. Jeffreysov prior: Invarijantan na reparametrizaciju
3. Maksimalna entropija: Najmanje informativna distribucija
4. Empirijski Bayes: Prior iz podataka

Zaključak: Prior je neizbježan, ali ne fatalan!

8.1.6 Occamova oštrica i Bayesov faktor

Occamova oštrica: "Entitete ne treba umnožavati bez potrebe"

Bayesov pristup prirodno implementira ovaj princip kroz Bayesov faktor:

BF12 = P (E|H1)
P (E|H2) · P (H1)

P (H2)

Jednostavnije hipoteze imaju veću priornu vjerojatnost i manju fleksibilnost u objašnjavanju
podataka.

1 class OccamovaOstrica:
2 """Implementira Occamovu oštricu kroz Bayesov faktor."""
3

4 def __init__(self):
5 self.hipoteze = {}
6

7 def dodaj_hipotezu(self, naziv, kompleksnost, prior=None):
8 """Dodaje hipotezu s danom kompleksnošću.
9

10 Prior se automatski računa prema kompleksnosti ako nije dan.
11 """
12 if prior is None:
13 # Occamov princip: jednostavnije hipoteze imaju veći prior
14 prior = 1.0 / (2 ** kompleksnost)
15

16 self.hipoteze[naziv] = {
17 'kompleksnost': kompleksnost,
18 'prior': prior,
19 'posterior': prior
20 }
21

22 def bayesov_faktor(self, h1, h2, likelihood1, likelihood2):
23 """Računa Bayesov faktor između dvije hipoteze."""
24 prior_omjer = self.hipoteze[h1]['prior'] / self.hipoteze[h2]['prior']
25 likelihood_omjer = likelihood1 / likelihood2 if likelihood2 > 0 else float('inf')
26

27 bf = likelihood_omjer * prior_omjer

174 POGLAVLJE 8. BAYESOV SVIJET

28

29 return {
30 'prior_omjer': prior_omjer,
31 'likelihood_omjer': likelihood_omjer,
32 'bayesov_faktor': bf
33 }
34

35 def interpretacija_bf(self, bf):
36 """Interpretira Bayesov faktor prema Jeffreys skali."""
37 if bf < 1:
38 return "Dokaz protiv H1"
39 elif bf < 3:
40 return "Slab dokaz za H1"
41 elif bf < 10:
42 return "Umjeren dokaz za H1"
43 elif bf < 100:
44 return "Jak dokaz za H1"
45 else:
46 return "Odlučujući dokaz za H1"
47

48 # Demonstracija
49 print("Occamova oštrica kroz Bayesov faktor")
50 print("="*37)
51 print("\nScenarij: Objašnjenje niza brojeva [2, 4, 6, 8, 10]\n")
52

53 oo = OccamovaOstrica()
54

55 # Dvije hipoteze različite složenosti
56 print("HIPOTEZE:")
57 print(" H1 (jednostavna): 'Parni brojevi do 10'")
58 print(" Parametri: 1 (samo parnost)")
59 oo.dodaj_hipotezu("H1_jednostavna", kompleksnost=1, prior=0.67)
60

61 print(" ")
62 print(" H2 (složena): 'Brojevi koji zadovoljavaju x2-12x+20<0 ili x=2k, k∈N'")
63 print(" Parametri: 5 (polinomski koeficijenti + parnost)")
64 oo.dodaj_hipotezu("H2_slozena", kompleksnost=5, prior=0.33)
65

66 print("\nPRIORNE VJEROJATNOSTI (Occamov princip):")
67 print(f" P(H1) = {oo.hipoteze['H1_jednostavna']['prior']:.2f} (preferiramo jednostavnost)")
68 print(f" P(H2) = {oo.hipoteze['H2_slozena']['prior']:.2f} (penaliziramo složenost)")
69

70 prior_omjer = oo.hipoteze['H1_jednostavna']['prior'] / oo.hipoteze['H2_slozena']['prior']
71 print(f" \n Prior omjer: P(H1)/P(H2) = {prior_omjer:.2f}")
72

73 # Test predviđanja
74 print("\nTEST 1: Predviđanje sljedećeg broja")
75 print(" H1 predviđa: 12 (sljedeći parni)")
76 print(" H2 predviđa: 12 ili 7.3 (fleksibilnija)")
77 print(" \n Opažanje: 12")
78

79 # Likelihoods
80 lik_h1 = 1.0 # H1 savršeno predviđa 12

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 175

81 lik_h2 = 0.5 # H2 daje 50% šanse za 12
82

83 print(f" P(12|H1) = {lik_h1:.2f} (savršeno predviđanje)")
84 print(f" P(12|H2) = {lik_h2:.2f} (jedan od mogućih)")
85

86 bf_rezultat = oo.bayesov_faktor("H1_jednostavna", "H2_slozena", lik_h1, lik_h2)
87 print(f" \n Likelihood omjer: {bf_rezultat['likelihood_omjer']:.2f}")
88 print(f" Bayesov faktor: BF12 = {bf_rezultat['likelihood_omjer']:.2f} × {prior_omjer:.2f} =

{bf_rezultat['bayesov_faktor']:.2f}")↪→

89 print(f" \n Interpretacija: Dokazi {bf_rezultat['bayesov_faktor']:.0f}:1 u korist H1")
90

91 # Drugi test
92 print("\nTEST 2: Još jedno predviđanje")
93 print(" Opažanje: 14")
94 print(f" P(14|H1) = 1.00")
95 print(f" P(14|H2) = 0.50")
96

97 # Kumulativni BF
98 kumulativni_bf = bf_rezultat['bayesov_faktor'] * 2 # još jedan faktor 2
99 print(f" \n Kumulativni BF12 = {kumulativni_bf:.2f}")

100 print(f" \n Interpretacija: Dokazi {kumulativni_bf:.0f}:1 u korist H1")
101

102 # Filozofska analiza
103 print("\nFILOZOFSKA ANALIZA:")
104 print("="*20)
105 print("\nZašto Bayes preferira jednostavnost?\n")
106

107 print("1. PRIOR KOMPONENTA:")
108 print(" Jednostavnije hipoteze su a priori vjerovatnije")
109 print(" (manje parametara = veća gustoća vjerojatnosti)")
110

111 print("\n2. LIKELIHOOD KOMPONENTA:")
112 print(" Složene hipoteze 'razmazuju' vjerojatnost")
113 print(" na više mogućnosti → niži likelihood po ishodu")
114

115 print("\n3. AUTOMATSKA PENALIZACIJA:")
116 print(" Prefleksibilne teorije se same kažnjavaju")
117 print(" jer mogu objasniti previše → slabo predviđaju")
118

119 print("\nJEFFREYS-OVA SKALA za interpretaciju BF:")
120 skala = [
121 ("BF < 1", "Dokaz protiv H1"),
122 ("1 < BF < 3", "Slab dokaz za H1"),
123 ("3 < BF < 10", "Umjeren dokaz za H1"),
124 ("BF > 10", "Jak dokaz za H1"),
125 ("BF > 100", "Odlučujući dokaz za H1")
126]
127 for raspon, opis in skala:
128 print(f" {raspon:11}: {opis}")
129

130 print(f"\nNaš slučaj: BF = {kumulativni_bf:.2f} → {oo.interpretacija_bf(kumulativni_bf)}")
131

132 print("\n> \"Priroda je jednostavna i ne umnožava uzroke bez potrebe\" - Newton")

176 POGLAVLJE 8. BAYESOV SVIJET

133 print("> Bayesov faktor to kvantificira!")

Output

Occamova oštrica kroz Bayesov faktor
=====================================

Scenarij: Objašnjenje niza brojeva [2, 4, 6, 8, 10]

HIPOTEZE:
H1 (jednostavna): 'Parni brojevi do 10'

Parametri: 1 (samo parnost)

H2 (složena): 'Brojevi koji zadovoljavaju x2-12x+20<0 ili x=2k, k∈N'
Parametri: 5 (polinomski koeficijenti + parnost)

PRIORNE VJEROJATNOSTI (Occamov princip):
P(H1) = 0.67 (preferiramo jednostavnost)
P(H2) = 0.33 (penaliziramo složenost)

Prior omjer: P(H1)/P(H2) = 2.03

TEST 1: Predviđanje sljedećeg broja
H1 predviđa: 12 (sljedeći parni)
H2 predviđa: 12 ili 7.3 (fleksibilnija)

Opažanje: 12
P(12|H1) = 1.00 (savršeno predviđanje)
P(12|H2) = 0.50 (jedan od mogućih)

Likelihood omjer: 2.00
Bayesov faktor: BF12 = 2.00 × 2.03 = 4.06

Interpretacija: Dokazi 4:1 u korist H1

TEST 2: Još jedno predviđanje
Opažanje: 14
P(14|H1) = 1.00
P(14|H2) = 0.50

Kumulativni BF12 = 8.12

Interpretacija: Dokazi 8:1 u korist H1

FILOZOFSKA ANALIZA:
====================

Zašto Bayes preferira jednostavnost?

1. PRIOR KOMPONENTA:

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 177

Jednostavnije hipoteze su a priori vjerovatnije
(manje parametara = veća gustoća vjerojatnosti)

2. LIKELIHOOD KOMPONENTA:
Složene hipoteze 'razmazuju' vjerojatnost
na više mogućnosti → niži likelihood po ishodu

3. AUTOMATSKA PENALIZACIJA:
Prefleksibilne teorije se same kažnjavaju
jer mogu objasniti previše → slabo predviđaju

JEFFREYS-OVA SKALA za interpretaciju BF:
BF < 1 : Dokaz protiv H1
1 < BF < 3 : Slab dokaz za H1
3 < BF < 10: Umjeren dokaz za H1
BF > 10 : Jak dokaz za H1
BF > 100 : Odlučujući dokaz za H1

Naš slučaj: BF = 8.12 → Umjeren dokaz za H1

> "Priroda je jednostavna i ne umnožava uzroke bez potrebe" - Newton
> Bayesov faktor to kvantificira!

8.1.7 Koherentnost i Dutch Book argument

Dutch Book teorem: Ako vaša vjerovanja krše aksiome vjerojatnosti, netko može konstruirati
niz oklada gdje sigurno gubite novac.

Ovo daje pragmatičko opravdanje Bayesovog pristupa - nekoherentna vjerovanja vode u
sigurni gubitak!

1 class DutchBook:
2 """Demonstrira Dutch Book argument protiv nekoherentnih vjerovanja."""
3

4 def __init__(self, vjerovanja):
5 """
6 vjerovanja: dict s vjerojatnostima za različite sudove
7 """
8 self.vjerovanja = vjerovanja
9

10 def provjeri_koherentnost(self):
11 """Provjerava krše li vjerovanja aksiome vjerojatnosti."""
12 problemi = []
13

14 # Provjeri nenegativnost
15 for sud, p in self.vjerovanja.items():
16 if p < 0 or p > 1:
17 problemi.append(f"{sud}: P={p} nije u [0,1]")

178 POGLAVLJE 8. BAYESOV SVIJET

18

19 # Provjeri aditivnost za disjunkciju (ako postoji)
20 if 'A' in self.vjerovanja and 'B' in self.vjerovanja and 'A_ili_B' in

self.vjerovanja:↪→

21 p_a = self.vjerovanja['A']
22 p_b = self.vjerovanja['B']
23 p_a_ili_b = self.vjerovanja['A_ili_B']
24

25 # P(A ∨ B) ≤ P(A) + P(B)
26 if p_a_ili_b > p_a + p_b:
27 problemi.append(f"P(A∨B)={p_a_ili_b} > P(A)+P(B)={p_a+p_b}")
28

29 # P(A ∨ B) ≥ max(P(A), P(B))
30 if p_a_ili_b < max(p_a, p_b):
31 problemi.append(f"P(A∨B)={p_a_ili_b} < max(P(A),P(B))={max(p_a, p_b)}")
32

33 return len(problemi) == 0, problemi
34

35 def konstruiraj_dutch_book(self):
36 """Konstruira skup oklada koji garantira gubitak."""
37 if 'A' not in self.vjerovanja or 'B' not in self.vjerovanja or 'A_ili_B' not in

self.vjerovanja:↪→

38 return None
39

40 p_a = self.vjerovanja['A']
41 p_b = self.vjerovanja['B']
42 p_a_ili_b = self.vjerovanja['A_ili_B']
43

44 oklade = []
45

46 # Oklada 1: Kladi se na A po "fer" cijeni
47 oklade.append({
48 'tip': 'ZA',
49 'sud': 'A',
50 'cijena': p_a * 100,
51 'isplata': 100
52 })
53

54 # Oklada 2: Kladi se na B po "fer" cijeni
55 oklade.append({
56 'tip': 'ZA',
57 'sud': 'B',
58 'cijena': p_b * 100,
59 'isplata': 100
60 })
61

62 # Oklada 3: Kladi se PROTIV (A ili B)
63 oklade.append({
64 'tip': 'PROTIV',
65 'sud': 'A_ili_B',
66 'prima': p_a_ili_b * 100,
67 'placa_ako_istina': 100
68 })

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 179

69

70 return oklade
71

72 # Demonstracija
73 print("Dutch Book Argument - Cijena nekoherentnosti")
74 print("="*46)
75

76 # Nekoherentan agent
77 nekoherentan = DutchBook({
78 'A': 0.6,
79 'B': 0.5,
80 'A_ili_B': 0.7 # Prekršaj! Trebalo bi biti barem 0.6
81 })
82

83 print("\nAGENT 1: Nekoherentan")
84 print("Vjerovanja:")
85 for sud, p in nekoherentan.vjerovanja.items():
86 simbol = "∨" if "ili" in sud else ""
87 prikaz = sud.replace("_ili_", " ∨ ")
88 print(f" P({prikaz}) = {p:.2f}", end="")
89 if sud == 'A_ili_B':
90 print(" KRŠI AKSIOME!")
91 else:
92 print()
93

94 koherentan_min = max(nekoherentan.vjerovanja['A'], nekoherentan.vjerovanja['B'])
95 koherentan_max = min(1.0, nekoherentan.vjerovanja['A'] + nekoherentan.vjerovanja['B'])
96 print(f" \n Trebalo bi biti: P(A ∨ B) ≥ max({nekoherentan.vjerovanja['A']:.2f},

{nekoherentan.vjerovanja['B']:.2f}) = {koherentan_min:.2f}")↪→

97 print(f" i P(A ∨ B) ≤ {nekoherentan.vjerovanja['A']:.2f} +
{nekoherentan.vjerovanja['B']:.2f} = {nekoherentan.vjerovanja['A'] +
nekoherentan.vjerovanja['B']:.2f} (ali ≤ 1)")

↪→

↪→

98 print(f" Koherentan raspon: [{koherentan_min:.2f}, {koherentan_max:.2f}]")
99

100 # Koherentan agent
101 koherentan = DutchBook({
102 'A': 0.6,
103 'B': 0.5,
104 'A_ili_B': 0.8 # Koherentno!
105 })
106

107 print("\nAGENT 2: Koherentan")
108 print("Vjerovanja:")
109 for sud, p in koherentan.vjerovanja.items():
110 prikaz = sud.replace("_ili_", " ∨ ")
111 print(f" P({prikaz}) = {p:.2f}", end="")
112 if sud == 'A_ili_B':
113 print(" ✓ Zadovoljava aksiome")
114 else:
115 print()
116

117 # Konstruiraj Dutch Book
118 print("\nDUTCH BOOK PROTIV NEKOHERENTNOG AGENTA:")

180 POGLAVLJE 8. BAYESOV SVIJET

119 print("="*41)
120

121 oklade = nekoherentan.konstruiraj_dutch_book()
122 print("\nKladioničar konstruira sljedeće oklade:\n")
123

124 for i, oklada in enumerate(oklade, 1):
125 if oklada['tip'] == 'ZA':
126 print(f"Oklada {i}: Agent se kladi ZA '{oklada['sud']}'")
127 print(f" Fer cijena (prema agentu): {oklada['cijena']:.1f}€")
128 print(f" Dobitak ako {oklada['sud']}: {oklada['isplata']}€, Gubitak ako

¬{oklada['sud']}: -{oklada['cijena']:.0f}€")↪→

129 else:
130 prikaz = oklada['sud'].replace("_ili_", " ∨ ")
131 print(f"Oklada {i}: Agent se kladi PROTIV '{prikaz}'")
132 print(f" Agent prima: {oklada['prima']:.1f}€")
133 print(f" Mora platiti {oklada['placa_ako_istina']}€ ako {prikaz}")
134 print()
135

136 # Analiza ishoda
137 print("ANALIZA ISHODA:")
138 print("="*16)
139 print("\nMogući ishodi:")
140

141 ishodi = [
142 ("A∧B", True, True),
143 ("A∧¬B", True, False),
144 ("¬A∧B", False, True),
145 ("¬A∧¬B", False, False)
146]
147

148 for naziv, a_istina, b_istina in ishodi:
149 profit = 0
150 detalji = []
151

152 # Oklada 1 (na A)
153 if a_istina:
154 profit += 100 - oklade[0]['cijena']
155 detalji.append("+100")
156 else:
157 profit -= oklade[0]['cijena']
158 detalji.append(f"-{oklade[0]['cijena']:.0f}")
159

160 # Oklada 2 (na B)
161 if b_istina:
162 profit += 100 - oklade[1]['cijena']
163 detalji.append("+100")
164 else:
165 profit -= oklade[1]['cijena']
166 detalji.append(f"-{oklade[1]['cijena']:.0f}")
167

168 # Oklada 3 (protiv A ili B)
169 if a_istina or b_istina:
170 profit += oklade[2]['prima'] - 100

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 181

171 detalji.append("-100")
172 else:
173 profit += oklade[2]['prima']
174 detalji.append("+0")
175

176 print(f" {naziv:8} {' '.join(detalji):15} = {profit:+.0f}€ → Agent {'gubi' if profit <
0 else 'dobiva'} {abs(profit):.0f}€")↪→

177

178 print("\nAgent UVIJEK gubi novac! (Dutch Book)")
179

180 # Pokušaj protiv koherentnog
181 print("\nPOKUŠAJ PROTIV KOHERENTNOG AGENTA:")
182 print("="*36)
183 print("\nIste oklade s koherentnim agentom:")
184 print(f" Oklada 3 sada: Agent prima {koherentan.vjerovanja['A_ili_B']*100:.0f}€ (ne 70€)")
185

186 print("\nMogući ishodi:")
187 for naziv, a_istina, b_istina in ishodi[::2]: # Samo neki ishodi za kraćkću
188 profit = 0
189 detalji = []
190

191 if a_istina:
192 profit += 100 - 60
193 detalji.append("+100")
194 else:
195 profit -= 60
196 detalji.append("-60")
197

198 if b_istina:
199 profit += 100 - 50
200 detalji.append("+100")
201 else:
202 profit -= 50
203 detalji.append("-50")
204

205 if a_istina or b_istina:
206 profit += 80 - 100
207 detalji.append("-100")
208 else:
209 profit += 0
210 detalji.append("+0")
211

212 print(f" {naziv:8} {' '.join(detalji):15} = {profit:+.0f}€")
213

214 print("\nKoherentan agent može i dobiti i izgubiti.")
215 print("Nema sigurnog gubitka!")
216

217 print("\nEPISTEMOLOŠKA PORUKA:")
218 print("="*22)
219 print("\n• Nekoherentna vjerovanja vode u sigurni gubitak")
220 print("• Racionalnost zahtijeva poštivanje aksioma vjerojatnosti")
221 print("• Bayesov pristup garantira koherentnost")
222 print("• Pragmatičko opravdanje epistemologije!")

182 POGLAVLJE 8. BAYESOV SVIJET

223 print("\n> \"Koherentnost nije sve, ali bez nje sve je ništa\" - de Finetti")

Output

Dutch Book Argument - Cijena nekoherentnosti
==

AGENT 1: Nekoherentan
Vjerovanja:

P(A) = 0.60
P(B) = 0.50
P(A ∨ B) = 0.70 KRŠI AKSIOME!

Trebalo bi biti: P(A ∨ B) ≥ max(0.60, 0.50) = 0.60
i P(A ∨ B) ≤ 0.60 + 0.50 = 1.10 (ali ≤ 1)
Koherentan raspon: [0.60, 1.00]

AGENT 2: Koherentan
Vjerovanja:

P(A) = 0.60
P(B) = 0.50
P(A ∨ B) = 0.80 ✓ Zadovoljava aksiome

DUTCH BOOK PROTIV NEKOHERENTNOG AGENTA:
===

Kladioničar konstruira sljedeće oklade:

Oklada 1: Agent se kladi ZA 'A'
Fer cijena (prema agentu): 60.0€
Dobitak ako A: 100€, Gubitak ako ¬A: -60€

Oklada 2: Agent se kladi ZA 'B'
Fer cijena (prema agentu): 50.0€
Dobitak ako B: 100€, Gubitak ako ¬B: -50€

Oklada 3: Agent se kladi PROTIV 'A ∨ B'
Agent prima: 70.0€
Mora platiti 100€ ako A ∨ B

ANALIZA ISHODA:
================

Mogući ishodi:
A∧B +100 +100 -100 = +60€ → Agent dobiva 60€
A∧¬B +100 -50 -100 = -40€ → Agent gubi 40€
¬A∧B -60 +100 -100 = -40€ → Agent gubi 40€
¬A∧¬B -60 -50 +0 = -40€ → Agent gubi 40€

Agent UVIJEK gubi novac! (Dutch Book)

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 183

POKUŠAJ PROTIV KOHERENTNOG AGENTA:
====================================

Iste oklade s koherentnim agentom:
Oklada 3 sada: Agent prima 80€ (ne 70€)

Mogući ishodi:
A∧B +100 +100 -100 = +70€
¬A∧B -60 +100 -100 = -30€

Koherentan agent može i dobiti i izgubiti.
Nema sigurnog gubitka!

EPISTEMOLOŠKA PORUKA:
======================

• Nekoherentna vjerovanja vode u sigurni gubitak
• Racionalnost zahtijeva poštivanje aksioma vjerojatnosti
• Bayesov pristup garantira koherentnost
• Pragmatičko opravdanje epistemologije!

> "Koherentnost nije sve, ali bez nje sve je ništa" - de Finetti

8.1.8 Prijedlozi za daljnje istraživanje

Za produbljivanje razumijevanja Bayesove epistemologije kroz praktične zadatke:

Goodmanov paradoks (grue/bleen)

Implementirajte problem "zeleno-plavih" smaragda. Pokažite kako različiti priori o prirod-
nim/neprirordnim predikatima utječu na induktivno zaključivanje.

Problem starih dokaza

Simulirajte situaciju gdje teorija objašnjava već poznate činjenice. Kako Bayesov pristup
tretira dokaze koje znamo prije teorije?

Quine-Duhemova teza

Pokažite kako se negativan eksperiment može pripisati različitim hipotezama u teorijskoj
mreži. Implementirajte Bayesovo ažuriranje za mrežu povezanih hipoteza.

184 POGLAVLJE 8. BAYESOV SVIJET

Sleeping Beauty problem

Implementirajte ovaj paradoks samolociranja. Analizirajte sukob između "halfer" i "thirder"
pozicija kroz Bayesov okvir.

Kuhnove znanstvene revolucije

Modelirajte promjenu paradigme kao nagli skok u posteriornim vjerojatnostima. Kada
akumulirani dokazi dovode do "revolucije"?

Solomonoffova indukcija

Implementirajte univerzalnu indukciju koristeći Kolmogorovljevu složenost kao prior. Pokažite
kako kraći opisi imaju veću apriornu vjerojatnost.

Akaike informacijski kriterij

Usporedite AIC s Bayesovim faktorom za selekciju modela. Pokažite trade-off između složenosti
i točnosti.

Epistemička logika

Implementirajte modalne operatore znanja i vjerovanja. Pokažite kako se Bayesovo ažuriranje
uklapa u formalnu epistemologiju.

Kauzalno zaključivanje

Implementirajte Pearl-ove do-operatore. Pokažite razliku između opažajne i intervencijske
evidencije.

Socijalna epistemologija

Simulirajte mrežu agenata koji dijele dokaze. Istražite kako se konsenzus formira kroz Bayesovo
ažuriranje.

Svaki zadatak istražuje dublje veze između vjerojatnosti, znanja i racionalnog zaključivanja.

8.1. UVJETNA VJEROJATNOST I PRIRODA ZNANJA 185

8.1.9 Zaključak

Kroz ovu implementaciju istražili smo kako Bayesov teorem revolucionira naše razumijevanje
znanja i znanosti:

1. Znanje kao stupnjevito vjerovanje - ne binarna istina

2. Učenje kao ažuriranje - ne zamjena vjerovanja

3. Racionalnost kao koherentnost - pragmatičko opravdanje

4. Znanost kao konvergencija - različiti putovi do istine

Bayesov pristup mijenja fundamentalna epistemološka pitanja:

"Pitanje nije ’Što je istina?’ već ’Koliko trebam vjerovati?’" - E.T. Jaynes

Ova promjena perspektive ima duboke implikacije:

• Filozofija znanosti: Od falsifikacije do stupnjeva potvrde

• Epistemologija: Od JTB (justified true belief) do racionalnog ažuriranja

• Racionalnost: Od logičke dedukcije do vjerojatnosnog zaključivanja

Kroz praktično programiranje otkrivamo da Bayesov teorem nije samo matematička formula,
već normativna teorija racionalnog vjerovanja - pokazuje kako bi racionalni agent trebao
mijenjati svoja uvjerenja suočen s dokazima.

"Bayesov teorem je za neizvjesnost ono što je aritmetika za brojanje" - John
Maynard Keynes

U svijetu nesavršenog znanja i nepotpunih informacija, Bayesova epistemologija nudi rigorozan
okvir za navigiranje kroz neizvjesnost - ne obećava istinu, ali garantira racionalnost.

186 POGLAVLJE 8. BAYESOV SVIJET

Poglavlje 9

Goodmanovi svijetovi: Problem in-
dukcije i strojno učenje

9.1 Novi problem indukcije kroz prizmu računalnih znanosti

Nelson Goodman je 1955. godine formulirao novi problem indukcije koji pokazuje temeljnu
poteškoću u razlikovanju valjanih od nevaljanih induktivnih zaključaka. Ovaj problem ima
duboke implikacije za moderno strojno učenje.

"Činjenica da se smaragd može jednako dobro opisati kao ’zelen’ ili kao ’gruen’
otkriva da svaki skup opažanja podržava beskonačno mnogo hipoteza." - Nelson
Goodman

U ovoj bilježnici istražujemo kako se Goodmanova zagadka manifestira u kontekstu strojnog
učenja kroz No-Free-Lunch teoreme.

9.1.1 Klasični problem indukcije

Prije nego što uronimo u Goodmanov novi problem, razmotrimo klasični Humeov problem
indukcije:

Opaženi slučajevi ?−→ Opći zaključak

Induktivno zaključivanje pokušava iz konačnog broja opažanja izvesti općeniti zakon. To
je temelj znanosti, ali filozofski gledano - nema logičke nužnosti da će se buduća opažanja
ponašati kao prošla.

1 from dataclasses import dataclass

187

188
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

2 from datetime import datetime, timedelta
3 import random
4

5 @dataclass
6 class Opažanje:
7 """Predstavlja jedno empirijsko opažanje."""
8 objekt: str
9 svojstvo: str

10 vrijeme: datetime
11

12 def __repr__(self):
13 return f"{self.objekt}: {self.svojstvo} (vrijeme: {self.vrijeme.date()})"
14

15 # Generiraj opažanja smaragda
16 def generiraj_opažanja(n=5, svojstvo="zelen"):
17 """Generira niz opažanja smaragda."""
18 opažanja = []
19 početak = datetime(2020, 1, 1)
20

21 for i in range(n):
22 vrijeme = početak + timedelta(days=random.randint(i*200, (i+1)*200))
23 opažanja.append(Opažanje(f"Smaragd {i+1}", svojstvo, vrijeme))
24

25 return opažanja
26

27 # Klasična indukcija
28 opažanja_zeleni = generiraj_opažanja(5, "zelen")
29

30 print("Klasična indukcija:")
31 print("="*20)
32 print("Opažanja smaragda:")
33 for op in opažanja_zeleni:
34 print(f" {op}")
35 print("\nInduktivni zaključak: Svi smaragdi su zeleni")

Output

Klasična indukcija:
====================
Opažanja smaragda:

Smaragd 1: zelen (vrijeme: 2020-03-17)
Smaragd 2: zelen (vrijeme: 2021-01-21)
Smaragd 3: zelen (vrijeme: 2021-06-04)
Smaragd 4: zelen (vrijeme: 2022-03-01)
Smaragd 5: zelen (vrijeme: 2022-07-22)

Induktivni zaključak: Svi smaragdi su zeleni

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 189

9.1.2 Goodmanov "grue" predikat

Goodman uvodi novi predikat "grue" (kombinacija "green" i "blue"):

grue(x) =
{

zelen(x) ako je x opažen prije t0
plav(x) ako je x opažen nakon t0

gdje je t0 neki budući trenutak (npr. 1. siječnja 2100.).

Paradoks: Sva dosadašnja opažanja zelenih smaragda jednako dobro potvrđuju hipotezu
"svi smaragdi su zeleni" kao i hipotezu "svi smaragdi su grueni"!

1 class GruePredikat:
2

3 """Implementacija Goodmanovog 'grue' predikata."""
4

5 def __init__(self, kritični_trenutak):
6 self.t0 = kritični_trenutak
7

8 def je_grue(self, objekt, vrijeme_opažanja):
9 """Provjerava je li objekt 'grue' u danom trenutku."""

10 if vrijeme_opažanja < self.t0:
11 # Prije t0: grue = zelen
12 return objekt.svojstvo == "zelen"
13 else:
14 # Nakon t0: grue = plav
15 return objekt.svojstvo == "plav"
16

17 def predviđa(self, vrijeme):
18 """Što predviđa grue hipoteza za dano vrijeme."""
19 if vrijeme < self.t0:
20 return "zelen"
21 else:
22 return "plav"
23

24 # Definiraj kritični trenutak
25 t0 = datetime(2100, 1, 1)
26 grue_predikat = GruePredikat(t0)
27

28 print("Goodmanov problem indukcije:")
29 print("="*29)
30 print(f"Kritični trenutak t0: {t0.date()}")
31 print("\nProvjera hipoteza za prošla opažanja:")
32 print("-"*38)
33

34 # Testiraj obje hipoteze na istim podacima
35 for op in opažanja_zeleni[:3]: # Prikaži prva 3
36 print(f"{op.objekt} ({op.vrijeme.date()}):")
37 print(f" Opaženo: {op.svojstvo}")

190
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

38

39 # Hipoteza 1: Svi smaragdi su zeleni
40 h1_istina = op.svojstvo == "zelen"
41 print(f" H1 (zeleni): {'⊤' if h1_istina else '⊥'} (predviđa: zelen)")
42

43 # Hipoteza 2: Svi smaragdi su grueni
44 h2_predviđanje = grue_predikat.predviđa(op.vrijeme)
45 h2_istina = op.svojstvo == h2_predviđanje
46 print(f" H2 (grueni): {'⊤' if h2_istina else '⊥'} (predviđa: {h2_predviđanje} -

{'prije' if op.vrijeme < t0 else 'nakon'} t0)")↪→

47 print()
48

49 print("Rezultat: Obje hipoteze jednako dobro objašnjavaju sva opažanja!")
50 print(f"\nPredviđanja za budućnost (nakon {t0.date()}):")
51 print("-"*46)
52 print(" H1 (svi zeleni): smaragdi će biti zeleni")
53 print(" H2 (svi grueni): smaragdi će biti plavi")

Output

Goodmanov problem indukcije:
=============================
Kritični trenutak t0: 2100-01-01

Provjera hipoteza za prošla opažanja:

Smaragd 1 (2020-03-17):

Opaženo: zelen
H1 (zeleni): ⊤ (predviđa: zelen)
H2 (grueni): ⊤ (predviđa: zelen - prije t0)

Smaragd 2 (2021-01-21):
Opaženo: zelen
H1 (zeleni): ⊤ (predviđa: zelen)
H2 (grueni): ⊤ (predviđa: zelen - prije t0)

Smaragd 3 (2021-06-04):
Opaženo: zelen
H1 (zeleni): ⊤ (predviđa: zelen)
H2 (grueni): ⊤ (predviđa: zelen - prije t0)

Rezultat: Obje hipoteze jednako dobro objašnjavaju sva opažanja!

Predviđanja za budućnost (nakon 2100-01-01):
--

H1 (svi zeleni): smaragdi će biti zeleni
H2 (svi grueni): smaragdi će biti plavi

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 191

9.1.3 Beskonačnost alternativnih hipoteza

Goodmanov argument pokazuje da za svaki skup opažanja postoji beskonačno mnogo
jednako dobro podržanih hipoteza. Možemo konstruirati "grue1", "grue2", ... sa različitim
kritičnim trenucima:

gruen(x) =
{

zelen(x) ako je x opažen prije tn
plav(x) ako je x opažen nakon tn

1 def stvori_grue_hipotezu(kritični_trenutak, naziv):
2 """Stvara grue hipotezu s danim kritičnim trenutkom."""
3 class GrueHipoteza:
4 def __init__(self):
5 self.t0 = kritični_trenutak
6 self.naziv = naziv
7

8 def predviđa(self, vrijeme):
9 return "zelen" if vrijeme < self.t0 else "plav"

10

11 def provjeri(self, opažanje):
12 predviđanje = self.predviđa(opažanje.vrijeme)
13 return opažanje.svojstvo == predviđanje
14

15 return GrueHipoteza()
16

17 # Stvori više alternativnih hipoteza
18 hipoteze = {
19 "standard": type('StandardHipoteza', (), {
20 'naziv': 'standard',
21 'predviđa': lambda self, t: "zelen",
22 'provjeri': lambda self, op: op.svojstvo == "zelen"
23 })(),
24 "grue_2030": stvori_grue_hipotezu(datetime(2030, 1, 1), "grue_2030"),
25 "grue_2050": stvori_grue_hipotezu(datetime(2050, 1, 1), "grue_2050"),
26 "grue_2100": stvori_grue_hipotezu(datetime(2100, 1, 1), "grue_2100"),
27 "grue_2200": stvori_grue_hipotezu(datetime(2200, 1, 1), "grue_2200"),
28 }
29

30 print("Beskonačnost alternativnih hipoteza:")
31 print("="*37)
32 print("\nZa iste podatke možemo konstruirati mnoštvo hipoteza:\n")
33

34 # Prikaži predviđanja svake hipoteze
35 test_vremena = [datetime(2050, 6, 15), datetime(2150, 6, 15)]
36

37 for naziv, hipoteza in hipoteze.items():
38 if naziv == "standard":
39 print(f"Hipoteza '{naziv}': Svi smaragdi su uvijek zeleni")
40 else:
41 t0_godina = int(naziv.split('_')[1])

192
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

42 print(f"Hipoteza '{naziv}': grueni s prijelazom {t0_godina}-01-01")
43

44 for t in test_vremena:
45 print(f" Predviđanje za {t.year}: {hipoteza.predviđa(t)}")
46 print()
47

48 # Provjeri konzistentnost s postojećim opažanjima
49 print("Provjera konzistentnosti s opažanjima:")
50 print("-"*40)
51

52 for naziv, hipoteza in hipoteze.items():
53 rezultati = [hipoteza.provjeri(op) for op in opažanja_zeleni]
54 simboli = "".join(['⊤' if r else '⊥' for r in rezultati])
55 točnih = sum(rezultati)
56 print(f"{naziv}: {simboli} ({točnih}/{len(rezultati)} točnih)")
57

58 print("\nSve hipoteze su jednako dobro podržane postojećim podacima!")

Output

Beskonačnost alternativnih hipoteza:
=====================================

Za iste podatke možemo konstruirati mnoštvo hipoteza:

Hipoteza 'standard': Svi smaragdi su uvijek zeleni
Predviđanje za 2050: zelen
Predviđanje za 2150: zelen

Hipoteza 'grue_2030': grueni s prijelazom 2030-01-01
Predviđanje za 2050: plav
Predviđanje za 2150: plav

Hipoteza 'grue_2050': grueni s prijelazom 2050-01-01
Predviđanje za 2050: plav
Predviđanje za 2150: plav

Hipoteza 'grue_2100': grueni s prijelazom 2100-01-01
Predviđanje za 2050: zelen
Predviđanje za 2150: plav

Hipoteza 'grue_2200': grueni s prijelazom 2200-01-01
Predviđanje za 2050: zelen
Predviđanje za 2150: zelen

Provjera konzistentnosti s opažanjima:
--
standard: ⊤⊤⊤⊤⊤ (5/5 točnih)
grue_2030: ⊤⊤⊤⊤⊤ (5/5 točnih)
grue_2050: ⊤⊤⊤⊤⊤ (5/5 točnih)

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 193

grue_2100: ⊤⊤⊤⊤⊤ (5/5 točnih)
grue_2200: ⊤⊤⊤⊤⊤ (5/5 točnih)

Sve hipoteze su jednako dobro podržane postojećim podacima!

9.1.4 No-Free-Lunch teoremi u strojnom učenju

No-Free-Lunch (NFL) teoremi pokazuju da je Goodmanov problem duboko ukorijenjen u
strojnom učenju. Teorem kaže:

∑
f∈F

GP(L, f) = 0.5

gdje je:

• L - bilo koji algoritam učenja

• F - skup svih mogućih ciljnih funkcija

• GP - generalizacijska performansa

Značenje: Prosječna performansa bilo kojeg algoritma učenja preko svih mogućih problema
jednaka je slučajnom pogađanju!

1 import itertools
2

3 class BooleanConcept:
4 """Predstavlja Booleovu funkciju kao koncept za učenje."""
5

6 def __init__(self, truth_table, naziv=""):
7 self.tablica = truth_table
8 self.naziv = naziv
9

10 def evaluiraj(self, ulaz):
11 """Evaluira funkciju za dani ulaz."""
12 return self.tablica.get(ulaz, False)
13

14 def konzistentan_s(self, skup_učenja):
15 """Provjerava je li koncept konzistentan sa skupom za učenje."""
16 for ulaz, izlaz in skup_učenja.items():
17 if self.evaluiraj(ulaz) != izlaz:
18 return False
19 return True
20

21 # Definiraj skup za učenje (parcijalna tablica istinitosti)
22 skup_učenja = {

194
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

23 (False, False): False,
24 (False, True): True,
25 (True, False): True,
26 # (True, True) nije u skupu za učenje!
27 }
28

29 # Konstruiraj dva različita koncepta konzistentna s podacima
30 # Koncept 1: XOR
31 xor_tablica = {
32 (False, False): False,
33 (False, True): True,
34 (True, False): True,
35 (True, True): False # XOR
36 }
37

38 # Koncept 2: OR
39 or_tablica = {
40 (False, False): False,
41 (False, True): True,
42 (True, False): True,
43 (True, True): True # OR
44 }
45

46 koncepti = [
47 BooleanConcept(xor_tablica, "XOR funkcija"),
48 BooleanConcept(or_tablica, "OR funkcija")
49]
50

51 print("No-Free-Lunch demonstracija:")
52 print("="*29)
53 print()
54

55 # Prikaži skup za učenje
56 print("Skup za učenje: ", end="")
57 print("{", end="")
58 for i, (ulaz, izlaz) in enumerate(skup_učenja.items()):
59 if i > 0:
60 print(", ", end="")
61 ulaz_str = f"({'⊤' if ulaz[0] else '⊥'}, {'⊤' if ulaz[1] else '⊥'})"
62 izlaz_str = '⊤' if izlaz else '⊥'
63 print(f"{ulaz_str}: {izlaz_str}", end="")
64 print("}")
65

66 testni = (True, True)
67 print(f"Testni primjer: ({'⊤' if testni[0] else '⊥'}, {'⊤' if testni[1] else '⊥'}) = ?")
68 print()
69

70 print("Mogući koncepti konzistentni s podacima:")
71 print("-"*42)
72

73 for i, koncept in enumerate(koncepti, 1):
74 print(f"Koncept {i}: {koncept.naziv}")
75

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 195

76 # Predviđanje za testni primjer
77 pred = koncept.evaluiraj(testni)
78 print(f" Predviđanje za ({'⊤' if testni[0] else '⊥'}, {'⊤' if testni[1] else '⊥'}):

{'⊤' if pred else '⊥'}")↪→

79

80 # Prikaži cijelu tablicu
81 print(" Tablica:")
82 for ulaz in [(False, False), (False, True), (True, False), (True, True)]:
83 izlaz = koncept.evaluiraj(ulaz)
84 ulaz_str = f"({'⊤' if ulaz[0] else '⊥'}, {'⊤' if ulaz[1] else '⊥'})"
85 izlaz_str = '⊤' if izlaz else '⊥'
86 oznaka = " ✓" if ulaz in skup_učenja else ""
87 print(f" {ulaz_str} → {izlaz_str}{oznaka}")
88 print()
89

90 print("Oba koncepta su jednako valjana za dane podatke!")
91 print("Ali daju različita predviđanja za neviđene primjere.")

Output

No-Free-Lunch demonstracija:
=============================

Skup za učenje: {(⊥, ⊥): ⊥, (⊥, ⊤): ⊤, (⊤, ⊥): ⊤}
Testni primjer: (⊤, ⊤) = ?

Mogući koncepti konzistentni s podacima:
--
Koncept 1: XOR funkcija

Predviđanje za (⊤, ⊤): ⊥
Tablica:

(⊥, ⊥) → ⊥ ✓
(⊥, ⊤) → ⊤ ✓
(⊤, ⊥) → ⊤ ✓
(⊤, ⊤) → ⊥

Koncept 2: OR funkcija
Predviđanje za (⊤, ⊤): ⊤
Tablica:

(⊥, ⊥) → ⊥ ✓
(⊥, ⊤) → ⊤ ✓
(⊤, ⊥) → ⊤ ✓
(⊤, ⊤) → ⊤

Oba koncepta su jednako valjana za dane podatke!
Ali daju različita predviđanja za neviđene primjere.

196
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

9.1.5 Konstrukcija "savijenih" koncepata

NFL teoremi pokazuju da za svaki koncept C koji algoritam učenja dobro nauči, postoji
"savijeni" koncept C ′ koji će biti loše naučen:

C ′(x) =
{
C(x) ako x ∈ SkupUčenja
¬C(x) ako x /∈ SkupUčenja

Ovo je direktna analogija s Goodmanovim "grue" predikatom!

1 import numpy as np
2

3 def stvori_savijeni_koncept(originalni_koncept, skup_učenja):
4 """Stvara 'savijeni' koncept koji se slaže na skupu učenja ali ne generalizira."""
5

6 class SavijeniKoncept:
7 def __init__(self):
8 self.originalni = originalni_koncept
9 self.memorija = skup_učenja

10

11 def predviđa(self, primjer):
12 # Ako je primjer u skupu učenja, koristi originalnu funkciju
13 for x_mem, _ in self.memorija:
14 if np.allclose(primjer, x_mem):
15 return self.originalni(primjer)
16

17 # Inače, vrati suprotno od originalne funkcije
18 return not self.originalni(primjer)
19

20 return SavijeniKoncept()
21

22 # Definiraj jednostavan linearni koncept
23 def linearni_koncept(x):
24 """Jednostavan linearni klasifikator: x[0] + x[1] > 1"""
25 return x[0] + x[1] > 1
26

27 # Generiraj skup za učenje
28 np.random.seed(42)
29 skup_učenja_ml = []
30 for _ in range(6):
31 x = np.random.rand(2)
32 y = linearni_koncept(x)
33 skup_učenja_ml.append((x, y))
34

35 # Stvori savijeni koncept
36 savijeni = stvori_savijeni_koncept(linearni_koncept, skup_učenja_ml)
37

38 print("Konstrukcija 'savijenih' koncepata:")
39 print("="*36)

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 197

40 print("\nOriginalni koncept C: jednostavna linearna granica")
41 print(f"Skup za učenje: {len(skup_učenja_ml)} primjera")
42 print()
43

44 # Testiraj na skupu za učenje
45 print("Performanse na skupu za učenje:")
46 print("-"*32)
47 točnih_C = 0
48 točnih_C_prime = 0
49

50 for x, y in skup_učenja_ml:
51 pred_C = linearni_koncept(x)
52 pred_C_prime = savijeni.predviđa(x)
53

54 print(f"Primjer ({x[0]:.1f}, {x[1]:.1f}) → ", end="")
55 print(f"Očekivano: {'⊤' if y else '⊥'}, ", end="")
56 print(f"C: {'⊤' if pred_C else '⊥'} {'✓' if pred_C == y else '×'}, ", end="")
57 print(f"C': {'⊤' if pred_C_prime else '⊥'} {'✓' if pred_C_prime == y else '×'}")
58

59 if pred_C == y:
60 točnih_C += 1
61 if pred_C_prime == y:
62 točnih_C_prime += 1
63

64 print(f"\nTočnost na skupu za učenje:")
65 print(f" Koncept C: {100 * točnih_C / len(skup_učenja_ml):.1f}%")
66 print(f" Koncept C': {100 * točnih_C_prime / len(skup_učenja_ml):.1f}%")
67

68 # Testiraj na novim primjerima
69 print("\nPerformanse na testnom skupu:")
70 print("-"*30)
71

72 testni_skup = [np.random.rand(2) for _ in range(5)]
73 točnih_test_C = 0
74 točnih_test_C_prime = 0
75

76 for x_test in testni_skup:
77 y_pravi = linearni_koncept(x_test) # "Prava" oznaka
78 pred_C = linearni_koncept(x_test)
79 pred_C_prime = savijeni.predviđa(x_test)
80

81 print(f"Test ({x_test[0]:.1f}, {x_test[1]:.1f}) → ", end="")
82 print(f"C: {'⊤' if pred_C else '⊥'}, ", end="")
83 print(f"C': {'⊤' if pred_C_prime else '⊥'}", end="")
84 if pred_C != pred_C_prime:
85 print(" (različito!)")
86 else:
87 print()
88

89 if pred_C == y_pravi:
90 točnih_test_C += 1
91 if pred_C_prime == y_pravi:
92 točnih_test_C_prime += 1

198
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

93

94 print(f"\nTočnost na testnom skupu:")
95 print(f" Koncept C: {100 * točnih_test_C / len(testni_skup):.1f}% (dobar)")
96 print(f" Koncept C': {100 * točnih_test_C_prime / len(testni_skup):.1f}% (loš!)")
97 print("\nC' je 'savijen' - slaže se s C na skupu za učenje,")
98 print("ali se ponaša suprotno na novim primjerima!")

Output

Konstrukcija 'savijenih' koncepata:
====================================

Originalni koncept C: jednostavna linearna granica
Skup za učenje: 6 primjera

Performanse na skupu za učenje:

Primjer (0.4, 1.0) → Očekivano: ⊤, C: ⊤ ✓, C': ⊤ ✓
Primjer (0.7, 0.6) → Očekivano: ⊤, C: ⊤ ✓, C': ⊤ ✓
Primjer (0.2, 0.2) → Očekivano: ⊥, C: ⊥ ✓, C': ⊥ ✓
Primjer (0.1, 0.9) → Očekivano: ⊥, C: ⊥ ✓, C': ⊥ ✓
Primjer (0.6, 0.7) → Očekivano: ⊤, C: ⊤ ✓, C': ⊤ ✓
Primjer (0.0, 1.0) → Očekivano: ⊥, C: ⊥ ✓, C': ⊥ ✓

Točnost na skupu za učenje:
Koncept C: 100.0%
Koncept C': 100.0%

Performanse na testnom skupu:

Test (0.8, 0.2) → C: ⊤, C': ⊥ (različito!)
Test (0.2, 0.2) → C: ⊥, C': ⊤ (različito!)
Test (0.3, 0.5) → C: ⊥, C': ⊤ (različito!)
Test (0.4, 0.3) → C: ⊥, C': ⊤ (različito!)
Test (0.6, 0.1) → C: ⊥, C': ⊤ (različito!)

Točnost na testnom skupu:
Koncept C: 100.0% (dobar)
Koncept C': 0.0% (loš!)

C' je 'savijen' - slaže se s C na skupu za učenje,
ali se ponaša suprotno na novim primjerima!

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 199

9.1.6 Implikacije za strojno učenje

Induktivni bias kao nužnost

NFL teoremi i Goodmanov problem pokazuju da induktivni bias nije nedostatak već
nužnost svakog sustava učenja. Bez pretpostavki o prirodi problema, učenje je nemoguće.

Različiti algoritmi imaju različite induktivne pristranosti:

• Linearna regresija: pretpostavlja linearnu vezu

• Stabla odlučivanja: pretpostavljaju hijerarhijsku strukturu

• Neuronske mreže: pretpostavljaju kompozicionalnost

• k-NN: pretpostavlja lokalnu glatkoću

1 def najbliži_susjed(točka, skup_učenja):
2 """Jednostavan 1-NN klasifikator."""
3 min_udaljenost = float('inf')
4 najbliža_oznaka = None
5

6 for x, y in skup_učenja:
7 udaljenost = np.sqrt((točka[0] - x[0])**2 + (točka[1] - x[1])**2)
8 if udaljenost < min_udaljenost:
9 min_udaljenost = udaljenost

10 najbliža_oznaka = y
11

12 return najbliža_oznaka
13

14 def xor_funkcija(x):
15 """XOR funkcija: istinito ako je točno jedan ulaz > 0.5."""
16 return (x[0] > 0.5) != (x[1] > 0.5)
17

18 # Generiraj XOR podatke
19 xor_podaci = [
20 (np.array([0.1, 0.1]), False),
21 (np.array([0.1, 0.9]), True),
22 (np.array([0.9, 0.1]), True),
23 (np.array([0.9, 0.9]), False),
24 (np.array([0.3, 0.3]), False),
25 (np.array([0.3, 0.7]), True),
26 (np.array([0.7, 0.3]), True),
27 (np.array([0.7, 0.7]), False),
28]
29

30 # Definiraj različite algoritme s različitim biasima
31 algoritmi = [
32 ("Linearna granica (bias: linearnost)",
33 lambda x: x[0] + x[1] > 1),

200
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

34 ("Najbliži susjed (bias: lokalna glatkoća)",
35 lambda x: najbliži_susjed(x, xor_podaci)),
36 ("XOR funkcija (bias: točno odgovara problemu)",
37 xor_funkcija),
38 ("Uvijek ⊤ (bias: konstantnost)",
39 lambda x: True),
40]
41

42 print("Utjecaj induktivnog biasa:")
43 print("="*27)
44 print(f"\nPodatkovni skup: {len(xor_podaci)} točaka koje čine XOR uzorak")
45 print("\nRazličiti algoritmi s različitim biasima:")
46 print("-"*43)
47

48 test_točke = [np.array([0.5, 0.5]), np.array([0.2, 0.8])]
49

50 for i, (naziv, algoritam) in enumerate(algoritmi, 1):
51 print(f"\n{i}. {naziv}")
52

53 # Testiraj na nekoliko točaka
54 for točka in test_točke:
55 pred = algoritam(točka)
56 print(f" Predviđanje za ({točka[0]:.1f}, {točka[1]:.1f}): {'⊤' if pred else '⊥'}")
57

58 # Izračunaj točnost
59 točnih = sum(1 for x, y in xor_podaci if algoritam(x) == y)
60 točnost = 100 * točnih / len(xor_podaci)
61 print(f" Točnost na XOR podacima: {točnost:.1f}%")
62

63 # Komentar
64 if točnost > 90:
65 print(" → Savršen jer ima pravi bias")
66 elif točnost > 60:
67 print(" → Bolji, ali još uvijek ograničen")
68 else:
69 if "linearnost" in naziv:
70 print(" → Loš za XOR zbog krivog biasa")
71 else:
72 print(" → Loš zbog previše jednostavnog biasa")
73

74 print("\nZaključak: Uspjeh učenja ovisi o podudaranju")
75 print("između induktivnog biasa i stvarnog problema!")

Output

Utjecaj induktivnog biasa:
===========================

Podatkovni skup: 8 točaka koje čine XOR uzorak

Različiti algoritmi s različitim biasima:

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 201

1. Linearna granica (bias: linearnost)
Predviđanje za (0.5, 0.5): ⊥
Predviđanje za (0.2, 0.8): ⊥
Točnost na XOR podacima: 25.0%
→ Loš za XOR zbog krivog biasa

2. Najbliži susjed (bias: lokalna glatkoća)
Predviđanje za (0.5, 0.5): ⊥
Predviđanje za (0.2, 0.8): ⊤
Točnost na XOR podacima: 100.0%
→ Savršen jer ima pravi bias

3. XOR funkcija (bias: točno odgovara problemu)
Predviđanje za (0.5, 0.5): ⊥
Predviđanje za (0.2, 0.8): ⊤
Točnost na XOR podacima: 100.0%
→ Savršen jer ima pravi bias

4. Uvijek ⊤ (bias: konstantnost)
Predviđanje za (0.5, 0.5): ⊤
Predviđanje za (0.2, 0.8): ⊤
Točnost na XOR podacima: 50.0%
→ Loš zbog previše jednostavnog biasa

Zaključak: Uspjeh učenja ovisi o podudaranju
između induktivnog biasa i stvarnog problema!

9.1.7 Filozofske implikacije

Projektibilnost vs. neprojektibilnost

Goodman razlikuje projektibilne i neprojektibilne predikate:

• Projektibilni: "zelen", "okrugao", "teži od 1kg"

• Neprojektibilni: "grue", "gruen s prijelazom 2100."

Ali što čini predikat projektibilnim? Goodman sugerira da je to stvar ukorijenjenosti
(entrenchment) u našem jeziku i praksi.

Implikacije za AI i AGI

1. Nema univerzalnog algoritma učenja - svaki mora imati bias

2. Prijelaz od podataka na znanje zahtijeva pretpostavke

202
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

3. Ljudska inteligencija možda uspijeva jer ima evolucijski oblikovane biase

4. AGI sustavi moraju riješiti problem izbora pravog biasa

1 import random
2

3 class Agent:
4 """Agent s određenim induktivnim biasom."""
5

6 def __init__(self, bias_tip):
7 self.bias = bias_tip
8 self.fitness = 0
9

10 def predviđa(self, x):
11 """Predviđanje ovisno o biasu."""
12 if self.bias == "linearni":
13 return x[0] + x[1] > 1
14 elif self.bias == "kvadratni":
15 return x[0]**2 + x[1]**2 > 0.5
16 elif self.bias == "neutralni":
17 return random.choice([True, False])
18 elif self.bias == "složeni_1":
19 return (x[0] > 0.5) != (x[1] > 0.5) # Približno XOR
20 elif self.bias == "složeni_2":
21 return abs(x[0] - x[1]) > 0.3
22 elif self.bias == "kvadratni_modificiran":
23 return (x[0] - 0.5)**2 + (x[1] - 0.5)**2 < 0.3
24 else:
25 return False
26

27 def evaluiraj(self, test_podaci):
28 """Evaluira agenta na test podacima."""
29 točnih = 0
30 for x, y in test_podaci:
31 if self.predviđa(x) == y:
32 točnih += 1
33 self.fitness = točnih / len(test_podaci)
34 return self.fitness
35

36 def evolucija_biasa(generacije=20, veličina_populacije=20):
37 """Simulira evoluciju induktivnog biasa."""
38

39 # Mogući biasi
40 biasi = ["linearni", "kvadratni", "neutralni",
41 "složeni_1", "složeni_2", "kvadratni_modificiran"]
42

43 # Stvori početnu populaciju
44 populacija = [Agent(random.choice(biasi)) for _ in range(veličina_populacije)]
45

46 # Test podaci (XOR problem)
47 test_podaci = [
48 (np.array([0.2, 0.2]), False),

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 203

49 (np.array([0.2, 0.8]), True),
50 (np.array([0.8, 0.2]), True),
51 (np.array([0.8, 0.8]), False),
52 (np.array([0.5, 0.1]), False),
53 (np.array([0.1, 0.5]), False),
54 (np.array([0.9, 0.5]), True),
55 (np.array([0.5, 0.9]), True),
56 (np.array([0.4, 0.4]), False),
57 (np.array([0.6, 0.6]), False),
58 (np.array([0.3, 0.7]), True),
59 (np.array([0.7, 0.3]), True),
60]
61

62 print("Simulacija evolucije induktivnog biasa:")
63 print("="*41)
64 print(f"\nInicijalna populacija: {veličina_populacije} agenata s različitim biasima")
65 print("Okoliš: jednostavan XOR svijet")
66 print("\nEvolucija kroz generacije:")
67 print("-"*27)
68

69 povijest = []
70

71 for gen in range(generacije):
72 # Evaluiraj sve agente
73 for agent in populacija:
74 agent.evaluiraj(test_podaci)
75

76 # Sortiraj po fitness-u
77 populacija.sort(key=lambda a: a.fitness, reverse=True)
78

79 # Zapisivanje najboljih
80 if gen % 5 == 0 or gen == generacije - 1:
81 najbolji = populacija[0]
82 print(f"Generacija {gen+1}: Najbolji bias = {najbolji.bias} "
83 f"({najbolji.fitness*100:.1f}% točnosti)")
84

85 # Selekcija i reprodukcija (elitizam + turnir)
86 nova_populacija = populacija[:5] # Zadrži najboljih 5
87

88 while len(nova_populacija) < veličina_populacije:
89 # Turnirska selekcija
90 turnir = random.sample(populacija[:10], 2)
91 pobjednik = max(turnir, key=lambda a: a.fitness)
92

93 # Stvori novog agenta s mogućom mutacijom
94 if random.random() < 0.1: # 10% šanse za mutaciju
95 novi_bias = random.choice(biasi)
96 else:
97 novi_bias = pobjednik.bias
98

99 nova_populacija.append(Agent(novi_bias))
100

101 populacija = nova_populacija

204
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

102

103 # Finalna statistika
104 print("\nDistribucija biasa u finaliznoj populaciji:")
105 print("-"*45)
106

107 bias_count = {}
108 for agent in populacija:
109 bias_count[agent.bias] = bias_count.get(agent.bias, 0) + 1
110

111 for bias, count in sorted(bias_count.items(), key=lambda x: x[1], reverse=True):
112 postotak = 100 * count / veličina_populacije
113 print(f"{bias}: {postotak:.1f}%")
114

115 print("\nZaključak: Evolucija prirodno selektira biase")
116 print("koji odgovaraju strukturi okoliša!")
117

118 # Pokreni simulaciju
119 evolucija_biasa()

Output

Simulacija evolucije induktivnog biasa:
===

Inicijalna populacija: 20 agenata s različitim biasima
Okoliš: jednostavan XOR svijet

Evolucija kroz generacije:

Generacija 1: Najbolji bias = kvadratni (83.3% točnosti)
Generacija 6: Najbolji bias = složeni_1 (100.0% točnosti)
Generacija 11: Najbolji bias = složeni_1 (100.0% točnosti)
Generacija 16: Najbolji bias = složeni_1 (100.0% točnosti)
Generacija 20: Najbolji bias = složeni_1 (100.0% točnosti)

Distribucija biasa u finaliznoj populaciji:

složeni_1: 95.0%
složeni_2: 5.0%

Zaključak: Evolucija prirodno selektira biase
koji odgovaraju strukturi okoliša!

9.1.8 Praktične implikacije i rješenja

Kako se nositi s Goodmanovim problemom u praksi?

1. Regularizacija - ograničava složenost hipoteza

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 205

2. Križna validacija - testira generalizaciju

3. Occamova oštrica - preferira jednostavnije hipoteze

4. Domensko znanje - koristi ljudsko znanje o problemu

5. Ansambl metode - kombinira različite biase

1 def occamova_oštrica(hipoteze):
2 """Odabire najjednostavniju hipotezu."""
3 # Definiraj složenost kao broj parametara/prijelaza
4 složenosti = {}
5 for naziv, hip in hipoteze.items():
6 if naziv == "standard":
7 složenosti[naziv] = 1 # Najjednostavnija
8 else:
9 # Grue hipoteze imaju dodatni parametar (vrijeme prijelaza)

10 složenosti[naziv] = 2
11

12 # Odaberi hipotezu s najmanjom složenošću
13 najjednostavnija = min(složenosti.items(), key=lambda x: x[1])
14 return najjednostavnija[0], složenosti
15

16 def bayesov_pristup(hipoteze, opažanja, priori):
17 """Koristi Bayesovo zaključivanje s priorima."""
18 posteriori = {}
19

20 for naziv, hip in hipoteze.items():
21 # Likelihood - sve hipoteze objašnjavaju podatke jednako dobro
22 likelihood = 1.0 # Pojednostavljeno
23

24 # Posterior proporcionalan je prior * likelihood
25 posteriori[naziv] = priori[naziv] * likelihood
26

27 # Normaliziraj
28 ukupno = sum(posteriori.values())
29 for naziv in posteriori:
30 posteriori[naziv] /= ukupno
31

32 # Odaberi hipotezu s najvećim posteriorom
33 najbolja = max(posteriori.items(), key=lambda x: x[1])
34 return najbolja[0], posteriori
35

36 def ansambl_metoda(hipoteze, težine):
37 """Kombinira predviđanja više hipoteza."""
38 test_vremena = [
39 datetime(2025, 1, 1),
40 datetime(2040, 1, 1),
41 datetime(2060, 1, 1),
42 datetime(2110, 1, 1)
43]
44

206
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

45 predviđanja = {}
46 for t in test_vremena:
47 glasovi = {"zelen": 0, "plav": 0}
48

49 for naziv, hip in hipoteze.items():
50 pred = hip.predviđa(t)
51 glasovi[pred] += težine[naziv]
52

53 predviđanja[t.year] = glasovi
54

55 return predviđanja
56

57 # Demonstracija
58 print("Praktična rješenja za Goodmanov problem:")
59 print("="*41)
60 print("\nTest različitih pristupa na 'grue' problemu:")
61

62 # Pripremi hipoteze
63 test_hipoteze = {
64 "standard": hipoteze["standard"],
65 "grue_2030": hipoteze["grue_2030"],
66 "grue_2050": hipoteze["grue_2050"],
67 "grue_2100": hipoteze["grue_2100"]
68 }
69

70 # 1. Bez regularizacije
71 print("\n1. Bez regularizacije (prihvaća sve hipoteze):")
72 print(f" Razmatrane hipoteze: {', '.join(test_hipoteze.keys())}")
73 print(" Odabrana: standard (proizvoljan izbor)")
74 print(" Problem: Nema kriterija za izbor!")
75

76 # 2. Occamova oštrica
77 print("\n2. Occamova oštrica (preferira jednostavnije):")
78 najbolja_occam, složenosti = occamova_oštrica(test_hipoteze)
79 print(" Složenost hipoteza:")
80 for naziv, slož in sorted(složenosti.items(), key=lambda x: x[1]):
81 komentar = " (najjednostavnija)" if slož == 1 else ""
82 print(f" {naziv}: {slož}{komentar}")
83 print(f" Odabrana: {najbolja_occam}")
84 print(" Razlog: Najniža složenost")
85

86 # 3. Bayesov pristup
87 print("\n3. Bayesov pristup (koristi priore):")
88 priori = {
89 "standard": 0.7, # Visok prior za standardnu hipotezu
90 "grue_2030": 0.1,
91 "grue_2050": 0.1,
92 "grue_2100": 0.1
93 }
94 najbolja_bayes, posteriori = bayesov_pristup(test_hipoteze, opažanja_zeleni, priori)
95

96 print(" Prior vjerojatnosti:")
97 for naziv, p in priori.items():

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 207

98 print(f" {naziv}: {p:.3f}")
99 print(" Posterior (nakon opažanja):")

100 for naziv, p in posteriori.items():
101 print(f" {naziv}: {p:.3f}")
102 print(f" Odabrana: {najbolja_bayes}")
103 print(" Razlog: Najviši posterior")
104

105 # 4. Ansambl metoda
106 print("\n4. Ansambl metoda (kombinira hipoteze):")
107 težine = {
108 "standard": 0.7,
109 "grue_2030": 0.1,
110 "grue_2050": 0.1,
111 "grue_2100": 0.1
112 }
113 ansambl_pred = ansambl_metoda(test_hipoteze, težine)
114 print(" Težinski prosjek predviđanja:")
115 for godina, glasovi in ansambl_pred.items():
116 ukupno = sum(glasovi.values())
117 postotak_zelen = 100 * glasovi["zelen"] / ukupno
118 postotak_plav = 100 * glasovi["plav"] / ukupno
119 print(f" Za {godina}: {postotak_zelen:.1f}% zeleno, {postotak_plav:.1f}% plavo")
120 print(" Predviđanje: Ponderirana kombinacija")
121

122 print("\nZaključak: Praktična rješenja koriste dodatne")
123 print("kriterije izvan čiste logike za izbor hipoteza.")

Output

Praktična rješenja za Goodmanov problem:
===

Test različitih pristupa na 'grue' problemu:

1. Bez regularizacije (prihvaća sve hipoteze):
Razmatrane hipoteze: standard, grue_2030, grue_2050, grue_2100
Odabrana: standard (proizvoljan izbor)
Problem: Nema kriterija za izbor!

2. Occamova oštrica (preferira jednostavnije):
Složenost hipoteza:

standard: 1 (najjednostavnija)
grue_2030: 2
grue_2050: 2
grue_2100: 2

Odabrana: standard
Razlog: Najniža složenost

3. Bayesov pristup (koristi priore):
Prior vjerojatnosti:

standard: 0.700

208
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

grue_2030: 0.100
grue_2050: 0.100
grue_2100: 0.100

Posterior (nakon opažanja):
standard: 0.700
grue_2030: 0.100
grue_2050: 0.100
grue_2100: 0.100

Odabrana: standard
Razlog: Najviši posterior

4. Ansambl metoda (kombinira hipoteze):
Težinski prosjek predviđanja:
Za 2025: 100.0% zeleno, 0.0% plavo
Za 2040: 90.0% zeleno, 10.0% plavo
Za 2060: 80.0% zeleno, 20.0% plavo
Za 2110: 70.0% zeleno, 30.0% plavo
Predviđanje: Ponderirana kombinacija

Zaključak: Praktična rješenja koriste dodatne
kriterije izvan čiste logike za izbor hipoteza.

9.1.9 Zaključak

Kroz ovu bilježnicu istražili smo duboku vezu između Goodmanovog novog problema
indukcije i No-Free-Lunch teorema u strojnom učenju:

Ključni uvidi:

1. Beskonačnost hipoteza: Za svaki skup podataka postoji beskonačno mnogo jednako
dobro podržanih hipoteza

2. Nužnost biasa: Bez induktivnog biasa, učenje je nemoguće - to nije bug već feature!

3. NFL kao formalizacija: No-Free-Lunch teoremi su matematička formalizacija Good-
manovog filozofskog argumenta

4. Evolucija i bias: Ljudska sposobnost učenja možda uspijeva zbog evolucijski oblikovanih
biasa

5. Praktična rješenja: Regularizacija, Occamova oštrica i Bayesov pristup nude načine
izbora među hipotezama

Filozofske implikacije:

Goodmanov problem pokazuje da čista logika nije dovoljna za induktivno zaključivanje.
Trebamo dodatne kriterije - jednostavnost, priore, domensko znanje - koji nisu čisto logički.

9.1. NOVI PROBLEM INDUKCIJE KROZ PRIZMU RAČUNALNIH ZNANOSTI 209

Implikacije za AI:

Svaki sustav umjetne inteligencije mora riješiti Goodmanov problem implicitnim ili eksplicitnim
izborom induktivnog biasa. Nema univerzalnog algoritma učenja - uspjeh ovisi o
podudaranju između biasa algoritma i strukture problema.

Kao što Goodman zaključuje:

"Valjanost induktivnog zaključka nije stvar logike već stvar povijesti uporabe
predikata."

Možda je ključ uspješnog strojnog učenja u tome da naučimo kako odabrati prave biase za
prave probleme - lekcija koju evolucija uči već milijunima godina.

210
POGLAVLJE 9. GOODMANOVI SVIJETOVI: PROBLEM INDUKCIJE I STROJNO

UČENJE

Dio III

DODACI

211

Dodatak A

Uvod u Python za studente filozofije
i ostalih ne-tehničkih grupa

A.1 Zašto bi se filozof zanimao za programiranje?

Na prvi pogled, svijet filozofije i svijet programiranja mogu se činiti kao dva potpuno odvojena
svemira. Jedan se bavi vječnim pitanjima o smislu, postojanju i vrijednostima, dok se drugi
bavi preciznim uputama za strojeve. Međutim, ispod površine, ova dva svijeta dijele duboke i
iznenađujuće veze. Logika, temeljni alat filozofske analize, ujedno je i srce svakog računalnog
programa. Način na koji strukturiramo argumente, definiramo pojmove i izvodimo zaključke
u filozofiji ima svoj odraz u načinu na koji pišemo kod.

Učenje programskog jezika Python, stoga, za studenta filozofije nije samo stjecanje tehničke
vještine, već i prilika za istraživanje poznatih koncepata iz nove perspektive. Kroz Python,
apstraktni pojmovi poput varijabli, uvjeta i petlji postaju konkretni alati s kojima možete
raditi, eksperimentirati i stvarati.

Ovo poglavlje je osmišljeno kao blagi uvod u Python, posebno prilagođen studentima huma-
nističkih i društvenih znanosti. Nećemo se baviti složenim matematičkim problemima niti
dubokim tehničkim detaljima. Umjesto toga, fokusirat ćemo se na osnove jezika, koristeći
primjere koji su vam bliski: analizu teksta, rad s riječima i rečenicama, te istraživanje ideja
kroz kod. Koristit ćemo se Jupyter bilježnicama, interaktivnim okruženjem koje omogućuje
pisanje koda, teksta i vizualizacija na jednom mjestu, čineći učenje intuitivnim i zabavnim.

Dok budete prolazili kroz ovo poglavlje, potičem vas da ne gledate na kod samo kao na niz
naredbi, već kao na novi način izražavanja i strukturiranja misli. Možda ćete otkriti da vam
učenje programiranja može pomoći da postanete precizniji u svom filozofskom promišljanju,
jasniji u svom izražavanju i kreativniji u svom pristupu problemima. Dobrodošli u svijet
Pythona!

A.2 Osnovni pojmovi: Varijable, tipovi podataka i izrazi

213

214
DODATAK A. UVOD U PYTHON ZA STUDENTE FILOZOFIJE I OSTALIH

NE-TEHNIČKIH GRUPA

A.2.1 Varijable: Imenovanje ideja

U filozofiji, često koristimo simbole ili nazive kako bismo predstavili složene ideje. Na primjer,
u logici, slovo P može predstavljati propoziciju "Svi ljudi su smrtni". Na sličan način, u
Pythonu koristimo varijable kao imenovane spremnike za pohranu podataka.

Definicija A.1. Varijabla je imenovani prostor u memoriji koji služi za pohranu
vrijednosti. Ime varijable (identifikator) koristimo kako bismo pristupili pohranjenoj
vrijednosti.

Varijablu možete zamisliti kao oznaku koju pridružujete nekoj vrijednosti. Operator dodjele,
znak jednakosti (=), koristi se za dodjeljivanje vrijednosti varijabli.

Dodjeljivanje vrijednosti varijablama.

1 pozdrav = "Zdravo, svijete!"
2 godinarodenjakanta = 1724
3 pipriblizno = 3.14159

U ovom primjeru, pozdrav, godinarodenjakanta i pipriblizno su nazivi varijabli. Jednom
kada definiramo varijablu, možemo je koristiti u daljnjem kodu, na primjer za ispis njezine
vrijednosti pomoću ugrađene funkcije print().

1 print(pozdrav)
2 print(godinarodenjakanta)

Izlaz:
Zdravo, svijete! 1724

A.2.2 Tipovi podataka: Različite vrste informacija

U filozofiji, razlikujemo različite vrste pojmova: konkretne, apstraktne, pojedinačne, opće.
Slično tome, u Pythonu, svaka vrijednost pripada određenom tipu podataka. Osnovni tipovi
podataka koje ćemo za početak koristiti su:

• String (str): Niz znakova, odnosno tekstualni podaci. Stringovi se uvijek pišu unutar
navodnika (jednostrukih ” ili dvostrukih ""). Primjeri: "Sokrat", ’Platonova Država’.

• Integer (int): Cijeli brojevi, bez decimalnog dijela. Primjeri: 42, -399, 2025.

• Float (float): Brojevi s pomičnim zarezom (decimalni brojevi). Primjeri: 3.14, 9.81,
-0.5.

• Boolean (bool): Logička ili istinitosna vrijednost. Može imati samo dvije vrijednosti:
True (istina) ili False (laž).

Python je dinamički tipiziran jezik, što znači da ne moramo unaprijed deklarirati tip varijable.
Interpretator automatski prepoznaje tip podatka kada dodijelimo vrijednost. Tip varijable
možemo provjeriti pomoću ugrađene funkcije type().

A.3. STRUKTURE PODATAKA: ORGANIZIRANJE MISLI 215

Provjera tipova podataka.

1 filozof = "Aristotel"
2 godinarodenja = -384
3 visinaumetrima = 1.7
4 jeliziv = False
5

6 print(type(filozof))
7 print(type(godinarodenja))
8 print(type(visinaumetrima))
9 print(type(jeliziv))

Izlaz:
<class ’str’> <class ’int’> <class ’float’> <class ’bool’>

A.2.3 Izrazi: Kombiniranje vrijednosti

U logici, kombiniramo propozicije pomoću veznika (∧,∨,→) kako bismo stvorili složenije
izraze. U Pythonu, izrazi su kombinacije vrijednosti, varijabli i operatora koje se izračunavaju
(evaluiraju) kako bi proizvele novu vrijednost.

• Aritmetički izrazi: Koriste standardne matematičke operatore (+, -, *, /).

1 a = 10
2 b = 5
3 zbroj = a + b
4 print(zbroj)

Izlaz:
15

• String izrazi: Operator + se može koristiti za spajanje (konkatenaciju) stringova.

1 ime = "Immanuel"
2 prezime = "Kant"
3 punoime = ime + " " + prezime
4 print(punoime)

Izlaz:
Immanuel Kant

A.3 Strukture podataka: Organiziranje misli

Dok osnovni tipovi podataka predstavljaju pojedinačne vrijednosti, strukture podataka
služe za organiziranje i pohranu više vrijednosti u jednoj varijabli.

216
DODATAK A. UVOD U PYTHON ZA STUDENTE FILOZOFIJE I OSTALIH

NE-TEHNIČKIH GRUPA

A.3.1 Liste: Uređeni nizovi argumenata

U filozofskim tekstovima, često nailazimo na nabrajanja ili nizove ideja, poput Aristotelovih
četiriju uzroka. U Pythonu, liste su strukture podataka koje nam omogućuju pohranu
uređenog niza elemenata. Elementi liste se navode unutar uglatih zagrada [], odvojeni
zarezima.

Definicija A.2. Lista (list) je promjenjiva, uređena kolekcija elemenata. "Uređena"
znači da elementi zadržavaju redoslijed kojim su dodani. "Promjenjiva" znači da možemo
dodavati, uklanjati ili mijenjati elemente nakon što je lista stvorena.

Kreiranje i pristupanje elementima liste.

1 aristoteloviuzroci = ["materijalni", "formalni", "djelatni", "svršni"] #
Popiy Aristotelovih uzroka↪→

2

3 # Pristupanje elementima pomoću indeksa
4 # Indeksiranje počinje od 0!
5 prviuzrok = aristoteloviuzroci[0]
6 treciuzrok = aristoteloviuzroci[2]
7

8 print("Prvi uzrok je:", prviuzrok)
9 print("Treći uzrok je:", treciuzrok)

Izlaz:
Prvi uzrok je: materijalni Treći uzrok je: djelatni

Liste su promjenjive. Možemo im dodavati nove elemente metodom append() ili uklanjati
postojeće metodom remove().

1 aristoteloviuzroci.append("imaginarni") # Dodavanje petog, "imaginarnog"
uzroka↪→

2 print(aristoteloviuzroci)
3

4 # Uklanjanje "imaginarnog" uzroka
5 aristoteloviuzroci.remove("imaginarni")
6 print(aristoteloviuzroci)

Izlaz:
[’materijalni’, ’formalni’, ’djelatni’, ’svršni’, ’imaginarni’] [’materijalni’,
’formalni’, ’djelatni’, ’svršni’]

A.3.2 Rječnici: Asocijativni parovi pojmova i definicija

U filozofiji, često definiramo pojmove tako da im pridružujemo njihove definicije. U Pythonu,
rječnici (dict) omogućuju pohranu podataka u obliku parova ključ-vrijednost. Ključevi
su jedinstveni i koriste se za pristup pripadajućim vrijednostima.

A.4. KONTROLA TOKA: USMJERAVANJE ARGUMENTACIJE 217

Definicija A.3. Rječnik (dict) je promjenjiva, neuređena kolekcija parova ključ-
vrijednost. Svaki ključ mora biti jedinstven unutar rječnika.

Rječnici se definiraju unutar vitičastih zagrada , a parovi ključ-vrijednost odvojeni su dvotoč-
kom.

Kreiranje i korištenje rječnika.

1 filozofskirjecnik = {
2 "epistemologija": "grana filozofije koja se bavi znanjem",
3 "metafizika": "grana filozofije koja se bavi prvim uzrocima i principima

bića",↪→

4 "etika": "grana filozofije koja se bavi moralom"
5 }
6

7 # Pristupanje vrijednosti pomoću ključa
8 definicijaetike = filozofskirjecnik["etika"]
9 print(definicijaetike)

10

11 # Dodavanje novog para
12 filozofskirjecnik["logika"] = "znanost o metodama i principima ispravnog

zaključivanja"↪→

13 print(filozofskirjecnik["logika"])

Izlaz:
grana filozofije koja se bavi moralom znanost o metodama i principima ispravnog
zaključivanja

A.4 Kontrola toka: Usmjeravanje argumentacije

Programi se ne izvršavaju uvijek linearno, od prve do zadnje naredbe. Kontrola toka odnosi
se na naredbe koje nam omogućuju da usmjeravamo tijek izvršavanja programa, donosimo
odluke i ponavljamo operacije.

A.4.1 Uvjetno izvršavanje: if, elif, else

U filozofskoj argumentaciji, često koristimo uvjetne rečenice oblika "Ako P, onda Q". U
Pythonu, uvjetne naredbe nam omogućuju da izvršimo određeni dio koda samo ako je
zadovoljen neki uvjet. Uvjet je izraz koji se evaluira kao True ili False.

Korištenje if-else strukture.

1 tvrdnja = "Sokrat je smrtan"
2

3 if "Sokrat" in tvrdnja:
4 print("Tvrdnja se odnosi na Sokrata.")
5 else:

218
DODATAK A. UVOD U PYTHON ZA STUDENTE FILOZOFIJE I OSTALIH

NE-TEHNIČKIH GRUPA

6 print("Tvrdnja se ne odnosi na Sokrata.")

Izlaz:
Tvrdnja se odnosi na Sokrata.

Možemo koristiti i elif (skraćeno od else if) za provjeru više uzastopnih uvjeta.

1 godina = 1804
2

3 if godina < 476:
4 print("Antička filozofija")
5 elif 476 <= godina < 1500:
6 print("Srednjovjekovna filozofija")
7 else:
8 print("Moderna i suvremena filozofija")

Izlaz:
Moderna i suvremena filozofija

A.4.2 Ponavljanje: for petlja

Često je potrebno ponoviti istu radnju više puta. Na primjer, analizirati svaku riječ u rečenici.
U Pythonu, for petlja nam omogućuje da iteriramo (prolazimo) kroz elemente sekvence
(poput liste ili stringa) i za svaki element izvršimo određeni blok koda.

Iteriranje kroz listu pomoću for petlje.

1 stoickevrline = ["mudrost", "pravednost", "hrabrost", "umjerenost"]
2

3 print("Prema stoicima, temeljne vrline su:")
4 for vrlina in stoickevrline:
5 print("- " + vrlina)

Izlaz:
Prema stoicima, temeljne vrline su: - mudrost - pravednost - hrabrost -
umjerenost

U ovom primjeru, varijabla vrlina se naziva varijabla petlje. U svakom prolasku (iteraciji)
kroz petlju, ona poprima vrijednost sljedećeg elementa iz liste stoickevrline.

A.5 Funkcije: Modularizacija i ponovna upotreba misli

U filozofiji, kompleksne ideje često razlažemo na manje, razumljivije dijelove. U Pythonu,
funkcije nam omogućuju da grupiramo niz naredbi u logičku cjelinu koju možemo pozvati
više puta. Time se izbjegava ponavljanje koda i programi postaju organiziraniji i lakši za
čitanje.

A.6. PRIMJER IZ PRAKSE: ANALIZA FILOZOFSKOG TEKSTA 219

Definicija A.4. Funkcija je imenovani blok koda koji izvršava određeni zadatak. Može
primiti ulazne podatke (argumente) i vratiti izlaznu vrijednost.

Funkcije definiramo pomoću ključne riječi def.

Definiranje i pozivanje jednostavne funkcije.

1 def pozdravifilozofa(ime):
2 """
3 Ova funkcija ispisuje pozdrav filozofu čije je ime
4 prolijeđeno kao argument.
5 """
6 print("Pozdrav, " + ime + "!")
7

8 # Pozivanje funkcije
9 pozdravifilozofa("Platon")

10 pozdravifilozofa("Nietzsche")

Izlaz:
Pozdrav, Platon! Pozdrav, Nietzsche!

Tekst unutar trostrukih navodnika odmah nakon definicije funkcije naziva se docstring i služi
kao dokumentacija funkcije.

Funkcije mogu vraćati vrijednost pomoću naredbe return. Vraćena vrijednost se tada može
pohraniti u varijablu ili koristiti u daljnjim izrazima.

Funkcija koja vraća vrijednost.

1 def sastaviime(ime, prezime):
2 """Sastavlja puno ime iz dva dijela."""
3 return ime + " " + prezime
4

5 punoimefilozofa = sastaviime("Simone", "de Beauvoir")
6 print(punoimefilozofa)

Izlaz:
Simone de Beauvoir

A.6 Primjer iz prakse: Analiza filozofskog teksta

Sada ćemo primijeniti sve što smo naučili na konkretnom primjeru: analizi kratkog filozofskog
teksta. Cilj nam je prebrojati koliko se puta svaka riječ pojavljuje u poznatoj Descartesovoj
izreci.

Brojanje riječi u tekstu.

220
DODATAK A. UVOD U PYTHON ZA STUDENTE FILOZOFIJE I OSTALIH

NE-TEHNIČKIH GRUPA

1 tekst = "Mislim, dakle jesam. Jesam, dakle postojim." # Korak 1: Definiramo
tekst za analizu↪→

2 print("Originalni tekst:", tekst)
3

4 # Korak 2: Priprema teksta
5 # Pretvaramo sva slova u mala slova kako 'Mislim' i 'mislim' ne bi bili

različite riječi↪→

6 tekstmali = tekst.lower()
7 # Uklanjamo interpunkcijske znakove
8 tekstbeztocke = tekstmali.replace('.', '')
9 tekstcisti = tekstbeztocke.replace(',', '')

10 print("Očišćeni tekst:", tekstcisti)
11

12 # Korak 3: Tokenizacija - razdvajanje teksta u listu riječi
13 rijeci = tekstcisti.split()
14 print("Lista riječi:", rijeci)
15

16 # Korak 4: Brojanje riječi pomoću rječnika
17 brojacrijeci = {}
18 for rijec in rijeci:
19 if rijec in brojacrijeci:
20 # Ako riječ već postoji u rječniku, povećaj brojač za 1
21 brojacrijeci[rijec] = brojacrijeci[rijec] + 1
22 else:
23 # Ako je ovo prvo pojavljivanje riječi, dodaj je u rječnik s

vrijednošću 1↪→

24 brojacrijeci[rijec] = 1
25

26 # Korak 5: Ispis rezultata
27 print("\nFrekvencija riječi:")
28 for rijec, broj in brojacrijeci.items():
29 print(f"'{rijec}': {broj}")

Izlaz:
Originalni tekst: Mislim, dakle jesam. Jesam, dakle postojim. Očišćeni tekst:
mislim dakle jesam jesam dakle postojim Lista riječi: [’mislim’, ’dakle’,
’jesam’, ’jesam’, ’dakle’, ’postojim’]
Frekvencija riječi: ’mislim’: 1 ’dakle’: 2 ’jesam’: 2 ’postojim’: 1

Ovaj primjer integrira varijable, stringove i njihove metode (.lower(), .replace(), .split()),
liste, rječnike, for petlju i if-else uvjetnu logiku kako bi se riješio konkretan problem iz
domene analize teksta.

Vježbe za poglavlje 1

Vježba A.1. Kreirajte rječnik koji sadrži pet vaših omiljenih filozofa kao ključeve, a njihove
glavne filozofske ideje ili djela kao vrijednosti. Zatim, koristeći for petlju, ispišite svakog
filozofa i njegovu ideju u formatu: Ime Filozofa: Glavna ideja.
Vježba A.2. Napišite funkciju pod nazivom brojrijeci koja prima jedan argument (string) i
vraća broj riječi u tom stringu. (Savjet: metoda split() bi mogla biti korisna). Testirajte
funkciju s nekoliko rečenica.
Vježba A.3. Napišite program koji provjerava pripada li godina određenom filozofskom raz-

A.7. ZAKLJUČAK: SLJEDEĆI KORACI 221

doblju.

1. Definirajte listu koja sadrži nekoliko filozofa egzistencijalizma, npr. egzistencijalisti
= ["Sartre", "Camus", "Kierkegaard"].

2. Pitajte korisnika da unese ime filozofa pomoću funkcije input().

3. Koristeći if naredbu i operator in, provjerite nalazi li se uneseno ime u vašoj listi.

4. Ispišite odgovarajuću poruku, npr. Sartre je egzistencijalist. ili Platon nije
egzistencijalist..

A.7 Zaključak: Sljedeći koraci

Ovo poglavlje pružilo je kratak pregled osnovnih elemenata programskog jezika Python.
Vidjeli smo kako varijable i tipovi podataka predstavljaju osnovne gradivne blokove, kako
strukture podataka poput lista i rječnika organiziraju informacije, kako kontrola toka usmjerava
izvršavanje programa i kako funkcije omogućuju modularnost i ponovnu upotrebu koda.

Kao studenti filozofije, sada imate temelj za daljnje istraživanje. Sljedeći koraci mogli bi
uključivati:

• Rad s tekstom: Python je izuzetno moćan za analizu teksta. Možete istražiti kako
brojati riječi, analizirati sentiment, tražiti određene pojmove u velikim tekstualnim
korpusima (npr. djelima pojedinih filozofa) i još mnogo toga. Biblioteke poput NLTK
(Natural Language Toolkit) i spaCy otvaraju vrata svijeta računalne lingvistike.

• Vizualizacija podataka: Pomoću biblioteka kao što su Matplotlib i Seaborn, možete
vizualizirati odnose između pojmova, učestalost riječi ili druge uvide koje dobijete
analizom teksta, pretvarajući apstraktne podatke u jasne grafove.

• Web scraping: Možete naučiti kako automatski prikupljati tekstualne podatke s web
stranica, na primjer, s filozofskih enciklopedija ili online arhiva.

Najvažnije je da se ne bojite eksperimentirati. Jupyter bilježnice su idealno okruženje za
to. Pokušajte mijenjati primjere, postavljati si vlastite male probleme i tražiti rješenja.
Programiranje, kao i filozofija, je vještina koja se razvija kroz praksu, znatiželju i upornost.
Sretno s kodiranjem!

222
DODATAK A. UVOD U PYTHON ZA STUDENTE FILOZOFIJE I OSTALIH

NE-TEHNIČKIH GRUPA

Dodatak B

Literatura

Pregled literature

Ova bibliografija obuhvaća temeljne radove iz područja logike, filozofije logike, računarske
znanosti i njihovih međusobnih veza. Organizirana je u nekoliko tematskih cjelina koje prate
strukturu udžbenika.

B.1 Klasični filozofski temelji logike

[Witt22] Wittgenstein, L. (1922). Tractatus Logico-Philosophicus. Trans. C. K. Ogden.
London: Routledge. [Novija izdanja: Oxford 2023, ISBN: 978-0-19-886137-9;
Penguin 2023, ISBN: 978-0-24-168195-4]

[Frege79] Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formels-
prache des reinen Denkens. Halle: Louis Nebert.

[Frege84] Frege, G. (1884). Die Grundlagen der Arithmetik. Breslau: Wilhelm Koebner.
[Engleski prijevod: The Foundations of Arithmetic, Northwestern University Press,
ISBN: 0-8101-0605-1]

[Frege93] Frege, G. (1893/1903). Grundgesetze der Arithmetik. Jena: Hermann Pohle.
[Engleski prijevod: Basic Laws of Arithmetic, Oxford 2013/2016, ISBN: 978-0-19-
877730-4]

[RW10] Russell, B., & Whitehead, A. N. (1910-1913). Principia Mathematica (3 vols.).
Cambridge: Cambridge University Press.

[Russ19] Russell, B. (1919). Introduction to Mathematical Philosophy. London: George
Allen & Unwin. [Moderno izdanje: Routledge, ISBN: 0-415-09604-9]

[Tars56] Tarski, A. (1956). Logic, Semantics, Metamathematics: Papers from 1923 to 1938.
Trans. J. H. Woodger. Oxford: Clarendon Press. [Novo izdanje: Hackett 1983,
ISBN: 0-915-14476-X]

223

224 DODATAK B. LITERATURA

B.2 Suvremeni udžbenici formalne logike

[Mend15] Mendelson, E. (2015). Introduction to Mathematical Logic (6th ed.). Boca Raton:
CRC Press. ISBN: 978-1-48223-772-6.

[Ende01] Enderton, H. B. (2001). A Mathematical Introduction to Logic (2nd ed.). San
Diego: Academic Press. ISBN: 0-12-238452-0.

[vDal13] van Dalen, D. (2013). Logic and Structure (5th ed.). London: Springer. ISBN:
978-1-44714-557-8.

[Kune11] Kunen, K. (2011). Set Theory. London: College Publications. ISBN: 978-1-84890-
050-9.

[Jech03] Jech, T. (2003). Set Theory (3rd Millennium ed.). Berlin: Springer. ISBN:
3-540-44085-2.

B.3 Filozofija logike

[Quin86] Quine, W. V. (1986). Philosophy of Logic (2nd ed.). Cambridge, MA: Harvard
University Press. ISBN: 978-0-674-66563-7.

[Quin82] Quine, W. V. (1982). Methods of Logic (4th ed.). Cambridge, MA: Harvard
University Press. ISBN: 978-0-674-57176-1.

[Haac78] Haack, S. (1978). Philosophy of Logics. Cambridge: Cambridge University Press.
ISBN: 0-521-29329-4.

[Prie08] Priest, G. (2008). An Introduction to Non-Classical Logic: From If to Is (2nd
ed.). Cambridge: Cambridge University Press. ISBN: 978-0-521-67026-5.

[Krip80] Kripke, S. (1980). Naming and Necessity. Cambridge, MA: Harvard University
Press. ISBN: 0-674-59845-8.

B.4 Teorija dokaza i prirodna dedukcija

[Gent35] Gentzen, G. (1935). Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39, 176-210, 405-431. [Engleski prijevod u: The Collected Papers of
Gerhard Gentzen, North-Holland 1969]

[Praw06] Prawitz, D. (2006). Natural Deduction: A Proof-Theoretical Study. Mineola, NY:
Dover. ISBN: 978-0486446554.

[Take13] Takeuti, G. (2013). Proof Theory (2nd ed.). Mineola, NY: Dover. ISBN: 978-
0486490731.

B.5. AUTOMATSKO DOKAZIVANJE TEOREMA 225

[TS00] Troelstra, A. S., & Schwichtenberg, H. (2000). Basic Proof Theory (2nd ed.).
Cambridge: Cambridge University Press. ISBN: 978-0521779111.

[Buss98] Buss, S. R. (Ed.). (1998). Handbook of Proof Theory. Amsterdam: Elsevier.
ISBN: 978-0444898401.

[GLT89] Girard, J.-Y., Lafont, Y., & Taylor, P. (1989). Proofs and Types. Cambridge:
Cambridge University Press. [Dostupno online]

B.5 Automatsko dokazivanje teorema

[CL73] Chang, C.-L., & Lee, R. C.-T. (1973). Symbolic Logic and Mechanical Theorem
Proving. New York: Academic Press. [Dover reprint ISBN: 978-1493300242]

[Harr09] Harrison, J. (2009). Handbook of Practical Logic and Automated Reasoning.
Cambridge: Cambridge University Press. ISBN: 978-0521899574.

[Fitt96] Fitting, M. (1996). First-Order Logic and Automated Theorem Proving (2nd ed.).
New York: Springer. ISBN: 978-1461275152.

[NPW02] Nipkow, T., Paulson, L. C., & Wenzel, M. (2002). Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. Berlin: Springer. LNCS 2283.

[BC04] Bertot, Y., & Castéran, P. (2004). Interactive Theorem Proving and Program
Development: Coq’Art. Berlin: Springer.

B.6 Lambda račun i teorija tipova

[Bare85] Barendregt, H. P. (1985). The Lambda Calculus: Its Syntax and Semantics
(Revised ed.). Amsterdam: North-Holland. ISBN: 978-0444875082.

[Pier02] Pierce, B. C. (2002). Types and Programming Languages. Cambridge, MA: MIT
Press. ISBN: 978-0262162098.

[Pier04] Pierce, B. C. (Ed.). (2004). Advanced Topics in Types and Programming Langu-
ages. Cambridge, MA: MIT Press.

[Harp16] Harper, R. (2016). Practical Foundations for Programming Languages (2nd ed.).
Cambridge: Cambridge University Press. ISBN: 978-1107150300.

[SU06] Sørensen, M. H., & Urzyczyn, P. (2006). Lectures on the Curry-Howard Isomorp-
hism. Amsterdam: Elsevier. ISBN: 978-0444520777.

[ML84] Martin-Löf, P. (1984). Intuitionistic Type Theory. Naples: Bibliopolis. [Dostupno
online]

[TD88] Troelstra, A. S., & van Dalen, D. (1988). Constructivism in Mathematics (2 vols.).
Amsterdam: North-Holland.

226 DODATAK B. LITERATURA

B.7 Semantika programskih jezika

[Wins93] Winskel, G. (1993). The Formal Semantics of Programming Languages: An
Introduction. Cambridge, MA: MIT Press. ISBN: 978-0262731034.

[Gunt92] Gunter, C. A. (1992). Semantics of Programming Languages: Structures and
Techniques. Cambridge, MA: MIT Press. ISBN: 978-0262570954.

[Stoy77] Stoy, J. E. (1977). Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. Cambridge, MA: MIT Press.

[Reyn98] Reynolds, J. C. (1998/2009). Theories of Programming Languages. Cambridge:
Cambridge University Press. ISBN: 978-0521106979.

B.8 Logika u računarskoj znanosti

[HR04] Huth, M., & Ryan, M. (2004). Logic in Computer Science: Modelling and
Reasoning about Systems (2nd ed.). Cambridge: Cambridge University Press.
ISBN: 978-0521543101.

[BA12] Ben-Ari, M. (2012). Mathematical Logic for Computer Science (3rd ed.). London:
Springer. ISBN: 978-1447141280.

[NS93] Nerode, A., & Shore, R. A. (1993). Logic for Applications. New York: Springer.
ISBN: 978-0387948935.

[Dijk76] Dijkstra, E. W. (1976). A Discipline of Programming. Englewood Cliffs, NJ:
Prentice-Hall.

B.9 Logičko programiranje

[SS94] Sterling, L., & Shapiro, E. (1994). The Art of Prolog: Advanced Programming
Techniques (2nd ed.). Cambridge, MA: MIT Press. ISBN: 978-0262193382.

[CM03] Clocksin, W. F., & Mellish, C. S. (2003). Programming in Prolog: Using the ISO
Standard (5th ed.). Berlin: Springer. ISBN: 978-3540006787.

[Lloy87] Lloyd, J. W. (1987). Foundations of Logic Programming (2nd ed.). Berlin:
Springer. ISBN: 978-3642831911.

[Brat12] Bratko, I. (2012). Prolog Programming for Artificial Intelligence (4th ed.). Harlow:
Pearson.

B.10. BAYESOVSKA VJEROJATNOST I INDUKTIVNA LOGIKA 227

B.10 Bayesovska vjerojatnost i induktivna logika

[Jay03] Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge:
Cambridge University Press. ISBN: 978-0521592710.

[Pearl88] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. San Francisco:
Morgan Kaufmann. ISBN: 978-1558604797.

[Good83] Goodman, N. (1983). Fact, Fiction, and Forecast (4th ed.). Cambridge, MA:
Harvard University Press. ISBN: 978-0674290716.

[Hack75] Hacking, I. (1975). The Emergence of Probability. Cambridge: Cambridge
University Press. ISBN: 978-0521318037.

B.11 Dodatna literatura za Python programiranje

[Lutz13] Lutz, M. (2013). Learning Python (5th ed.). Sebastopol, CA: O’Reilly. ISBN:
978-1449355739.

[McK17] McKinney, W. (2017). Python for Data Analysis (2nd ed.). Sebastopol, CA:
O’Reilly. ISBN: 978-1491957660.

[VPG16] VanderPlas, J. (2016). Python Data Science Handbook. Sebastopol, CA: O’Reilly.
ISBN: 978-1491912058.

[Ras13] Raschka, S. (2015). Python Machine Learning. Birmingham: Packt Publishing.
ISBN: 978-1783555130.

B.12 Neki radovi hrvatskih autora

[Dov12a] Dovedan Han, Z. (2012). Formalni jezici i prevodioci 1: Regularni izrazi, gramatike,
automati. Zagreb: Element.

[Dov12b] Dovedan Han, Z. (2012). Formalni jezici i prevodioci 2: Sintaksna analiza. Zagreb:
Element.

[Dov12c] Dovedan Han, Z. (2012). Formalni jezici i prevodioci 3: Prevođenje i primjene.
Zagreb: Element.

[Lauc19] Lauc, D. at al (2019). Pojmovnik elementarne logike. Zagreb: FF Press. DOI:
10.17234/9789531758253.

[Šik87] Šikić, Z. (1987). Systems of Rules and Systems of Sequents (Doctoral dissertation).
University of Zagreb.

[Šik91] Šikić, Z. (1991). A characterization theorem for consequence relations. Mathema-
tical Logic Quarterly, 37(25-32), 385-390.

228 DODATAK B. LITERATURA

B.13 Online resursi i repozitoriji

[Git25] Lauc, D. (2025). Logika u kodu: Jupyter bilježnice i primjeri. GitHub repozitorij.
Dostupno na: https://github.com/ffzg-logika/logika-u-kodu

[SEP] Stanford Encyclopedia of Philosophy. Dostupno na: https://plato.stanford.
edu/

[IEP] Internet Encyclopedia of Philosophy. Dostupno na: https://iep.utm.edu/

[nLab] nLab - Mathematics, Physics, Philosophy. Dostupno na: https://ncatlab.org/

[MetaM] Metamath Proof Explorer. Dostupno na: http://us.metamath.org/

[Coq] The Coq Proof Assistant. Dostupno na: https://coq.inria.fr/

[Isa] Isabelle Proof Assistant. Dostupno na: https://isabelle.in.tum.de/

[Lean] Lean Theorem Prover. Dostupno na: https://leanprover.github.io/

Napomena: Ova bibliografija kontinuirano se ažurira novim izdanjima i relevantnim radovima.
Za najnovije verzije i dodatne materijale, konzultirajte GitHub repozitorij udžbenika.

https://github.com/ffzg-logika/logika-u-kodu
https://plato.stanford.edu/
https://plato.stanford.edu/
https://iep.utm.edu/
https://ncatlab.org/
http://us.metamath.org/
https://coq.inria.fr/
https://isabelle.in.tum.de/
https://leanprover.github.io/

	Predgovor
	Uvod: Što je logika i zašto kod?
	Logika kao znanost o valjanom zaključivanju
	Formalni jezik misli
	Struktura stvarnosti: Wittgensteinova slika
	Istina i značenje: Tarskijeva semantika
	Dokazi kao programi: Curry-Howard izomorfizam
	Granice formalizma: Gödelova nepotpunost
	Turingovi strojevi
	Od dedukcije k indukciji
	Paradoksi i granice
	Primjena u stvarnom svijetu
	Putovanje koje slijedi

	I SVJETOVI DEDUKTIVNE LOGIKE
	Wittgensteinova logička slika svijeta
	Semantička logička posljedica kroz prizmu Tractatusa
	Atomarne činjenice i elementarni sudovi
	Logički prostor i mogući svjetovi
	Logički veznici i složeni sudovi
	Semantička logička posljedica
	Tautologije i kontradikcije
	Tablični prikaz logičkih posljedica
	Filozofske implikacije
	Praktična primjena: Logičko zaključivanje
	Zadaci i prijedlozi za daljnje istraživanje
	Prijedlozi za daljnje istraživanje
	Zaključak

	Gentzenov svijet: Prirodna dedukcija i sintaktička logička posljedica
	Od semantike k sintaksi
	Sintaktička naspram semantičke logičke posljedice
	Prirodna dedukcija - Gentzenov sustav
	Implementacija sustava prirodne dedukcije
	Klasični dokazi u prirodnoj dedukciji
	Konzistentnost i potpunost
	Normalizacija dokaza i računska interpretacija
	Konstruktivizam vs. klasična logika
	Praktična primjena: Automatski dokazivač teorema
	Zadaci za vježbu
	Zaključak

	Tarskijev svijet: Semantika logike predikata prvog reda
	Od sudova k predikatima
	Ograničenja logike sudova
	Tarskijeva semantička teorija istine
	Semantička evaluacija formula
	Slobodne i vezane varijable
	Valjanost i zadovoljivost
	Skolemizacija i prenex normalna forma
	Herbrandov univerzum i teorem
	Praktična primjena: Mini dokazivač teorema
	Zadaci za vježbu
	Zaključak

	Turingov svijet: Granice izračunljivosti
	Od Hilbertovog programa do Turingovih strojeva
	Turingov stroj - formalni model računanja
	Church-Turingova teza
	Problem zaustavljanja - prva granica izračunljivosti
	Rekurzivno prebrojive vs. odlučive jezike
	Redukcije i stupnjevi neodlučivosti
	Alternativni modeli: Register strojevi i μ-rekurzivne funkcije
	Praktične primjene i granice
	Zadaci za vježbu
	Zaključak

	Cantorov svijet
	Teorija skupova, beskonačnost i granice razuma
	Osnovni pojmovi teorije skupova
	Partitivni skup i hijerarhija skupova
	Partitivni skup i hijerarhija skupova
	Bijektivna funkcija i kardinalnost
	Cantorova dijagonalna metoda
	Hijerarhija beskonačnosti
	Russellov paradoks i kriza osnova
	Filozofske implikacije beskonačnosti
	Praktična primjena: Moć skupova u programiranju
	Prijedlozi za daljnje istraživanje
	Zaključak

	II SVJETOVI INDUKTIVNIH LOGIKA
	Pascalov svijet
	Vjerojatnost kao logika neizvjesnosti
	Od logike sudova do vjerojatnosti
	Kolmogorovljevi aksiomi vjerojatnosti
	Vjerojatnost kao proširenje logičkih veznika
	Bayesov teorem - zaključivanje s neizvjesnošću
	Pascalova oklada - filozofija vjerojatnosti
	Problem indukcije i vjerojatnost
	Monty Hall problem - paradoksi uvjetne vjerojatnosti
	Filozofske interpretacije vjerojatnosti
	Prijedlozi za daljnje istraživanje
	Zaključak

	Bayesov svijet
	Uvjetna vjerojatnost i priroda znanja
	Uvjetna vjerojatnost - temelj Bayesovog razmišljanja
	Bayesov teorem - formula racionalnog učenja
	Epistemologija - znanje kao ažuriranje vjerovanja
	Filozofija znanosti - potvrđivanje i opovrgavanje
	Problem priornih vjerojatnosti
	Occamova oštrica i Bayesov faktor
	Koherentnost i Dutch Book argument
	Prijedlozi za daljnje istraživanje
	Zaključak

	Goodmanovi svijetovi: Problem indukcije i strojno učenje
	Novi problem indukcije kroz prizmu računalnih znanosti
	Klasični problem indukcije
	Goodmanov "grue" predikat
	Beskonačnost alternativnih hipoteza
	No-Free-Lunch teoremi u strojnom učenju
	Konstrukcija "savijenih" koncepata
	Implikacije za strojno učenje
	Filozofske implikacije
	Praktične implikacije i rješenja
	Zaključak

	III DODACI
	Uvod u Python za studente filozofije i ostalih ne-tehničkih grupa
	Zašto bi se filozof zanimao za programiranje?
	Osnovni pojmovi: Varijable, tipovi podataka i izrazi
	Varijable: Imenovanje ideja
	Tipovi podataka: Različite vrste informacija
	Izrazi: Kombiniranje vrijednosti

	Strukture podataka: Organiziranje misli
	Liste: Uređeni nizovi argumenata
	Rječnici: Asocijativni parovi pojmova i definicija

	Kontrola toka: Usmjeravanje argumentacije
	Uvjetno izvršavanje: if, elif, else
	Ponavljanje: for petlja

	Funkcije: Modularizacija i ponovna upotreba misli
	Primjer iz prakse: Analiza filozofskog teksta
	Zaključak: Sljedeći koraci

	Literatura
	Pregled literature
	Klasični filozofski temelji logike
	Suvremeni udžbenici formalne logike
	Filozofija logike
	Teorija dokaza i prirodna dedukcija
	Automatsko dokazivanje teorema
	Lambda račun i teorija tipova
	Semantika programskih jezika
	Logika u računarskoj znanosti
	Logičko programiranje
	Bayesovska vjerojatnost i induktivna logika
	Dodatna literatura za Python programiranje
	Neki radovi hrvatskih autora
	Online resursi i repozitoriji

